
Cryptographic protocols – introduction

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2020/21)



Content

Introduction

Some protocols and basic notions
Diie-Hellman protocol
Interlock protocol
Dolev-Yao model
Freshness – nonces and timestamps

Basic protocols and aacks
Needham-Schroeder protocol
WMF protocol

Aacks
Replay aacks and symmetry – WMF, NSPK
Implementation issues (Otway-Rees)
Denning-Sacco protocol

Cryptographic protocols – introduction 2 / 33 ,



Introduction

I cryptographic protocols
I goals: secrecy, authentication, integrity, anonymity, unlinkability, . . .
I environment: untrusted channels, dishonest participants

I our focus: authentication and key agreement (session-key)
I session-key

I less data for cryptanalyis
I logical separation of data from dierent sessions
I using symmetric constructions for confidentiality and authenticity

I IPSec (IKE), TLS (handshake), SSH, WPA3 (SAE/Dragonfly), Noise
Protocol Framework, . . .

I prerequisite for secure communication
I various proposals (requirements, capabilities, environment)
I other protocols (not discussed here):

I voting, money, private information retrieval, multiparty computation, etc.

Cryptographic protocols – introduction 3 / 33 ,



Diie-Hellman protocol

I two principals A, B
I shared group G of prime order q with generator g

I public, known to everyone (e.g. an aacker)

I goal: key agreement
I DH protocol:

1. A → B: ga, for random a ∈ Zq
2. B → A: gb, for random b ∈ Zq
I A computes K = (gb)a = gab, and B computes K = (ga)b = gab
I the shared secret can be used to derive a symmetric key(s)

I passive adversary: CDH problem ga, gb → gab

Cryptographic protocols – introduction 4 / 33 ,



MITM aack

I active adversary in DH protocol
I can intercept and change messages

I man-in-the-middle aack (M is an aacker):
1. A → M(B): ga
2. M(A) → B: gx

3. B → M(A): gb
4. M(B) → A: gy

I A computes KA = gay , B computes KB = gxb
I M can compute KA = (ga)y = gay as well as KB = (gb)x = gbx
I M can “translate” messages between A and B (or create his/her own)

I Can M enforce KA = KB in the MITM aack?
I if not, M should be there till the end or “simulate” a connection error
I gx = gy = 1⇒ KA = KB = 1

Cryptographic protocols – introduction 5 / 33 ,



Fixing DH protocol

I authenticate messages in the protocol
I additional assumptions – PKI (distribution of authentic public keys),

preshared secrets, etc.
I DH in various forms is a base for majority of key agreement protocols
I Station-to-Station protocol:

1. A → B: ga

2. B → A: gb, CertB, EK (SigB (gb, ga))
3. A → B: CertA, EK (SigA (ga, gb))
I key agreement and authentication of participants
I the shared secret K = gab
I SigU denotes signature produced by user U
I certificates contain public keys for verifying signatures
I E is symmetric encryption and “proves” the possession of K

Cryptographic protocols – introduction 6 / 33 ,



Interlock protocol

I idea: let’s force the MITM aacker to be “active” in the communication
I scenarios (possible MITM aack):

I aer unauthenticated DH protocol
I aer unauthenticated distribution of key using asymmetric encryption

I A/B wants to send a message mA/mB to B/A
I both encrypt their message and exchange halves of the ciphertexts

(cA/cB), and then the other halves:
1. A → B: cA1 (first half of cA)
2. B → A: cB1 (first half of cB)
3. A → B: cA2 (second half of cA)
4. B → A: cB2 (second half of cB)

I a half of the ciphertext should be useless for the recipient
I e.g. even/odd bits, encryption combined with MAC, . . .

