Password Authenticated Key Exchange

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1(2020/21)

Motivation

v

authenticate user/client using a password

v

common scenario for authentication in web application:

> TLS, server authentication, secure channel
> username/password login form, server verifies submitted password

v

some problems with this approach ...

v

phishing attacks — login to fake web site

> attacker gets all authentication data (username, password)
> multi-factor authentication can mitigate the risk

TLS might not be available
PAKE - Password Authenticated Key Exchange (agreement)

A2

Goal: (mutual) authentication of two or more parties and establishing keys
for subsequent communication

PAKE 2/30

Passwords

> special type of shared secret

> easy to use
> potential problems: guessing (low entropy), brute-force attack

> limited length (“small” set of possible passwords)
> passwords from various dictionaries
> patterns/non-uniform selection of passwords

PAKE 3/30

Simple authentication protocol

v

v

v

v

PAKE

challenge/response protocol

(+) password not transmitted in plaintext

notation: password P, hash function H

C — S

— r selects random r
v=HP,r) Cv — v=HPr)

drawbacks:

>

>
>
>

one way authentication (only C is authenticated)

attacker can accept any v and continue the session with C
MITM attack: attacker relays communication between C and S
no session key agreed in the protocol

4/30

Simple key-agreement protocol

» Diffie-Hellman protocol (using a group where CDH is hard)
> MITM attack (cause: unauthenticated exchange of parameters)

> notation: generator g

C — S
selects random a
A=g" A — selects random b
— B B=g
K:Ba:gab K:Ab:gab

PAKE 5/30

Simple AKE protocol

Goals: password never sent as a plaintext, authenticate both parties, agree
on a session key, prevent MITM attack

C — S
selects random a, r¢
A=g C,Arc — selects random b
«— B, rs, Ep(H(0, msg)) B=gb
verifies Ep(...)
K =B*=g® Ep(H(1,msg)) — verifies Ep(...)
K = Ab = gab

> notation: msg = C||A|| B|| rc|| rs; H is a hash function
> Ep —e.g. symmetric cipher or MACp, key is derived from P

problem: offline dictionary attack — testing passwords offline using
eavesdropped communication

PAKE 6/30

EKE (Encrypted Key Exchange) — general description

> Bellovin, Merritt (1992)
> first PAKE protocol

> prevents offline dictionary attack (and achieves previous goals as well)

C — S

generates (pkc, skc) C, Ep(pkc) —
— Ep(Ep(K)) selects random K

decrypts K
selects random r¢ Ex(rc) — decrypts rc
verifies r¢ «— Ex(re,rs) select random rg

Ex(rs) — verifies rg

> notation: (pkc, skc) pair of keys for asymmetric encryption; Epy.
public-key encryption, E, symmetric encryption using a key derived
from P; K session key

PAKE 7/30

EKE remarks

> EKE is secure against offline dictionary attack, if all (or almost all)
decryptions for distinct passwords yield

>
>

valid public keys for message in the first step
valid ciphertexts for message in the second step

» implementation problem — choosing suitable encryption schemes
(symmetric and public-key)

» partition attack

»

>
>
>
>

PAKE

offline attack

if decryption with P’ yield an incorrect/impossible public key, then P # P’
example: RSA ... n with small factors, even e

multiple runs of the protocol = password is uniquely determined

Ep should not leak information about P

8/30

DH-EKE

» variant of EKE with DH protocol for key agreement
> only modular groups (!)

> this variant follows the original proposal (Bellovin, Merritt, 1992):

C — S
selects random a
A=g" C Ep(A) — selects random b
B=gb
K= Ab — gab
decrypts rs «— Ep(B), Ex(rs) selects random rg
K = B = gab
selects random r¢ Ex(rc,rs) — decrypts r¢
verifies rg
verifies r¢ — Ex(re)

PAKE 9/30

DH-EKE remarks

> more refined version of the protocol is EAP-EKE (RFC 6124), e.g.
> separate keys are derived for the protocol itself and for session
> encryption with MAC used for messages containing nonces (here: rc, rs)
> additional data are computed, using a key derived from the shared key
and all messages up to given point — protects integrity of the negotiated
parameters
> explicit requirements for groups, e.g. g is a primitive element (generator)
of the group, p is a “safe” prime
> explicit list of suitable groups and their generators
> what if g is not a generator:
> decrypt Ep(A) and Ep (B) using password P’
> if a generator is obtained, P’ is incorrect
> there is ~ 50% generators in groups with safe prime modulus, i.e.
q=2q' + 1 (where ¢’ i a prime)

