
TLS – Security and Future

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2020/21)

Content

Fixing issues in practice
Trust, Checking certificates, OCSP stapling
Certificate pinning, Certificate Transparency
Using TLS: HSTS, STARTTLS

Selected vulnerabilities and problems
Implementation bugs
Protocol/cryptography problems

TLS 1.3

TLS – Security and Future 2 / 34 ,

Trust – certificates (PKI)

I trusted CA certificates distributed by browsers/OS
I example: Firefox ≈ 154 trusted CA (december 2020)
I Do you trust them all?
I Certificate validation – chain, expiration, server name, signatures, check

revocation, . . .bugs are common
I User – let’s ignore warnings/errors

TLS – Security and Future 3 / 34 ,

Trust – reality

I (2014-2015) Lenovo Superfish – self-signed CA pre-installed, automatic
MITM aack (inserting ads to web pages), private key shared among
installations

I (2011) DigiNotar (NL) – compromised since 2009, fake certificates
(MITM), removed from the list od trusted CA, bankruptcy

I (2011) Comodo – registration authority account compromised, 9 fake
certificates

I (2017-2018) distrust of Symantec CA (and its subordinates: Thawte,
GeoTrust, RapidSSL) – business sold to DigiCert

I (2018) Trustico (former reseller for Symantec) – sending 23.000 private
keys to DigiCert by e-mail . . . to revoke the certificates

I Serrano et al. A complete study of P.K.I. (PKI’s Known Incidents), 2019

TLS – Security and Future 4 / 34 ,

Checking certificates

I checking certificate status: OK or revoked?
I several standard options:

I CRL (Certificate revocation list) – a list signed by CA, issued frequently
(e.g. at least every 24 hours); can be large (e.g. GlobalSign’s CRL from 22
kB to 4.7 MB thanks to Heartbleed)

I OCSP (Online Certificate Status Protocol) – requesting info from CA;
response with timestamp; signed by CA

I non-standard approach:
I CRLSet (Chrome), OneCRL (Firefox) – list of selected revoked certificates

distributed as an update to the browser (Chrome – selected certificates;
FF – intermediate certificates)

TLS – Security and Future 5 / 34 ,

OCSP stapling

I problems with OCSP:
I What to do if there is no response from CA – block or allow?
I user privacy (CA learns what certificates client wants to check)
I CA flooded with requests related to sites with high traic.
I slower user experience.

I TLS Certificate Status Extension
I idea: server requests OCSP response at regular intervals and adds it as

Certificate Status message in the Handshake
I the response cannot be forged (timestamp, signed by CA)

I Multiple Certificate Status Request Extension
I providing status for all certificates in a chain
I original extension: only for server’s own certificate

I OCSP Must-staple
I certificate extension – server must staple, otherwise the certificate is

invalid

TLS – Security and Future 6 / 34 ,

HTTP Public key pinning (HPKP)

I problem: compromised CA issues fake certificates
I bind host to known public-key (or keys)
I information in HTTP header
I “trust on first use” mechanism
I limitations

I cannot detect MITM aack in the first connection
I aacker can even insert own pinning info in this case

I now deprecated, replaced by Certificate Transparency

TLS – Security and Future 7 / 34 ,

Certificate Transparency

I goals:
I make hard for a CA to issue a certificate for domain that is not visible to

domain owner
I allow to monitor and audit issued certificates (e.g. by domain owners or

CA)
I protect users against certificates issued maliciously or mistakenly

I Certificate Transparency log
I Merkle tree of certificate chains (or precertificate chains)
I publicly verifiable
I signed root

I CA publishes certificates (precertificates) to public logs
I SCT – Signed Certificate Timestamp – log’s promise to incorporate the

certificate in the Merkle tree
I new certificates conatins SCT(s)

TLS – Security and Future 8 / 34 ,

HSTS

I SSL Stripping
I aacker: MITM proxy replacing links hps with hp links
I user clicks on a link . . .
I victim communicates with aacker via hp
I aacker communicates with the web server via hps