Cryptographic protocols – introduction 7 / 33 ,



Interlock protocol (2)

I assume MITM aacker M and keys KA and KB used for A ↔ M and
M ↔ B communications, respectively

I M can send the original message to A or B but not both
I example (sending mB to A)

1. A → M(B): cA1 (first half of cA)
2. M(A) → B: c′A1 (first half of c′A, for some made-up m′

A)
3. B → M(A): cB1 (first half of cB)
4. M(A) → B: c′A2 (second half of c′A)
5. B → M(A): cB2 (second half of cB, M can decrypt mB)
6. M(B) → A: c′B1 (first half of c′B, M encrypts mB with KA)
7. A → M(B): cA2 (second half of cA, M can decrypt mA)
8. M(B) → A: c′B2 (second half of c′B, A decrypts mB)

I Can we detect made-up messages?
I phones – reading aloud the messages from interlock protocol or

session-key checksum (voice synthesis ?)

Cryptographic protocols – introduction 8 / 33 ,



Dolev-Yao model

I the adversary controls the network completely
I eavesdrop, forge, delete, inject, replay, redirect messages
I perform any computation with data (and keys) learned or possessed

I very strong (but appropriate) model
I protocol secure in DY model will be secure also in a weaker model
I sometimes weaker model is assumed in practice:

I verification SMS sent to a mobile phone

I we will assume DY model in this lectures

Cryptographic protocols – introduction 9 / 33 ,



Assumptions

I ideal cryptography:
I perfect encryption, signatures, hash functions, message authentication

codes, random number generators etc.
I even more, e.g. encrypted messages cannot be manipulated without

detection, no info about message without a key, tuples with two or three
messages cannot be confused etc.

I flawless implementation (see history of problems in SSL/TLS)
I instantiation of crypto algorithms (e.g. oracle padding aacks (POODLE),

combination with compression (CRIME, BREACH))
I geing implementation right (e.g. Heartbleed, export versions of

algorithms, timing aacks, Bleichenbacher’s aack)

I even then the analysis is non-trivial

Cryptographic protocols – introduction 10 / 33 ,



What is wrong with this protocol?

I A generates a session-key K and sends it encrypted and signed to B
I one-way authentication and key distribution

1. A → B: EB (A,B,K ), SigA (EB (A,B,K ))
I assumptions: A knows the public key of B (for asymmetric encryption), B

knows the public key of A (for signature verification)
I B verifies the signature and decrypts K

I the problem: replay aack
I aer K leaks the aacker can replay the message
I B is tricked into using K as a good key for communication with A

I Exercise: What other problems can you find in the protocol when we
omit the IDs of participants?

Cryptographic protocols – introduction 11 / 33 ,



What is wrong with this protocol?

I A generates a session-key K and sends it encrypted and signed to B
I one-way authentication and key distribution

1. A → B: EB (A,B,K ), SigA (EB (A,B,K ))
I assumptions: A knows the public key of B (for asymmetric encryption), B

knows the public key of A (for signature verification)
I B verifies the signature and decrypts K

I the problem: replay aack
I aer K leaks the aacker can replay the message
I B is tricked into using K as a good key for communication with A

I Exercise: What other problems can you find in the protocol when we
omit the IDs of participants?

Cryptographic protocols – introduction 11 / 33 ,



What is wrong with this protocol?

I A generates a session-key K and sends it encrypted and signed to B
I one-way authentication and key distribution

1. A → B: EB (A,B,K ), SigA (EB (A,B,K ))
I assumptions: A knows the public key of B (for asymmetric encryption), B

knows the public key of A (for signature verification)
I B verifies the signature and decrypts K

I the problem: replay aack
I aer K leaks the aacker can replay the message
I B is tricked into using K as a good key for communication with A

I Exercise: What other problems can you find in the protocol when we
omit the IDs of participants?

