
Stream Ciphers

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2020/21)

Content

Introduction
idea, general properties

Linear Feedback Shi Register (LFSR)
correlation aack

Examples of stream ciphers
RC4
A5/1
ChaCha20
Snow 3G

Stream Ciphers 2 / 25 ,

Introduction

I Vernam cipher (one-time pad)
I perfect secrecy
I impractical – long key that cannot be reused

I (some) stream ciphers examples:
I RC4 – old soware and protocols, e.g. WEP, SSL/TLS etc.
I A5/1 – GSM communication (phone ↔ base station)

remark: UMTS and LTE use other ciphers
I E0 – Bluetooth (BR/EDR – basic rate/enhanced data rate)

remark: Bluetooth Low Energy uses AES-CCM
I ChaCha20 – TLS (RFC 7905)

I basic types of stream ciphers: synchronous and self-synchronizing

Stream Ciphers 3 / 25 ,

Synchronous stream ciphers

IV key

plaintext ciphertext

keystream

pseudo-random
generator

I the most common stream ciphers used in practice
I encryption and decryption are the same
I keystream does not depend on plaintext
I usually binary additive stream ciphers (XOR of plaintext and keystream)

Stream Ciphers 4 / 25 ,

Synchronous stream ciphers 2

I periodic
I require synchronization

I decryption breaks aer losing some bits of ciphertext
I vulnerable to active aacks

I e.g. changing bits in ciphertext results in change of corresponding
plaintext bits

I errors are not propagated
I IV and key must not repeat (otherwise . . . two-time pad)

I be careful of possible keystreams overlaps

Stream Ciphers 5 / 25 ,

Self-synchronizing stream ciphers

IV

key

pi ci

ci−n, ci−n+1, . . . , ci−1

function

IV

key

pi

ci−n, ci−n+1, . . . , ci−1

function

I keystream depends on ciphertext (and therefore on plaintext)
I ability to self-synchronize aer the loss of same cipherext
I aperiodic
I hard to analyze, hard to guarantee security properties

Stream Ciphers 6 / 25 ,

Remarks

I stream ciphers can be constructed from block ciphers
I specific modes of operation:

I synchronous: OFB, CTR
I self-synchronizing: CFB

I Why stream ciphers at all?
I speed
I simplicity (HW implementation, constrained environment)

I requirements (preliminary observations):
I long period

. . .How do you aack stream cipher with short period?
I good statistical properties

. . . statistical tests of randomness are not suicient
I keystream should be unpredictable (indistinguishable from a random

sequence)
. . .KPA⇒ knowing some part of the keystream

Stream Ciphers 7 / 25 ,

Linear Feedback Shi Register (LFSR)

sn−1 sn−2 s1 s0. . . output

c0c1cn−2cn−1

I common primitive for stream cipher construction
I easy to implement in hardware
I the output sequence has good (basic) statistical properties
I easy to analyze

Stream Ciphers 8 / 25 ,

LFSR – notation and function

sn−1 sn−2 s1 s0. . . output

c0c1cn−2cn−1

I we focus on binary registers (over GF(2))
I n – length of register
I initial state: sn−1, … , s1, s0 ∈ {0, 1}n
I LFSR produces sequence {si}i≥0, where for k ≥ 0:

sk+n = cn−1sk+n−1 + cn−2sk+n−2 +… + c1sk+1 + c0sk

I state aer k ≥ 0 steps: (sk+n−1, … , sk+1, sk)
I characteristic polynomial: f (x) = xn + cn−1xn−1 +… + c1x + c0

Stream Ciphers 9 / 25 ,

LFSR – example

s3 s2 s1 s0 f (x) = x4 + x3 + 1

0 0 0 1 0 1 1 0
1 0 0 0 0 0 1 1
1 1 0 0 1 0 0 1
1 1 1 0 0 1 0 0
1 1 1 1 0 0 1 0
0 1 1 1 0 0 0 1
1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1

Stream Ciphers 10 / 25 ,

LFSR – remarks

I all-zero state never changes⇒ max. period is 2n − 1

LFSR generates a sequence with period 2n − 1 if and only if its
characteristic polynomial is a primitive polynomial over GF(2).

