
Block Ciphers II

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2020/21)

Block Ciphers 1 / 26 ,

Content

Confidentiality modes – ECB, CBC, OFB, CFB, CTR

Padding
Padding oracle aack
Ciphertext stealing

Authenticated encryption – CCM, GCM

Other constructions
Format-preserving encryption
Encryption of block devices

Theoretical security of block ciphers

Block Ciphers 2 / 26 ,

Modes of operation

I plaintext usually much longer than the block length
I modes of operation can provide:

I confidentiality (and not authenticity) . . . standard, “traditional” modes
I authenticity (and not confidentiality)
I confidentiality & authenticity (authenticated encryption)
I confidentiality for block-oriented storage devices (e.g. disks)
I key wrapping
I format-preserving encryption, . . .

I varying requirements (speed, security properties, ability to parallelize,
availability of RNG, etc.)⇒ dierent modes

Block Ciphers 3 / 26 ,

Confidentiality modes

I the most important confidentiality modes: ECB, CBC, OFB, CFB, CTR
I e.g. see NIST SP 800-38A: Recommendation for Block Cipher Modes of

Operation: Methods and Techniques
I None of these modes provide protection against accidental or

adversarial modifications of ciphertext!
I however, the eect of ciphertext modification on resulting plaintext

varies among modes

Block Ciphers 4 / 26 ,

ECB (Electronic Codebook)

P1

Ek

C1

P2

Ek

C2

encrypt: Ci = Ek (Pi)

P1

Dk

C1

P2

C2

decrypt: Pi = Dk (Ci)

Dk

I the simplest mode
I data leaks: Ci = Cj ⇔ Pi = Pj
I easy to rearrange the ciphertexts blocks (permute, duplicate, . . .)
I encryption and decryption trivially parallelizable
I easy to perform a seek (random access)
I bit changes do not propagate (single block aected)

Block Ciphers 5 / 26 ,

CBC (Cipher Block Chaining) 1
P1

Ek

C1

P2

Ek

C2

IV
(C0)

encrypt: Ci = Ek (Pi ⊕ Ci−1)

P1

Dk

C1

P2

C2

IV
(C0)

decrypt: Pi = Dk (Ci)⊕ Ci−1

Dk

I IV (initialization vector) – secrecy not required, usually appended as C0

I popular mode (e.g. AES-128 CBC was mandatory in TLS 1.2, RFC 5246)
I parallelizable decryption but not encryption
I bit change in plaintext or IV propagates to the rest of the ciphertext
I bit change in the ciphertext aects only two plaintext blocks

Block Ciphers 6 / 26 ,

Visual comparison of ECB and CBC (AES-128)

?!
ECB CBC

Block Ciphers 7 / 26 ,

CBC 2

I “self-synchronizing” aer losing a ciphertext block
I similarly to ECB, plaintext should be a multiple of block length

I padding, ciphertext stealing
I IV should be unpredictable (e.g. IV = Ek (msgseq), random, . . .)

I otherwise, in CPA scenario, an aacker gets an Ek (·) oracle
I since C1 = Ek (IV ⊕ P1), predictable IV allows him/her to adjust P1
I the aacker with Ek (·) access can test any plaintext block

Block Ciphers 8 / 26 ,

CBC 3

I data leak (birthday & two-time pad):

Ci = Cj ⇒ Ek (Pi ⊕ Ci−1) = Ek (Pj ⊕ Cj−1)
Pi ⊕ Pj = Ci−1 ⊕ Cj−1

I Sweet32 aack (2016): ciphers with block length 64 bits and large
amount of data encrypted using the same key (TLS, OpenVPN)
I 64 bit block⇒ collision expected aer ≈ 232 blocks (32 GiB)

I limit number of blocks encrypted with a single key

Block Ciphers 9 / 26 ,

CFB (Cipher Feedback)

Pi

Ek

Ci

IV

encrypt: Ci = Pi ⊕ Ek (Ci−1) decrypt: Pi = Ci ⊕ Ek (Ci−1)

Ci

Ek

Pi

IV
(C0) (C0)

Ci−1 Ci−1

I parallelizable decryption but not encryption; Dk not needed
I bit change in plaintext or IV propagates to the rest of the ciphertext
I bit change in the ciphertext aects only two plaintext blocks
I self-synchronizing aer full ciphertext block is lost

I ciphertext block and its predecessor are needed to decrypt correctly
I there is a variant for more granular losses

Block Ciphers 10 / 26 ,

CFB 2

I plaintext length does not need to be a multiple of block length
I IV should be unique for each plaintext
I repeated IV :

I two-time pad for the first blocks:

C1 ⊕ C′1 = Ek (IV) ⊕ P1 ⊕ Ek (IV) ⊕ P ′1 = P1 ⊕ P ′1

I for constant IV we have an encryption oracle in CPA scenario;
2nd block (C2):