Cryptographic protocols – introduction 11 / 33 ,



Freshness of messages

I prevention of replay aacks: nonces and timestamps
I nonce

I usually suiciently long random string/number (i.e. unpredictable);
(sometimes “unique” is suicient)

I used just for a particular instance of the protocol
I unlikely to be present in some previous instances of the protocol
I usually the confidentiality is not needed
I examples: SSL/TLS, IKEv2

I timestamp
I suiciently precise time information included into a message
I somewhat synchronized clocks are required
I clock manipulation should be prevented
I example: Kerberos

Cryptographic protocols – introduction 12 / 33 ,



Needham-Schroeder protocol

I the protocol uses trusted third party – server S
I S shares symmetric keys with participants (KU with participant U)

I participants A and B
I goals: authentication and distribution of a session-key KAB

I assumptions: NA/NB nonces generated by A/B,
I the protocol:

1. A → S: A,B,NA

2. S → A: {NA,KAB,B, {KAB,A}KB }KA

3. A → B: {KAB,A}KB

4. B → A: {NB}KAB

5. A → B: {NB − 1}KAB

I positives: S involved only once, stateless, . . .
I insecure!

Cryptographic protocols – introduction 13 / 33 ,



Needham-Schroeder protocol

I the protocol uses trusted third party – server S
I S shares symmetric keys with participants (KU with participant U)

I participants A and B
I goals: authentication and distribution of a session-key KAB

I assumptions: NA/NB nonces generated by A/B,
I the protocol:

1. A → S: A,B,NA

2. S → A: {NA,KAB,B, {KAB,A}KB }KA

3. A → B: {KAB,A}KB

4. B → A: {NB}KAB

5. A → B: {NB − 1}KAB

I positives: S involved only once, stateless, . . .
I insecure!

Cryptographic protocols – introduction 13 / 33 ,



Aacking Needham-Schroeder protocol

I aack found by Denning and Sacco
I weakness: B cannot verify the freshness of KAB

I the aacker can force B to accept a compromised KAB (by cryptanalysis
or by leak)

I the aack (M knows KAB and thus (s)he can finish the protocol):
3. M(A) → B: {KAB,A}KB (replay of old message)
4. B → M(A): {N ′

B}KAB

5. M(A) → B: {N ′
B − 1}KAB

I How to fix the protocol?
I e.g. A requests NB from B at the beginning

Cryptographic protocols – introduction 14 / 33 ,



Modified Wide Mouth Frog protocol

I participants A and B, trusted third party (server S)
I timestamps (TU generated by U)
I S shares symmetric keys with participants
I goals: one-way authentication and distribution of the session-key K
I the protocol

1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,B,K }KB

I Original WMF:
1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,K }KB

I Can you find a weakness?

Cryptographic protocols – introduction 15 / 33 ,



Modified Wide Mouth Frog protocol

I participants A and B, trusted third party (server S)
I timestamps (TU generated by U)
I S shares symmetric keys with participants
I goals: one-way authentication and distribution of the session-key K
I the protocol

1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,B,K }KB

I Original WMF:
1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,K }KB

I Can you find a weakness?

Cryptographic protocols – introduction 15 / 33 ,



Aacks

I examples:
I Needham-Schroeder public-key protocol (1978) – aack, Lowe (1995)
I various weaknesses in real-world protocols: PPTP, SSL/TLS, . . .
I WPA 4-way handshake (802.11i, 2004) - aack, Vanhoef (2017)

I Weaknesses/aack types
I replay aacks
I imprecise description
I implementation issues
I symmetry of messages
I variable length of objects
I interaction of protocols, etc.

I usually a combination of weaknesses and aack techniques

Cryptographic protocols – introduction 16 / 33 ,



Replay aack

I “classic” example: Needham-Schroeder protocol
I Wide mouth frog protocol

1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

I notation and assumptions:
I T – trusted third party / server
I KA / KB – symmetric key shared between A and T or B and T
I TA / TT – time-stamp produced by A and T , respectively

I objectives:
I distribution of session-key K
I authentication of A (B is authenticated aer the use of K )

Cryptographic protocols – introduction 17 / 33 ,



Aacking WMF
I aack – repeating messages, employing their symmetry, and using T as

an oracle:
1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

3. E (B) → T : B, {TT ,A,K }KB

4. T → E (A) : {T ′
T ,B,K }KA

5. E (A) → T : A, {T ′
T ,B,K }KA

6. T → E (B) : {T ′′
T ,A,K }KB

…
refreshing the time-stamp
aer obtaining K (leak, cryptanalysis):
1’. E (A) → T : A, {T ∗