I HSTS (HTTP Strict Transport Security, RFC 6797)
I HSTS headers over hps – instructing browser to use only hps for all

future requests
I browser transforms all hp links into hps links
I browser does not allow unsecured connections to the web server

I limitations
I HSTS header stripped in first visit (pre-loaded list of HSTS sites in

browsers – does not scale)

I supported: Firefox, Chrome, IE, Edge

TLS – Security and Future 9 / 34 ,

STARTTLS

I Opportunistic TLS, switch from plaintext to TLS connection
I STARTTLS command

I supported: SMTP, POP3, IMAP, LDAP, etc.

I STRIPTLS aack – removing STARTTLS

TLS – Security and Future 10 / 34 ,

Apple “goto” fail (2014)

SSLVerifySignedServerKeyExchange(...)
{

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...
err = sslRawVerify(...)

fail:
...
return err;

}

TLS – Security and Future 11 / 34 ,

Heartbleed (2014)

I bug in OpenSSL (2012 – 2014)
I heartbeat extension (RFC 6520):

1. A → B: please, reply with these 3 bytes: “abc”
2. B → A: “abc”

I the problem:
1. A → B: please, reply with these 10000 bytes: “abc”
2. B → A: “abc” 00 a3 30 e2 . . . 7f

I possible leaks: private keys, master secret, passwords, . . .
I huge impact on security – OpenSSL everywhere
I client soware aected as well (server can issue a heartbeat request too)

Do you use some 3rd party code critical to the security of your system?
How well is it maintained, reviewed, audited?

TLS – Security and Future 12 / 34 ,

Discussion on security of TLS (informal)

I TLS 1.2 (RFC 5246)
I Appendix F: Security Analysis

I F.1. Handshake Protocol
I F.1.1. Authentication and Key Exchange

F.1.1.1. Anonymous Key Exchange
F.1.1.2. RSA Key Exchange and Authentication
F.1.1.3. Diie-Hellman Key Exchange with Authentication

I F.1.2. Version Rollback Aacks
I F.1.3. Detecting Aacks Against the Handshake Protocol
I F.1.4. Resuming Sessions

I F.2. Protecting Application Data
I F.3. Explicit IVs
I F.4. Security of Composite Cipher Modes
I F.5. Denial of Service
I F.6. Final Notes

I interesting part: D.4. Implementation Pitfalls

TLS – Security and Future 13 / 34 ,

Problem with PKCS #1 v1.5 (RSA encryption)

I (1998) Bleichenbacher
I RSA key exchange
I plaintext (aer padding) contains bytes 00 02 (ClientKeyExchange)
I server’s response for a ciphertext indicates correct/incorrect format
I access to this oracle allows to decrypt arbitrary ciphertext (i.e.

pre-master secret)
I requires approx. 1 million queries for 1024 bit modulus

TLS – Security and Future 14 / 34 ,

Problem with PKCS #1 v1.5 – solutions

I treat incorrect format as a correct one:

“In any case, a TLS server MUST NOT generate an alert if processing an
RSA-encrypted premaster secret message fails, or the version number is not
as expected. Instead, it MUST continue the handshake with a randomly
generated premaster secret.”

I use RSA-OAEP (not used in TLS 1.2):

“The RSAES-OAEP encryption scheme defined in [PKCS1] is more secure
against the Bleichenbacher aack. However, for maximal compatibility
with earlier versions of TLS, this specification uses the RSAES-PKCS1-v1_5
scheme.”