I primitive polynomial: irreducible & its root is a generator of
multiplicative group in generated finite field
I irreducible but non-primitive polynomial over GF(2): x4 + x3 + x2 + x + 1

I popular polynomials with degree n, where n is a Mersenne prime
(i.e. 2n − 1 is also prime; e.g. n = 19, 31, 61, 89, 107, 127)
I in this case each irreducible polynomial is primitive

I connection (feedback) polynomial: 1 + cn−1x +… + c1xn−1 + c0xn

I reciprocal polynomial of the characteristic polynomial

Stream Ciphers 11 / 25 ,

LFSR – properties

I some statistical properties (for sequence with maximal period)
I all states except all-zero state
I all n-tuples, (n − 1)-tuples, . . . almost the same frequency:

#0 + 1 = #1, #00 + 1 = #01 = #10 = #11, . . .
I very easy to predict (⇒ do not use LFSR as a stream cipher)

I knowledge of 2n consecutive bits of output sequence
I computation of feedback coeicients (system of linear equations)

sk+n = cn−1sk+n−1 + cn−2sk+n−2 +… + c1sk+1 + c0sk

sk+1+n = cn−1sk+n + cn−2sk+n−1 +… + c1sk+2 + c0sk+1

…

I the state is known anyway
I LFSR can be clocked forward as well as backward

Stream Ciphers 12 / 25 ,

LFSR – synthesis and linear complexity

I input: arbitrary sequence {si}0≤i<L
I output: the shortest LFSR generating the input sequence
I trivial solution: solve system of linear equations and enlarge LFSR
I beer approach: Berlekamp-Massey algorithm O(L · n)
I linear complexity of a sequence:

I expected for a random sequence: ∼ L/2
I large linear complexity is necessary, but not suicient: 00… 01

I linear complexity profile
I proper profile necessary, but not suicient:

1101031071… with “perfect” profile b(L + 1)/2c

Stream Ciphers 13 / 25 ,

Increasing linear complexity

I filter generator
I state or its subset is filtered through a Boolean function
I properties depend on properties of filter function

I combination generator
I multiple LFSRs – combination of outputs
I properties depend on combination function (balanced, high algebraic

degree, nonlinearity . . .)
I example: XOR⇒ sum of linear complexities

I linear complexity is not everything . . .

Stream Ciphers 14 / 25 ,

Gee generator – correlation aack

I combination of three LFSRs: F (x1, x2, x3) = x1x2 ⊕ (x1 ⊕ 1)x3
I brute-force aack – searching through all states: 2n1+n2+n3

I linear complexity ≤ n1n2 + n1n3 + n3
I Pr[x3 = F (x1, x2, x3)] = Pr[x2 = F (x1, x2, x3)] = 3/4

x1 x2 x3 F (x1, x2, x3)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

I KPA (i.e. we know the keystream)
I independent aack on LFSR3 state

(correct state will correlate with
keystream)

I independent aack on LFSR2 state
I finally, aack on LFSR1
I overall 2n3 + 2n2 + 2n1

Stream Ciphers 15 / 25 ,

Examples of other constructions based on LSFR

I alternating step generator
I output of LFSR1 controls if LFSR2 or LFSR3 is clocked (the second one is

paused)

LFSR1

LFSR2

LFSR3

I shrinking generator
I two LFSRs: LSFR1 and LFSR2
I if output of LSFR1 is 1 then output is the output of LFSR2
I otherwise there is no output from the generator

I both generators have exponential period and linear complexity

Stream Ciphers 16 / 25 ,

RC4

I Ron Rivest, 1987
I trade secret; posted anonymously to a mailing list in 1994
I internal state S [0… 255] – permutation {0, … , 255}
I key K [0… k] – array of bytes (16 for 128-bit key)
I initialization:

for i = 0, … , 255: S [i] = i;
j = 0;
for i = 0, … , 255:

j = (j + S [i] + K [i mod k]) mod 256;
swap(S [i], S [j]);

Stream Ciphers 17 / 25 ,

RC4 (2)

I generating keystream:

i = 0; j = 0;
while (is needed):

i = (i + 1) mod 256;
j = (j + S [i]) mod 256;
swap(S [i], S [j]);
output S [(S [i] + S [j]) mod 256];

I additive cipher, the output is XOR-ed with plaintext bytes
I first bytes of keystream leak information about key

I WEP aack (key and IV used as RC4 key)
I drop some keystrem prefix / dierent construction of the key

