Hash functions

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs.fmph.uniba. sk

Cryptology 1(2020/21)



Content

Hash function properties
preimage / second preimage / collision resistance

Birthday attack

Constructions
hard problems
block cipher based
Merkle-Damgard construction

Examples of real-world hash functions

SHA-256
SHA-3 (Keccak)

Hash functions 2/35



Introduction

» hash function computes a fixed-length fingerprint/digest/hash from a
message/document of (almost) arbitrary length

> h: X — Y function (deterministic computation)
> efficient (fast) & no key used
> usually X = {0, 1}*, X = {0, 1}, X = {0, 1} 2", ...
Y = {0, 1}'% for SHA-1, {0, 1}?°° for SHA-256 and SHA3-256, ...

> various uses of h.f.:

>

vyVVyVYYVYY

digital signature schemes (digest of the message is signed)
padding in public-key encryption schemes

verifying integrity of data

instantiation of random oracles and pseudorandom functions
MAC constructions

password storing methods etc.
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Basic requirements of hash functions (informally)

> preimage resistance (one-way)
> It is infeasible to compute x € X given y € h(X) such that h(x) = y.
> second preimage resistance
> It is infeasible to compute x” € X given x € X such that
x # x" & h(x) = h(x’).
> collision resistance
> It is infeasible to compute x, x” € X such that x # x” & h(x) = h(x’).
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Basic requirements of hash functions (informally)

> preimage resistance (one-way)
> It is infeasible to compute x € X given y € h(X) such that h(x) = y.
> second preimage resistance
> It is infeasible to compute x” € X given x € X such that
x # x" & h(x) = h(x’).
> collision resistance
> It is infeasible to compute x, x” € X such that x # x” & h(x) = h(x’).

> remarks:

> |X| > |Y|, otherwise the h.f. is useless = large number of collisions

> Y is finite, h is deterministic = in theory, e.g. collisions can be found in
O(1) time (“hardcoded”)

> formalizing the requirements is not straightforward (introduction of hash
function families, multiple “flavors” of preimage and second preimage
resistance) — however, above intuition satisfies our needs

> Pre, Sec, Coll, (aPre, ePre, aSec, eSec), MAC, Prf, Pro, TCR, CTFP, ...
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Properties of h.f. — discussion

> collision resistance = second preimage resistance
> if you can find a second preimage, then you have a collision
> collision resistance = preimage resistance
> identity: X = Y,Vx € X: h(x) = x (Coll, =Pre)
> let g with range {0, 1}" be collision and preimage resistant; then

b = {OHX if x| = n

1| g(x) otherwise

is collision resistant but not preimage resistant
> second preimage resistance % preimage resistance
> identity again (Sec, —Pre)

> however, in a “normal” situation ...
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Collision by inverting h.f.
> assumption: h can be inverted efficiently
> algorithm:

$
1. x <X
2. invert h(x) — x’
3. if x” # x ...collision found

> let us estimate the probability of success
> notation: [x] = {x" € X; h(x") = h(x)} equivalence class

> C - set of all equivalence classes

RSNt RN IR Rt R B IR PN
Prave = 1 2 Dl = X 22 = g 2407

ceC x€c ceC
! ( Y| 1Y\ k
=— |c| - 1)21—— > 1—(—)
X] Zg ZC X IX]
~——— N—— N ee—’
1X] <|Y| after k repetitions
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Generic attack for finding preimage/2nd preimage

> generic attack, finding a preimage for given y € h(X):
> algorithm:

1. choose x € X (randomly or systematically)
2. if h(x) = y then the preimage is found, otherwise repeat

> expected complexity O(2") for Y = {0, 1}"

» similar generic attack for finding a second preimage
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Birthday attack — introduction

» generic attack for finding collision(s)

> example: What is the probability that at least two people in a room

share the same birthday?

365 - 364 365 - 364 - 363
T ~ 0.0027; Pr3=1—- —  ~ 0.0082

Pr,=1-
2 3653

> k people: Pry = 1 — 365%/365*
> at least 23 people needed for probability > 1/2

v

“hash function” maps people to dates; | Y| = 365
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Birthday attack — introduction (2)
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Birthday attack on h.f.