PAKE 10/ 30

Problems with EKE (DH-EKE, EAP-EKE)

v

server knows the password

v

successful attack on server results in compromised passwords

v

passwords are usually stored “salted”

> after a breach the offline dictionary attack is always possible
> we don’t want to make it easier

v

DH constructions are hard to translate to elliptic curves

> How to ensure that decryption with wrong password yields a point on
elliptic curve?

PAKE 11/30

Secure Remote Password protocol (SRP)

» PAKE protocol, server does not store password in plaintext
> other properties are preserved (prevention of offline dictionary attack etc.)

original proposal: Thomas Wu (1998)

RFC 2945 (2000) version SRP-3

using SRP-6 (2002) together with TLS: RFC 5054 (2007)
other standardization: IEEE P1363.2, ISO IEC 11770-4
Apple uses SRP in iCloud, according iOS Security (2018):

vV v v VY

The HSM cluster verifies that a user knows their iCloud Security Code using
Secure Remote Password protocol (SRP); the code itself isn’t sent to Apple.

PAKE 12/30

Evolution of SRP: SRP-3

v

T. Wu, The Secure Remote Password Protocol, 1998

RFC 2945, The SRP Authentication and Key Exchange System

protocol slightly differs in these documents (we will follow the first one)

> explicit choice of random u vs. derivation of u from B
> construction of the first verification message M,

vy

> calculation in GF(n), where nis a large prime

9 « »)

> both operations are used (“+” and
> notation:
> g - generator of (Z},-)
password P

>
»> random salt s
» hash function H

v

P is stored on server as a verifier v = g*, where x = H(s, P)

PAKE 13/30

SRP-3 - protocol

C — S
selects random a
A=g" C,A — selects random b, u
«— s, B u B=v+ gb
computes: computes:
x = H(s, P) S= (AP
S=(B-g)™" K = H(S)
K= H(S)
My = H(A, B, K) M — verifies M,
verifies M, — M, verifies My = H(A, M1, K)

PAKE 14/ 30

SRP-3 - protocol

C — S
selects random a
A=g" C,A — selects random b, u
«— s, B u B=v+ gb
computes: computes:
x = H(s, P) S= (AP
S=(B-g)™" K = H(S)
K= H(S)
My = H(A, B, K) M — verifies M,
verifies M, — M, verifies My = H(A, M1, K)

> computation of shared secret S:
> client: (B— g*)*" = (g~ +gb — g¥)erex = gab+ubx
> server: (Av¥)P = (g@. gv)b = gabrubx

PAKE 14/ 30

SRP-3 - security goals

> assumption: active attacker with ability to eavesdrop and manipulate
transmitted data

> What security goals does SRP have?

> confidentiality of P and x
> confidentiality of K
> security against offline dictionary attack

PAKE 15/30

SRP-3 - remarks (1)
> Why B depends on v?

> simpler alternative: B = g, C does not need to compute g*, rest of the
protocol intact
> attacker E asks the server for s and then impersonates the server
1. C> E(S): C,A=g°
2. E(S) > C:s5,B= gb, u, for randomly selected b, u
3. C — E(S): My = H(A, B, K), where S = B*“* and K = H(S)
> now E can perform this offline dictionary attack:
> E computes x’, v’ for a password P’ and then computes S’ = (Av’")? and
K’ = H(S")
> if P = P’ then those values are equal to values computed by C
> E verifies this with check H(A, B, K") = M;
> “+v” prevents attack — the attacker can’t use a single instance to test
unlimited number of passwords (he must choose v’ that C substracts)
> Exercise: What is wrong with this modification?
> use B=v-ghand C computes S = (B/g*)**¥
> advantage: we work only in the group (Z},)
PAKE 16/ 30

SRP-3 - remarks (2)

» Why is u random, instead of some constant?