C2 = Ek (Ek (IV) ⊕ P1︸ ︷︷ ︸
C1

) ⊕ P2

choosing P ′1 = C1 ⊕ P1 ⊕ X and arbitrary P ′2 yields

C′2 = Ek (Ek (IV) ⊕ C1 ⊕ P1 ⊕ X) ⊕ P ′2 = Ek (X) ⊕ P ′2

thus Ek (X) = C′2 ⊕ P ′2

Block Ciphers 11 / 26 ,

CFB8 variant of CFB mode and Zerologon

I Zerologon (CVE-2020-1472, Tom Tervoort)
compromising domain admin in AD

I problems with cryptography in Netlogon protocol
I AES-CFB8
I CFB8 mode (Pi and Ci denote bytes):

C1 = Ek (IV [0… 15]) [0] ⊕ P1
C2 = Ek (IV [1… 15]C1) [0] ⊕ P2
C3 = Ek (IV [2… 15]C1C2) [0] ⊕ P3
…

Ci+1 = Ek (C [i − 15, … , i]) [0] ⊕ Pi+1

Block Ciphers 12 / 26 ,

CFB8 variant of CFB mode and Zerologon 2

I function in Netlogon implementation used all-zero IV (always)
I consider all-zero plaintext

I 1/256 of all keys lead to all-zero ciphertext
I client authenticates by encrypting his own challenge with a session key

I the aacker chooses all-zero challenge
I session-key is unknown
I the aacker succeeds with probability 1/256
I if unsuccessful try again (session-key will change since it depends on

server challenge as well)

I the aack require more than this, but this is the core problem

Block Ciphers 13 / 26 ,

OFB (Output Feedback)

Pi

Ek

Ci

IV

encrypt: Ci = Pi ⊕ Ri decrypt: Pi = Ci ⊕ Ri

Ci

Ek

Pi

IV
(R0) (R0)

Ri = Ek (Ri−1)

I synchronous stream cipher; Dk not needed
I IV should be unique for each plaintext
I neither encryption nor decryption can be parallelized
I single bit change in plaintext/ciphertext causes single bit change in

ciphertext/plaintext (easy to flip plaintext bits)

Block Ciphers 14 / 26 ,

CTR (Counter)

Pi

Ek

Ci

IV | ctr

encrypt: Ci = Pi ⊕ Ek (IV | ctr) decrypt: Pi = Ci ⊕ Ek (IV | ctr)

Pi

Ek

Ci

IV | ctr

ctr++

I inputs to Ek should not overlap (otherwise . . . two-time pad)
I similar to OFB (synchronous stream cipher)
I similar properties of changing ciphertext bits
I easy to perform a seek (random access)
I easy to encrypt and decrypt in parallel

Block Ciphers 15 / 26 ,

Padding

I ECB and CBC assume: n | |plaintext|
(i.e. n divides the length of plaintext)

I padding required (various paddings used):
I bit padding – append 1 (always) and necessary number of 0’s:

msg || 1000. . . 0
I byte padding (PKCS #7, CMS (RFC 5652)):

msg || 01 if n | |msg| + 1
msg || 03 03 03 if n | |msg| + 3
msg || 10 10 . . . 10 if n | |msg| (for n = 128)

I similarly for TLS 1.2 (RFC 5246): 00; 02 02 02; 0F 0F . . . 0F

I padding⇒ |ciphertext| > |plaintext|
I padding should be verified aer decryption
I “stream” modes like OFB, CTR or CFB do not need padding

I |ciphertext| = |plaintext|

Block Ciphers 16 / 26 ,

Padding oracle aack 1

I implementation issue
I our assumptions:

I CBC mode
I we can recognize correct/incorrect padding, e.g. a server behaves

dierently (observable error, timing dierences, . . .)

I goal: decrypt ciphertext block C, i.e. compute Y = Dk (C)
I the aack:

I try ciphertexts (assume 16-byte block, X is a random 15-byte value):
(X || 00) || C, (X || 01) || C, . . . , (X || 7A) || C, . . . , (X || FF) || C,
until we find a ciphertext with valid padding

I probably the corresponding plaintext ends with byte 01, and we can
compute Y15, e.g. (7A ⊕Y15) = 01⇒ Y15 = 7B

Block Ciphers 17 / 26 ,

Padding oracle aack 2

I the aack (cont.):
I set the last byte of the first block to get 02 as the final byte of the

plaintext: b ⊕ Y15 = 02, i.e. b = 79
I try ciphertexts (X is a random 14-byte value):

(X || 00 || 79) || C, (X || 01 || 79) || C, . . . ,
(X || B2 || 79) || C, . . . , (X || FF || 79) || C,
until we find a ciphertext with valid padding (this time: 02 02)

I we can compute Y14, e.g. (B2 ⊕Y14) = 02⇒ Y14 = B0

. . . similarly for other bytes

I a variant used against SSL/TLS implementations (Lucky Thirteen, 2013)