I avoid RSA key exchange altogether (TLS 1.3)

TLS – Security and Future 15 / 34 ,

ROBOT (2017)

I Böck, Somorovsky, Young (2017)
I ROBOT (Return Of Bleichenbacher’s Oracle Threat)
I aected vendors: F5, Cisco ACE, Citrix, Radware, . . .
I aected web sites: Facebook, PayPal, etc.
I countermeasures specified in TLS 1.2 not implemented correctly
I expected: TLS alert 20 (bad_record_mac) aer Finished for all RSA

decryption failures
I examples of problems:

I immediate reset of TCP connection for prefix/padding errors
I ChangeCipherSpec/Finished withheld – waiting for these messages i the

ciphertext in ClientKeyExchange was valid
I specific alert (not 20) vs. timeout allowed for valid ciphertext
I dierent error messages for valid and invalid ciphertexts

TLS – Security and Future 16 / 34 ,

Timing aack, PRNG

I Timing aack
I (2003) Boneh, Brumley
I timing RSA decryptions (processing ClientKeyExchange by server)
I analyzing correlations between time and private key allows to reconstruct

the private key
I improvements for RSA with CRT and Montgomery multiplication exist
I solution: RSA blinding

I PRNG
I client and server nonces, pre-master secret for RSA key exchange, DH

private parameters for (EC)DHE key exchange, IV for AEAD
I unpredictability, initialization
I (2006-2008) Debian OpenSSL PRNG initialization bug
I (2017) DUHK – Don’t Use Hardcoded Keys – some (usually older) FIPS

140-2 certified implementations of ANSI X9.31 PRNG (seed key hardcoded
in firmware)

TLS – Security and Future 17 / 34 ,

“Renegotiation” problem (2009)

I renegotiation – a new handshake can be initialized anytime by client or
server (inside an existing TLS connection)

I aacker creates his own TLS connection with the server and inserts
victim’s handshake as a renegotiation . . . inserting arbitrary data as a
prefix to the victim’s data

I root cause: missing binding between renegotiation handshake and TLS
parameters in use

I RFC 5746 (TLS Renegotiation Extension):
I basically, Hello messages must contain verification data from previous

Finished messages

TLS – Security and Future 18 / 34 ,

BEAST (2011)

I BEAST (Browser Exploit Against SSL/TLS)
I known vulnerability of CBC mode implementation made practical
I CBC mode (TLS 1.0 and older) – IV for a packet is the last block from

previous packet
I assumptions: plaintext (request) manipulation (e.g. Javascript), access to

the ciphertext (eavesdropping)

TLS – Security and Future 19 / 34 ,

BEAST (2)

I aack idea:
I let C0, … ,Cl be a ciphertext (a packet)
I aacker wants to decrypt Pj
I aacker chooses plaintext with the first block P ′

1 = Cj−1 ⊕ Cl ⊕ x
I then C′

1 = Ek (P ′
1 ⊕ Cl) = Ek (Cj−1 ⊕ x)

I therefore C′
1 = Cj ⇔ x = Pj

I guessing an entire block is hard
I aacker moves the boundaries of plaintext (e.g. a cookie) so he will guess

just 1 byte (other bytes can be known “any_session_id=?”)
I dierent shi allows “ny_session_id=7?”) etc.

I fix in TLS 1.1 – explicit IV
I other mitigation strategy in browsers: 1/n-1 record spliing
I remark:

I weakness in CBC known since 2002; TLS 1.1 standardized in 2006
I practical aack: BEAST in 2011
I default support for TLS 1.1 in browsers in 2011: none

TLS – Security and Future 20 / 34 ,

CRIME (2012)

I CRIME (Compression Ratio Info-leak Made Easy)
I using compression in SSL/TLS for leaking plaintext information
I assumptions: compression, plaintext (request) manipulation, access to

the ciphertext (eavesdropping)
I aack idea:

I aacker adds data to plaintext, e.g. “Cookie: company_session_id=??”
I ciphertext will be probably shorter if “??” is guessed correctly
I subsequent bytes can be tested aer correct guess
I “playing” with the plaintext to see dierences when padding is used
I divide et impera approach: add strings for half of all guessed values⇒

less requests, faster aack

I fix: disable compression in TLS

TLS – Security and Future 21 / 34 ,

BREACH (2013)

I BREACH (Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext)

I CRIME variant against HTTP compression
I it is really hard to turn o HTTP compression