1. choose (distinct) x, ..., xi <iX

2. compute h(x7), ..., h(xy)

3. find collisions, for example by sorting (h(x;), x;) and searching for
collisions in adjacent elements, or by storing (h(x;), x;) in a hash table
using the hash value as a key

> linear time and memory complexity O(k)

> we treat n as a constant (for Y = {0, 1}"); also assuming constant time to
evaluate h

> time: using Radixsort for sorting in O(k) or using a hash table with
k x O(1) operations
> memory complexity can be improved (see later)

What is the probability of success?
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Birthday attack — analysis (1)

v

trivial observations — the probability of success increases:

> for increasing k
> for unbalanced distribution of images

v

assume the worst situation: h distributes the hash values uniformly, i.e.
Prih(x) =yl =1/]Y]  VyeY

> let yq,..., yx be random, independent and uniform elements from Y
notation: |Y| = N

v

v

probability that all y;’s are distinct:

Pro = NIN=1)...(N=k+1) :(1_l) (1_2).”(1_2)

Nk
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Birthday attack — analysis (2)

> probability of at least one collision: Preo = 1 — Pry;st

» estimate Pr:

k-1 .
I k— —k(k=1)
Prog = 1— 1_[ (1 - —) >SN NN =] W

: N
=1
we use inequality 1T—x < e \\12
it follows from Taylor series:
eX=1-x+L X4
- IR

-0.2
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Birthday attack — analysis (3)

» find k such that Pre, > ¢, for some constant ¢ € (0, 1)
Preot = 1— e K-D/@N) >
l—e> ekle=n/@n
2NIn(1—¢) > —k* + k
k> —k+2NIn(1—¢) >0
1

1 1
k>—-+4/—-+2NIn
2 4 1

-
k>VN-/[2In
1—¢
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Birthday attack — results

> the complexity of b.a. for “reasonable” ¢, e.g. 1/2,2/3, is O(N'/?)
> for Y = {0,1}" we get ~ 22 (e.g. for SHA-1 ~ 2%0)

> expected k for given success probability:

50% k=~ 1.177 - 2"/2
90% k ~ 2.146 - 212
99% k ~ 3.035 - 21/2
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Implications of birthday attack

> generic attack, i.e. any h.f. can be attacked this way

> recall: generic attack for symmetric encryption is brute-force, O(2%) for
key length k

> the length of hash value (digest) should be twice the length of
symmetric key used for encryption

» standardized parameters of AES and SHA-2 family:

AES key length 128 192 256
SHA-2 output length  224®) 256 384 512

) this corresponds to the effective key length of 3DES (112 bits)
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“Meaningful” collisions

v

prepare documents m, m" with t places that can be changed without
changing the meaning of the document

> one space vs. two spaces, synonyms etc.

v

2t variants of each document

v

hash and find a collision between these two sets

v

the same asymptotic time and memory complexity of b.a.
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Improving memory complexity of birthday attack (1)

> assumption: h as a random function on h(X) Trtp—1
> sequence: X, X1, X3 ..., Where x; = h(x;_1) for i > 1

Zo T T

Tr+1

> expected (as N = o0): p = A+ p=+/zN/2
» finding collision in constant memory:

1. xo Ex (using X \'Y guarantees the existence of a collision, A > 1)
2. compute (xj, Xp;) for i > 1: x; = h(xi_1), x2; = h(h(xy(i-1)))
3. if x; = x; then h'(xp) = h*'(xp), we found a point on the cycle, A < i, and
the collision can be computed as follows:
3.1 compute (x;, xj4j) for j = 0,1,..., i starting with (xo, x;)
3.2 check for situation when x; # xj1j and xjy1 = Xjyj41
3.3 collision h(x;) = h(xiy)); remark: u | (2i — i) = x3 = Xj3)
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Improving memory complexity of birthday attack (2)

> only a constant number of values (e.g. xo, and the recent pair of values
(xi, X2i) or (xj, xj+j)) should be stored
> complexity:
> cycle is detected (point is found) if i > Aand p | i
> the difference 2j — i increases by 1 in each iteration, i.e. the cycle is

detected with A + p iterations maximum
> complexity O(A + ) = O(VN)

» this method does not change the asymptotic time complexity of b.a.