Block Ciphers 18 / 26 ,

Ciphertext stealing 1

I method of avoiding padding for CBC or ECB modes
I ciphertext stealing for CBC mode encryption:

Pn−1

Ek

Cn−1

Pn || 0 . . . 0

Ek

CnCn−2

C′n−1 C′n || x . . . x

plaintext: … Pn−2, Pn−1, Pn
ciphertext: …Cn−2,C′n−1,C

′
n

Block Ciphers 19 / 26 ,

Ciphertext stealing 2

I decrypting CBC ciphertext stealing:

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

3

Block Ciphers 20 / 26 ,

Ciphertext stealing 2

I decrypting CBC ciphertext stealing:

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

3

Block Ciphers 20 / 26 ,

Authenticated encryption

I modes providing confidentiality & authenticity of data
I e.g. CCM (Counter with CBC-MAC), GCM (Galois/Counter Mode)
I CCM (idea):

I plaintext encrypted using CTR mode
I authentication tag computed as CBC-MAC
I authenticate-then-encrypt (single key is used)
I two-pass scheme (two E transforms for each input block)

m1

Ek

m2

Ek

IV

mt

Ek

Block Ciphers 21 / 26 ,

Authenticated encryption – GCM

I faster than CCM
I simplified GCM:

I single key is used
I plaintext encrypted using CTR mode (starting with inc(J0), an

incremented “pre-counter block”, derived from IV)
I authentication tag computed as follows:

CTRK (GHASHH (A,C)) = EK (J0) ⊕ GHASHH (A,C)
I A – additional authenticated data, C – ciphertext
I H = EK (0)
I A | | C ↦→ X1, … ,Xn−1, len(A) | | len(C)︸ ︷︷ ︸

Xn

Y0 = 0, Yi = (Yi−1 ⊕ Xi) • H
GHASHH (A,C) ← Yn

I • is multiplication in GF(2128) (generated by x128 + x7 + x2 + x + 1)
I IV must be unique for a given key (otherwise “forbidden aack”)

Block Ciphers 22 / 26 ,

Format-preserving encryption

I goal: encrypt fixed-length string over some alphabet while preserving
the length and the format of data
I examples: credit card numbers, social security numbers, . . .

I various proposals; the most important are FFX schemes
I based on Feistel structure
I see NIST SP 800-38G for recommended modes (and details)
I we present a very simplified (illustration) variant of FFX
I notation:

I r – radix, the size of input alphabet
I input plaintext X (string in base r) of length n (even)
I AES-128 – underlying block cipher; no tweak
I PRF – pseudorandom function (based on AES)

Block Ciphers 23 / 26 ,

Simplified FFX variant

1. A | | B← X (le and right halves)

2. P = constants | | r | | n
3. for i from 0 to 9: (10 rounds of Feistel structure)

3.1 R = PRFk (P | | i | | B)
3.2 S = R | | AESk (R ⊕ 1) | | AESk (R ⊕ 2) … (suiciently long)
3.3 C = (A + S) mod rn/2

3.4 A = B
3.5 B = C

4. return A | | B
I omied – all conversions from strings to bytes (and back)

Block Ciphers 24 / 26 ,

XTS – encryption of block devices

I XEX-based Tweaked CodeBook mode (TCB) with CipherText Stealing
(CTS)

I encryption of disks (block storage devices), e.g. File Vault 2, VeraCrypt,
Bitlocker, etc.

I IEEE standard; approved by NIST

Ci = Ek1 (Pi ⊕ Tn) ⊕ Tn; Tn = Ek2 (n) • ai

where
I k1, k2 are two independent keys
I n – data unit number (e.g. 512B in VeraCrypt)
I i – block number in particular data unit
I • – multiplication in GF (2128) (defined by x128 + x7 + x2 + x + 1)
I a – a primitive element in GF (2128) (corresponds to polynomial x)

Block Ciphers 25 / 26 ,

Theoretical security of block ciphers

I just an idea is presented
I E is an n-bit cipher
I aacker A (distinguisher)
I two dierent scenarios — A with oracle access to

I Ek (·) and E−1k (·) for fixed, randomly chosen k
I 𝜋 and 𝜋−1 for randomly chosen permutation on {0, 1}n

I block cipher is strong pseudorandom permutation if for any (eicient)
aacker A the probability of distinguishing these scenarios is negligible

I “standard model” (other models of security exist, e.g. “ideal cipher”
model – random independent permutation for every key)

Block Ciphers 26 / 26 ,

	Confidentiality modes – ECB, CBC, OFB, CFB, CTR
	Padding
	Padding oracle attack
	Ciphertext stealing

	Authenticated encryption – CCM, GCM
	Other constructions
	Format-preserving encryption
	Encryption of block devices

	Theoretical security of block ciphers