TLS – Security and Future 22 / 34 ,

POODLE (2014)

I POODLE (Padding Oracle On Downgraded Legacy Encryption)
I aacking CBC mode padding in SSL 3.0
I SSL 3.0 prescribes only the value of the last byte in padding (e.g. 07 for a

complete padding block and 3DES algorithm)
I padding is not an input to MAC (SSL: MAC-then-Encrypt)
I client and server might be willing to use SSL 3.0 in case of problems with

the handshake (even though they both support TLS)
I assumptions: aacker can create requests (e.g. Javascript), manipulate

the ciphertext, and observe server’s responses

TLS – Security and Future 23 / 34 ,

POODLE (2)

I padding oracle aack, and shiing unknown plaintext (e.g. cookie)
I request || MAC fits to block boundary (i.e. padding fills an entire block)

GET /path Cookie: secret=xx || xxxxxxYX || ... || MAC || padding 07
I aacker replaces last ciphertext block with the CT block for the red block

server continues⇒ final byte 07, compute X (prob. 1/256)
server rejects ⇒ new handshake; new test

I aacker shis the plaintext to decrypt other bytes of cookie:
GET /path2 Cookie: secret=x || xxxxxxY || X.. || MAC || padding 07
etc.

I fix – remove SSL 3.0 from browsers (at least disable)

TLS – Security and Future 24 / 34 ,

POODLE (3)

I TLS padding is a special case of SSL 3.0 padding

msg || 00
msg || 01 01
msg || 03 03 03 03

I What if padding verification is performed as in SSL 3.0 case?
I no need for fallback to SSL 3.0
I POODLE for TLS (SSL Pulse, hps://www.ssllabs.com/ssl-pulse/)

vulnerable severs:
I 10.1% (XII/2014)
I 1.9% (XII/2016)
I 0.4% (XII/2018)
I 0.0% (XII/2020) . . . end of story?

TLS – Security and Future 25 / 34 ,

POODLE continues

I various methods of detecting padding oracles
I in the handshake (Finished message) or in application data
I in/valid/missing MAC combined with in/valid padding
I dierent ciphersuites behave dierently, . . .

I GOLDENDOODLE, Zombie POODLE, Sleeping POODLE, . . .
I Merget et al. (2019): Scalable Scanning and Automatic Classification of

TLS Padding Oracle Vulnerabilities
I systematic analysis of servers’ behavior
I conservative estimate: 1.83% of TLS servers vulnerable

TLS – Security and Future 26 / 34 ,

FREAK (2015)

I “export-grade” algorithms – RSA 512 bits
I clients (usually) did not request such algorithms . . . but they accepted

such short RSA public key
I note: TLS 1.1 and older allow temporary RSA key in key exchange

I supported by web servers (March 2015, approx. 36%)
I MITM aack:

1. aacker replaces cipher suites with export RSA in ClientHello
2. aacker decrypts pre-master secret and computes keys
3. knowing master secret allows “fixing” Finished messages

I no need to factorize 512 bit RSA oen:
I apache: generated when server starts and reused when needed
I March 2015: 1 factorization ∼ 7.5 hours in EC2 for 104 USD

TLS – Security and Future 27 / 34 ,

Logjam (2015)

I “export-grade” algorithms again – DHE (short group, e.g. 512-bit)
I clients (usually) did not request . . . but they accepted
I MITM aack (similar to FREAK):

1. aacker replaces cipher suites with export DHE in ClientHello
2. aacker computes dlog, obtains pre-master secret and computes keys
3. knowing master secret allows “fixing” Finished messages

I computing dlog (even with export-grade parameters) is not possible in
real-time
I 2 phases: pre-computation (slow, but depends on group and g only) and

on-line (for given input, fast)
I DHE_EXPORT: 99% hosts choose one of three 512-bit primes

I remark: fixed groups are used everywhere (IPSec, TLS, SSH); 1024-bit
primes within reach of a state-sponsored agency
I passive eavesdropping on VPN, SSH?