T ,B,K }KA

2’. T → B : {T ∗∗
T ,A,K }KB

I fix: break the symmetry, e.g. add sender’s identifier (or message
number) into the second message

Cryptographic protocols – introduction 18 / 33 ,



Aacking WMF
I aack – repeating messages, employing their symmetry, and using T as

an oracle:
1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

3. E (B) → T : B, {TT ,A,K }KB

4. T → E (A) : {T ′
T ,B,K }KA

5. E (A) → T : A, {T ′
T ,B,K }KA

6. T → E (B) : {T ′′
T ,A,K }KB

…
refreshing the time-stamp
aer obtaining K (leak, cryptanalysis):
1’. E (A) → T : A, {T ∗

T ,B,K }KA

2’. T → B : {T ∗∗
T ,A,K }KB

I fix: break the symmetry, e.g. add sender’s identifier (or message
number) into the second message

Cryptographic protocols – introduction 18 / 33 ,



NSPK

I Needham-Schroeder public-key protocol (1978)
1. A → B : {A,NA}KB

2. B → A : {NA,NB}KA

3. A → B : {NB}KB

I notation and assumptions:
I KA / KB – A’s / B’s public key
I NA / NB – nonce produced by A / B

I objectives:
I mutual (two-way) authentication of A and B
I NA and NB can be used for session-key construction

Cryptographic protocols – introduction 19 / 33 ,



Aacking NSPK

I aack – aer initial message from A, E starts a session with B
pretending to be A (both instances complete successfully):

1. A → E : {A,NA}KE

1’. E (A) → B : {A,NA}KB

2’. B → E (A) : {NA,NB}KA

2. E → A : {NA,NB}KA

3. A → E : {NB}KE

3’. E (A) → B : {NB}KB

I fix: e.g. adding an identifier of B into the second message:

1. A → B : {A,NA}KB

2. B → A : {NA,NB,B}KA

3. A → B : {NB}KB

Cryptographic protocols – introduction 20 / 33 ,



Aacking NSPK

I aack – aer initial message from A, E starts a session with B
pretending to be A (both instances complete successfully):

1. A → E : {A,NA}KE

1’. E (A) → B : {A,NA}KB

2’. B → E (A) : {NA,NB}KA

2. E → A : {NA,NB}KA

3. A → E : {NB}KE

3’. E (A) → B : {NB}KB

I fix: e.g. adding an identifier of B into the second message:

1. A → B : {A,NA}KB

2. B → A : {NA,NB,B}KA

3. A → B : {NB}KB

Cryptographic protocols – introduction 20 / 33 ,



Otway-Rees protocol

I Otway, Rees (1987)
1. A → B : M,A,B, {NA,M,A,B}KA

2. B → T : M,A,B, {NA,M,A,B}KA , {NB,M,A,B}KB

3. T → B : M, {NA,K }KA , {NB,K }KB

4. B → A : M, {NA,K }KA

I notation and assumptions:
I T – trusted server
I KA / KB – symmetric key shared between A / B and T
I NA / NB – nonce produced by A / B
I M – randomly chosen identifier of this protocol run

I objectives:
I distribution of session-key K
I authentication of A (B is authenticated aer the use of K )

Cryptographic protocols – introduction 21 / 33 ,



Aacking Otway-Rees protocol – aack 1

I implementation issue
I aack: improper block cipher mode – ECB:

I let |NB | be a multiply of block length
I encrypted nonce can be replaced in {NB,K }KB

I result: old session-key can be forced for use in a new session

Cryptographic protocols – introduction 22 / 33 ,



Aacking Otway-Rees protocol – aack 2

again an implementation issue
aack: improper block cipher mode – CBC:

I assumption: the plaintext NB,M,A,B fits into 3 blocks:

P1 = NB, P2 = M, P3 = A,B.