> attacker E can impersonate C

> assumptions: E obtains v and s (knowing v requires access to server’s
data)

1. E(C) > S:C,A=g%-v7!

2. S— E(C): s, B, where B= v+g‘f7

3. E computes: S= (B—v)? = g®
S computes: S=(A- v“)b =(g-v¥. v“)b = g“b

> therefore u must be unpredictable (known before C sends A)

> no proofs of security claims

PAKE 17/ 30

SRP-3 - two-for-one password guessing attack

> neither x nor v are known to attacker

> online password guessing using interaction with C:
> attacker E (knows s) guesses P’ and computes x” = H(s, P’), v/ = g
> E impersonates the server using these values x’, v/
> if the protocol finishes successfully (M is correct), then P’ is correct

x

PAKE 18 /30

SRP-3 - two-for-one password guessing attack

> neither x nor v are known to attacker
> online password guessing using interaction with C:
> attacker E (knows s) guesses P’ and computes x” = H(s, P'), v/ = g"'
> E impersonates the server using these values x’, v/
> if the protocol finishes successfully (M is correct), then P’ is correct
> guessing two passwords simultaneously:
1. E make a guess P, P, and computes corresponding xq, x; and vy, v,
2. C— E(5):C,A
3. E(S) = C:s,B=g"+g%,u
4. C — E(S): My = H(A, B, K), where K = H(S) = H((B — g*)**")
» Value 5 — (B_gx)a+ux — (gX1 +gX2 _gx)a+ux
» if P= Py (or P = P,), then C computes $; = g"Z(“+“X‘> (or S, = gh(atux)y
> Ecancompute S; = (A-v/)? a5 = (A-v))™
> ifp=pp S{ — (ga_g)qu)xz :gxz(a+ux1) =5
> ifpP= 'DZ: 52/ — (ga . gxzu))q — gx1(a+ux2) — 52
> E can decide if any of those cases happened using M,
» E does not have to chose u in a special way, the attack works even if u is
computed as a truncated H(B) (RFC 2945)
PAKE 18/30

SRP-6

> T. Wu, SRP-6: Improvements and Refinements to the Secure Remote
Password Protocol, 2002

» motivation for new version:

1. two-for-one attack (parameter k used as a multiplication factor for v)
2. implementation problem with message order (when group parameters
must be sent)
> 1 additional round required
> solution: parameters/group 1D and B sent before A
> A sent together with My
> parameter k
> SRP-6: k = 3; SRP-6a: k = H(n, g)
> without knowledge of dloggk the two-for-one attack does not work
> computation k = H(n, g) makes harder malicious choice n, g, where the
attacker knows dlog k

PAKE 19/30

5

SRP-6 protocol (original message order)

C — S

selects random a
A=g? C,A — selects random b
«— s, B B=kv+gb

computes: computes:
u= H(A,B) u= H(A,B)
x = H(s, P) S= (AP
S = (B— kg~)atx K = H(S)
K = H(S)

» computation of shared secret S:
> client: (B — kg*)™"™ = (kg* + gb — kg¥)arex = gab+ubx
> server: (Av¥)P = (g@. gv)b = gabrubx

PAKE 20/ 30

SRP-6 protocol (cont.)

» additional messages for verifying K (equality on both ends):

C — S
My =H(H(n)® H(g), H(C),s,A,B,K) M; — verifies M,
verifies M, — My, My=H(A M, K)

PAKE 21/ 30

SRP remarks (1)

> Ssend s to anyone
> salt is not secret, however ...
> knowing s allows a pre-computation (before obtaining v), e.g.
constructing TMTO tables = pre-computation attack
» protocol uses multiplication and addition
> group operation is not enough
> can’t be translated to elliptic curves (less efficient)
> specific requirements for n and g (“safe prime” and generator)
> direct use of some standardized parameters if not possible
> RFC 5054 defines specific 1024, 1536 a 2048-bit primes and generators
> larger primes are adopted from RFC 3526 (More Modular Exponential
(MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)), but with
different g (generator)

PAKE 22/ 30

SRP remarks (2)

» What if g is not a generator?