TLS – Security and Future 28 / 34 ,

DROWN (2016)

I DROWN (Decrypting RSA using Obsolete and Weakened eNcryption)
I TLS and SSL 2.0 enabled on server (or servers), sharing the same RSA key
I RSA key exchange
I cross-protocol aack
I decrypting pre-master secret from TLS 1.x RSA key exchange

I using SSL 2.0 to mount Bleichenbacher’s aack
I exploiting export-grade cipher suite, and other SSL 2.0 weaknesses

I fix: disable SSL 2.0 everywhere

TLS – Security and Future 29 / 34 ,

TLS 1.3 – major changes from TLS 1.2
I RFC 8446 (2018)
I AEAD ciphers only (support for non-AEAD ciphers removed)
I public-key key exchange with forward secrecy (static RSA and

Diie-Hellman removed)
I redesigned key derivation function: HMAC-based Extract-and-Expand

Key Derivation Function (HKDF)
I reworked handshake: 1-RTT (1 round trip time) mode
I new zero round-trip time (0-RTT) mode
I other things removed: custom DHE groups, support for compression,

DSA
I RSA-PSS is used instead of PKCS#1 v1.5 for handshake signatures
I TLS supports three basic key exchange modes:

I Diie-Hellman (over the finite fields and or elliptic curves)
I pre-shared symmetric key (PSK)
I combination of PSK and Diie-Hellman

TLS – Security and Future 30 / 34 ,

TLS 1.3 – mandatory cipher suites

I symmetric cipher suite (AEAD + hash function HKDF):
I MUST: TLS_AES_128_GCM_SHA256
I SHOULD: TLS_AES_256_GCM_SHA384,

TLS_CHACHA20_POLY1305_SHA256
I digital signatures:

I MUST: rsa_pkcs1_sha256 (for certificates), rsa_pss_rsae_sha256 (for
CertificateVerify and certificates), and ecdsa_secp256r1_sha256

I key exchange:
I MUST: secp256r1 (NIST P-256)
I SHOULD: X25519

TLS – Security and Future 31 / 34 ,

TLS 1.3 – Handshake protocol
ClientHello

Finished

(opt.)

(enc.)

+ key_share
+ signature_algorithms
+ psk_key_exchange_modes
+ pre_shared_key

ServerHello
+ key_share
+ pre_shared_key

EncryptedExtensions

CertificateRequest

Certificate

CertificateVerify

Application Data

(enc.)

Finished

Certificate

CertificateVerify

Application Data Application Data

TLS – Security and Future 32 / 34 ,

Discussion on security of TLS 1.3 (informal)
I TLS 1.3 (RFC 8446)
I Appendix E. Overview of Security Properties

I E.1. Handshake
I E.1.1. Key Derivation and HKDF
I E.1.2. Client Authentication
I E.1.3. 0-RTT
I E.1.4. Exporter Independence
I E.1.5. Post-Compromise Security
I E.1.6. External References

I E.2 Record Layer
I E.2.1. External References

I E.3. Traic Analysis
I E.4. Side-Channel Aacks
I E.5. Replay Aacks on 0-RTT

I E.5.1. Replay and Exporters
I E.6. PSK Identity Exposure
I E.7. Sharing PSKs
I E.8. Aacks on Static RSA

I interesting part: C.3. Implementation Pitfalls
TLS – Security and Future 33 / 34 ,

TLS 1.3 – Selfie

I Selfie (2019) – first protocol aack on TLS 1.3
I rarely used case of (external) PSK authentication
I scenario: client can also be a server
I simple reflection: aacker resend all messages back to client
I client establishes connection with itself
I limited impact in practice

TLS – Security and Future 34 / 34 ,

	Fixing issues in practice
	Trust, Checking certificates, OCSP stapling
	Certificate pinning, Certificate Transparency
	Using TLS: HSTS, STARTTLS

	Selected vulnerabilities and problems
	Implementation bugs
	Protocol/cryptography problems

	TLS 1.3