Stream Ciphers 18 / 25 ,

Klein’s aack on WEP 1

I WEP (Wired Equivalent Privacy) – security for 802.11 WiFi networks
I superseded by WPA2 (WiFi Protected Access)

I data frame:
IV, padding, IDRk︸ ︷︷ ︸

plaintext

, data, ICV︸ ︷︷ ︸
encrypted

I IV – initialization vector (3B)
I IDRk – Rk’s identifier (2 bits)
I ICV – integrity check value (CRC32)

I RC4 with key K = IV | | Rk (Rk – root key)
I Notation:

I Si – internal permutation aer i-th round (i ≤ 256 corresponds to
initialization)

I ji – internal variable j aer i-th round
I X – keystream (obtained by XORing ciphertext and known plaintext data)

Stream Ciphers 19 / 25 ,

Klein’s aack on WEP 2

I Klein proved the following property of RC4 (n = 256):

Pr[K [i mod k] = S−1i [i − X [i − 1]] − (Si [i] + ji)] ≈
1.36
n

instead of desired 1/n.
I IV = K [0],K [1],K [2] is known⇒ S3 and j3 can be computed
I the value w = S−13 [3− X [2]] − (S3 [3] + j3) is K [3] with probability ≈ 1.36

n

I aacker observes many frames (fixed Rk and dierent IV) . . . correct
value of K [3] (the first byte of Rk) revealed by statistics

I knowing K [3] ⇒ next RC4 round computation: S4, j4 . . . etc.

I improvements for WEP, e.g. PTW aack (2007)
I aack on RC4 in TLS: AlFardan et al. (2013)

Stream Ciphers 20 / 25 ,

A5/1

LFSR1

LFSR2

LFSR3

Maj

I used in GSM networks; designed in 1987; reverse engineered in 1999
I LFSRs lengths: 19, 22 a 23 bits (i.e. internal state: 64 bits)
I at least 2 LSFRs clocked in each step (those that agree on selected bits)
I for each frame: first 100 bits are discarded, next 228 bits are used (114

for encryption, 114 for decryption)
I weak cipher, various aacks published (A5/1 replaced by KASUMI in

UMTS)

Stream Ciphers 21 / 25 ,

ChaCha20

I high-speed ARX cipher (add-rotate-xor)
I designed by D.J. Bernstein (2008)
I details described e.g. in RFC 8439
I ChaCha20 – specific instance of ChaCha with 20 rounds
I state: 4 × 4 matrix, elements are 32-bit words
I inputs:

I key: 256 bits (8 words)
I nonce (IV): 96 bits (3 words)
I counter: 32 bits (1 word)⇒ max. 256 GB

I output: 512 bits (64 bytes, 16 words)
I dierent nonce/counter lengths possible (we follow RFC 8439)

Stream Ciphers 22 / 25 ,

ChaCha20 – initialization and quarter-round

const const
0

key

cnt nonce

key key key

key key keykey

nonce nonce

const const
1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

QuarterRound(a,b,c,d):
a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

Stream Ciphers 23 / 25 ,

ChaCha20 – block function

I iterate 10 times following two rounds:

QuarterRound(0, 4, 8, 12)
QuarterRound(1, 5, 9, 13)
QuarterRound(2, 6, 10, 14)
QuarterRound(3, 7, 11, 15)
QuarterRound(0, 5, 10, 15)
QuarterRound(1, 6, 11, 12)
QuarterRound(2, 7, 8, 13)
QuarterRound(3, 4, 9, 14)

I the output state is added (word by word) to the input state ↦→
keystream block

I the output state is used again as an input to the block function

Stream Ciphers 24 / 25 ,

Snow 3G – keystream generator

s15 s11 s5 s1s2 s0

α−1 α

R1 R2 R3
S1 S2

I SNOW 3G is the base of confidentiality and integrity algorithms UEA2
and UIA2 (for LTE)

I LSFR: 16 32-bit words; S1, S2 – s-boxes
I FSM (finite state machine): R1, R2, R3 – 32-bit values
I 𝛼 is the root of some fixed polynomial

Stream Ciphers 25 / 25 ,

	Introduction
	idea, general properties

	Linear Feedback Shift Register (LFSR)
	correlation attack

	Examples of stream ciphers
	RC4
	A5/1
	ChaCha20
	Snow 3G