> no control over the colliding messages/inputs
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Collision resistance in practice

> collision resistance is not easy

> MD5
> designed by Ron Rivest (1991)
» collision published in 2005
> SHA-1
> designed by NSA, published as a standard in 1995

> deprecated in major web browsers in 2017
> first collision published in 2017; two pdf files, see https://shattered.io/

> attack complexity: 2531 SHA-1 compressions

> hash functions in web servers certificates (for signatures):

01/2015 01/2016 01/2017 01/2018 01/2019

SHA-1 66.7% 13.2% 1.5% 0.0% 0.0%
SHA-256 33.3% 86.8% 98.4% 99.8% 99.8%

source: SSL Pulse, https://www.ssllabs.com/ssl-pulse/
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Hash functions based on hard problems

> provable properties (assuming the hardness of underlying problem)
» slow, impractical = not used in practice
> example based on discrete logarithm problem:

> (G,-) — group of prime order p; let g be a generator of (G, -)

> f € G, such that a = log, f is unknown

> h:Z,XZ,— Gis defined as follows: h(a, b) = g% - f*

> his collision resistant, otherwise we can find a:

h(a, b) = h(d', b") where (a, b) # (a’,b’)
ga ’fb — ga’ ‘fb/
arab _ jd+ab’ a-d

g = = mod p

8
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Hash functions based on block ciphers

m= mq, my, ..., my input divided into blocks
ho — initialization vector; h; — intermediate hash value (1 <7 < k)

iteration — sequential processing of input blocks

vVvyVvYyy

examples:

> Matyas, Meyer, Oseas: h; = Eg(p_,)(m;) ® m;

> Davies, Meyer: h; = Ep,. (hi—1) ® hi—;

> Miyaguchi, Preneel: h; = Eg(p,_,)(m;) © hi_y & m;
> H(m) = hy (the hash value is the output of the last iteration)
» problem: standard block ciphers have small block length

> specific block ciphers (SHACAL for SHA-1, W cipher for Whirlpool etc.)
> double block length constructions (MDC-4, Hirose, Tandem-DM etc.)
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Dedicated constructions

v

no proofs of security based on some “hard underlying problem”

v

fast (usually one of the design goals)

v

iterated construction (informally):
> message padding and “slicing”
> start with IV and sequentially process the slices
> result is the output of the final iteration (sometimes after some additional
processing)

v

most common approaches
> Merkle-Damgard: SHA-1, SHA-2 family
> sponge: SHA-3 (Keccak)
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Merkle-Damgard construction (1)

> collision resistance of compression function implies collision resistance
of hash function
> fixed input length compression function f : {0, 1}"*" — {0, 1}"
» hash function H : {0,1}s! — {0, 1}"
> input x = x1, Xy, ..., x; (block length r)
> last block padded by 10...0 (if needed)
> additional block x1 = |x|; in binary, thus [ < 2"
» other variants of padding used in practice or proposed in the literature
» using the length in padding ~ MD strengthening

> ensures suffix-free property of the padding;:
for any x # x’, pad(x) is not a suffix of pad(x”)
> suffix-free ~ necessary and sufficient condition for collision-preserving

padding
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Merkle-Damgard construction (2)

Xq Xy X¢ x|

computation:
1. ho = 0" (initialization vector)
2. hi=f(hi-1 || x), fori=1,...,t+1
3. H(x) = hta
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Collision resistance of MD construction

let x # x” be a collision in H: H(x) = H(x'), i.e. hyyy = hy,
a. if t # t’ then xpq # X[, and f(h¢, xe01) = f(h,, x;,, ;) ... collision in f
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Collision resistance of MD construction

let x # x” be a collision in H: H(x) = H(x'), i.e. hyyy = hy,
a. if t # t’ then xpq # X[, and f(h¢, xe01) = f(h,, x;,, ;) ... collision in f

—_ . — —_ ’
b. t=1t"x=xp,..., X1, X' = X, .0, X[ 4

S (he, xe41) = f(hy, x[,;) ...either collision in f or
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Collision resistance of MD construction

let x # x” be a collision in H: H(x) = H(x'), i.e. hyyy = hy,
a. if t # t’ then xpq # X[, and f(h¢, xe01) = f(h,, x;,, ;) ... collision in f