I CBC: random IV , encrypted and prepended as the first block of
ciphertext

I aacker E starts the first protocol instance with B:

1. E → B : M′, E ,B, {NE ,M′, E ,B}KE

2. B → E (T ) : M′, E ,B, {NE ,M′, E ,B}KE , {N ′
B,M

′, E ,B}KB

I {N ′
B,M

′, E ,B}KB = {IV ′}KB ,C
′
1,C

′
2,C

′
3

Cryptographic protocols – introduction 23 / 33 ,



. . . aack 2 continues

I E starts the second instance with B, pretending to be A:

1’. E (A) → B : M,A,B, {NE ,M, E ,B}KE

2’. B → E (T ) : M,A,B, {NE ,M, E ,B}KE , {NB,M,A,B}KB

I let {NB,M,A,B}KB = {IV }KB ,C1,C2,C3

I E modifies the intercepted message and sends to T :

3’. E (B) → T : S, E ,B, {NE , S, E ,B}KE ,X

where X = {IV }KB ,C1,C′
2,C

′
3

Cryptographic protocols – introduction 24 / 33 ,



. . . aack 2 continues

I decrypting X :

DKB (X ) = NB,C1 ⊕ DKB (C′
2),C′

2 ⊕ DKB (C′
3)

= NB,C1 ⊕ M′ ⊕ C′
1, E ,B.

I E sets S = C1 ⊕ M′ ⊕ C′
1

I 3’ is a legitimate message from T ’s point of view

4’. T → E (B) : S, {NE ,K }KE , {NB,K }KB

5’. E (T ) → B : M, {NE ,K }KE , {NB,K }KB

6’. B → E (A) : M, {NE ,K }KE

I result: B thinks (s)he communicates with A; E knows the key K

fix: add some redundant data into encrypted message (e.g. hash); use MAC,
authenticated encryption etc.

Cryptographic protocols – introduction 25 / 33 ,



. . . aack 2 continues

I decrypting X :

DKB (X ) = NB,C1 ⊕ DKB (C′
2),C′

2 ⊕ DKB (C′
3)

= NB,C1 ⊕ M′ ⊕ C′
1, E ,B.

I E sets S = C1 ⊕ M′ ⊕ C′
1

I 3’ is a legitimate message from T ’s point of view

4’. T → E (B) : S, {NE ,K }KE , {NB,K }KB

5’. E (T ) → B : M, {NE ,K }KE , {NB,K }KB

6’. B → E (A) : M, {NE ,K }KE

I result: B thinks (s)he communicates with A; E knows the key K

fix: add some redundant data into encrypted message (e.g. hash); use MAC,
authenticated encryption etc.

Cryptographic protocols – introduction 25 / 33 ,



Imprecise description of protocol – aack 3

I let’s assume that T does not check the consistence of plaintext and
encrypted data

I aack:
1’. A → B : M,A,B, {NA,M,A,B}KA

2’. B → E (T ) : M,A,B, {NA,M,A,B}KA , {NB,M,A,B}KB

3’. E → T : M,A, E , {NA,M,A,B}KA , {NE ,M,A,B}KE

4’. T → E : M, {NA,K }KA , {NE ,K }KE

5’. E (B) → A : M, {NA,K }KA

I result:
I A assumes to be communicating with B
I E impersonates B and E knows the session-key K

Cryptographic protocols – introduction 26 / 33 ,



Improper length of objects – aack 4

I let |K | = |M,A,B|
1’. A → E (B) : M,A,B, {NA,M,A,B}KA

4’. E (B) → A : M, {NA,M,A,B}KA

I result:
I A assumes the communication with B
I E impersonates B and E knows the “session-key” (regardless of mode

used for encryption)

I general observation: messages should bounded to the particular step of
the protocol

Cryptographic protocols – introduction 27 / 33 ,



Symmetry of messages

I examples: NSPK protocol, WMF protocol
I usually multiple simultaneous protocol instances
I protocol for mutual authentication:

1. A → B : NA

2. B → A : {NA,NB}K
3. A → B : NB

I notation and assumptions:
I K – symmetric key shared between A and B
I NA / NB – nonce generated by A and B, respectively

Cryptographic protocols – introduction 28 / 33 ,



Aack employing the symmetry

1. A → E (B) : NA

1’. E (B) → A : NA

2’. A → E (B) : {NA,N ′
A}K

2. E (B) → A : {NA,N ′
A}K

3. A → E (B) : N ′
A

3’. E (B) → A : N ′
A

I result: A believes that (s)he communicates with B
I fix:

I restrict the number of parallel runs or keeping track of recent nones (not a
good solution)

I break the symmetry, e.g. insert participant’s identifier into encrypted
message

Cryptographic protocols – introduction 29 / 33 ,



Denning-Sacco protocol

I Denning, Sacco (1981)
1. A → T : A,B
2. T → A : CA,CB

3. A → B : CA,CB, {{K , TA}K−1
A
}KB

I notation and assumption:
I CA / CB – public-key certificate of A / B
I TA – time-stamp produced by A
I K – session-key generated by A
I {X }K−1

A
– message X signed by A

I objectives:
I distribution of session-key K
I one-way authentication of A

Cryptographic protocols – introduction 30 / 33 ,



Aacking Denning-Sacco protocol

Abadi (1994):

1. A → T : A, E
2. T → A : CA,CE

3. A → E : CA,CE , {{K , TA}K−1
A
}KE

3’. E (A) → B : CA,CB, {{K , TA}K−1
A
}KB

I result: E authenticates as A for B with known session-key K
I fix: e.g. insert recipient identifier into the signed data

Cryptographic protocols – introduction 31 / 33 ,



Aacking Denning-Sacco protocol

Abadi (1994):

1. A → T : A, E
2. T → A : CA,CE

3. A → E : CA,CE , {{K , TA}K−1
A
}KE

3’. E (A) → B : CA,CB, {{K , TA}K−1
A
}KB

I result: E authenticates as A for B with known session-key K
I fix: e.g. insert recipient identifier into the signed data

Cryptographic protocols – introduction 31 / 33 ,



Protection of predictable data

I requesting a current time:
1. A → S : A,NA

2. S → A : {TS ,NA}KA

I if NA is predictable:
1. E (A) → S : A,NA

2. S → E (A) : {TS ,NA}KA (this can be use as a reply for A’s request later)

I fix (doesn’t work if NA is a constant):
1. A → S : A, {NA}KA

2. S → A : {TS , {NA}KA }KA

Cryptographic protocols – introduction 32 / 33 ,



Protection of predictable data

I requesting a current time:
1. A → S : A,NA

2. S → A : {TS ,NA}KA

I if NA is predictable:
1. E (A) → S : A,NA

2. S → E (A) : {TS ,NA}KA (this can be use as a reply for A’s request later)

I fix (doesn’t work if NA is a constant):
1. A → S : A, {NA}KA

2. S → A : {TS , {NA}KA }KA

Cryptographic protocols – introduction 32 / 33 ,



Formal methods for protocol security?

I formal methods and tools for reasoning about the security of
cryptographic protocols
I ProVerif, Scyther, OFMC, Tamarin, Verifpal . . .

I . . . they help to increase our trust in protocol’s security
I what is modeled?
I the implementation can change everything

I various protocols were analyzed formally – with some vulnerabilities
found later (WPA 4-way handshake, TLS 1.3, . . . )

Cryptographic protocols – introduction 33 / 33 ,


	Introduction
	Some protocols and basic notions
	Diffie-Hellman protocol
	Interlock protocol
	Dolev-Yao model
	Freshness – nonces and timestamps

	Basic protocols and attacks
	Needham-Schroeder protocol
	WMF protocol

	Attacks
	Replay attacks and symmetry – WMF, NSPK
	Implementation issues (Otway-Rees)
	Denning-Sacco protocol