> g generates a proper subgroup [g] of (Z}, ")
> if for some P’ the value B— v’ = B — g">") ¢ [g], then P’ is not correct
password = partition attack

PAKE 23/ 30

Conclusion

v

many PAKE protocols exist

v

balanced PAKE protocols (both parties know the password):
> EKE, DH-EKE, Dragonfly (SAE), SPEKE, J-PAKE, ...
augmented, or asymmetric PAKE protocols (client/server)

v

> server does not store password-equivalent data (i.e. data that allow
successful authentication as a client)
> SRP, Augmented-EKE, B-SPEKE, OPAQUIE, ...

first protocol resistant to pre-computation attack: OPAQUE (2018)

v

PAKE 24/ 30

OPAQUE

> PAKE secure against pre-computation attack
> main idea:
> combination of OPRF and AKE protocol, or
> combination of OPRF and PAKE protocol
> AKE and PAKE must have suitable properties (they can’t be arbitrary)
> OPRF (Oblivious Pseudorandom Function)
pseudorandom function Fi(x)
OPREF is a protocol with two parties C (input x) and S (input k)
C learns Fi(x) at the end, and nothing else
S learns nothing (in particular, nothing about x)

\4

vYvyy

PAKE 25/ 30

Example: DH-OPRF

vV v.v Yy

PAKE

[- security parameter

group G of prime order g (where |q| = [)

hash function H" : {0,1}! — G, H with range {0, 1}!
PRF F : Zy x {0, 1} — {0, 1}&

Fe(x) = H(x, H'(x)%)

protocol:
1. C— S:a= H'(x)", for random r € Z,
2. S— C:b=d"
3. C computes H(x, b'/")
correctness: b'/" = (H'(x)")*/" = H'(x)*
security: ROM (for hash function) + “one more DH” assumption

> informally, after Q oracle queries (oracle returns k-th power) the attacker
cannot compute one-more k-th power (moreover, attacker has access to
DDH oracle)

26/ 30

Idea: combining OPRF and PAKE

> S stores k, H(R) for C

C —> S

password P = OPRF =
output R = F¢(P)

R & PAKE = H(R)
session key K session key K

> pre-computation attack is impossible, since R is random to the attacker

> attacker learns k and H(R) only after S is compromised

PAKE 27/ 30

Idea: combining OPRF and AKE

» assumptions for AKE:
> C’s public/private key: pkc/skc
> S’s public/private key: pks/sks

> AuthEnc — authenticated encryption ¢ = AuthEncg(pkc, skc, pks)
> S stores k, ¢, pkc for C

C —> S

password P — OPRF =
output R = F¢(P)

decrypts and verifies —c c
pkc, Skc, pks — AKE = pks, Sks, ka
session key K session key K

PAKE 28 /30

AKE example - HMQV

>

>
>
»

HMQYV: variant of DH protocol with implicit authentication of K
modifiable for arbitrary finite groups, e.g. elliptic curves

multiple variants of MQV (Menezes-Qu-Vanstone) / HMQV (hash MQV)
private and public key for participant A: pks = g™

C — S

PAKE

selects random x¢ Xc=g°c —
— Xs=g* selects random sg
K= KE(Skc, Xc, pks, Xs) K = KE(Sks, Xs, pkc, Xc)
session key K session key K

computation:
U:
KE(skc, xc, pks, Xs) = H((Xs - pk&)xctskerec) = H(glistsks o) (xevecsko))
S:
_ . ec\xs+sks-es\ _ (xc+ec-skc) (xs+sks-es)

KE(SI(s, Xs, pkc,Xc) = H((XC ka)) = H(g)
parameters ec = H(Xc, S) and es = H(Xs, C)

29/ 30

Remark — small group confinement

vVvy Vv V VY

DH-like schemes or schemes with security related to DLOG
unauthenticated data — group element

existence of small subgroups

example: DH protocol in (Z;, -) with generator g

let w| (p— 1) be asmall primeandlet k= (p—1)/w
attack:

1. A> E(B): A=g°"

2. E(A) — B: Ak

3. B— E(A):B=gb

4. E(B) — A: BK

A and B compute shared secret gke®

> F can find this secret searching in small subgroup [g¥] (order w)

>

PAKE

> (gk)w — g(p—1)w/w =gp—1 =1

choose suitable groups and check parameters

30/ 30

	Introduction
	Motivation, Passwords

	Simple protocols
	EKE and DH-EKE
	SRP
	OPAQUE