—_ . — —_ ’
b. t=1t"x=xp,..., X1, X' = X, .0, X[ 4

S (he, xe41) = f(hy, x[,;) ...either collision in f or
> ht = h; & Xt+1 = Xt,+1
f(he—1,x:) = f(hi_;, x{) ...either collision in f or
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Collision resistance of MD construction

let x # x” be a collision in H: H(x) = H(x'), i.e. hyyy = hy,
a. if t # t’ then xpq # X[, and f(h¢, xe01) = f(h,, x;,, ;) ... collision in f

b. t=1t"x=xp,..., X1, X' = X, .0, X[ 4
S (he, xe41) = f(hy, x[,;) ...either collision in f or
> ht = h; & Xt+1 = Xt,+1
f(he—1,x:) = f(hi_;, x{) ...either collision in f or

’ ’
> h[_1 = ht—1 & Xt = Xt
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Collision resistance of MD construction

let x # x” be a collision in H: H(x) = H(x'), i.e. hyyy = hy,
a. if t # t’ then xpq # X[, and f(h¢, xe01) = f(h,, x;,, ;) ... collision in f

—_ . — —_ ’
b. t=1t"x=xp,..., X1, X' = X, .0, X[ 4

S (he, xe41) = f(hy, x[,;) ...either collision in f or
> ht = h; & Xt+1 = Xt’+1
f(he—1,x:) = f(hi_;, x{) ...either collision in f or

’ ’
> h[_1 = ht—1 & Xt = Xt

> either we get a collision in f or x = x’
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Parameters of real-world hash function

Hash functions

family  function

SHA-2

SHA-3

MD-5
SHA-1
Whirlpool
SHA-256
SHA-384
SHA-512
SHA3-256
SHA3-384
SHA3-512

length [bits]

max. input
204 — 1

284 -1
2256 _ 1
204 — 1
2128 _ 1
2128 _ 4

(60

(e0)

[ee]

output
128
160
512
256
384
512
256
384
512

block
512
512
512
512
1024
1024
1088
832
576
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SHA-2

» SHA-2 family of hash function
(SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256)

» standard: FIPS PUB 180-4

> similar design of SHA-256 (32-bit words, block size 512 bits) and
SHA-512 (64-bit words, block size 1024 bits)

> other variants are truncated versions with different initialization vectors

> Merkle-Damgard construction
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Example: SHA-256

> input message M; [ = [M| (0 < [ < 2% bits)
» padding and parsing:

> padding: M100...0 (l); , where k is the smallest value such that the

S~ ——
k= 64 bits

overall length is a multiple of 512

> parsing into 512-bit blocks: MO MDD MV
> each block consists of 16 32-bit words: M() = M(()'), ME'), e MEQ

> initialization vector (8 32-bit words): H\", H\*, ..., H\”
> intermediate hash values: Héi), Hl(i), s H7(i)

> SHA-256 digest: H\, HV, ..., HN)
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SHA-256 compression function

compression function (for i = 1,..., N):

1. expanding a message block (— W, ..., Wg3)

W= Mgi) for0 <t <15
e O'](Wt_z) + W7 + 0'0(Wt_15) + Wii6 for16 <t <63

2 (ab,c,defgh) — (Hy ™ HTY, L HEY)
3. fort=0,...,63:
31 i=h+Y(e)+Ch(e,f,8) + K+ W;
3.2 T =Y (a) +Maj(a, b, c)
33 (ab,c.def,gh) « (Ti+Tp,abcd+Tef,g)

4. (P HO, o HDY e (as HTD b HOTD b 1Y)

SHACAL-2 block cipher in Davies-Meyer mode
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Functions used in SHA-256

functions operate on 32-bit words

addition is computed mod 232

Ch(x,y,z) = (x A y) ® (-x A 2)

Maj(x,y,z2) = (xAy)® (xAz)®d (y A 2)
Yo(x) = ROTR?(x) ® ROTR'"(x) ® ROTR*(x)
Y1(x) = ROTR®(x) ® ROTR"(x) ® ROTR®(x)
0o(x) = ROTR’(x) ® ROTR™(x) @ SHR3(x)
o1(x) = ROTRY(x) ® ROTR"(x) ® SHR'(x)
ROTR - circular shift rotation to the right
SHR - shift to the right

vV V.V VYV Y VYV VY VvV VvVY
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Some performance numbers

MB/s
MD5 687
SHA-1 738

SHA-256 323
SHA-512 417
SHA3-256 287
SHA2-512 154

block size: 8192 bytes, 1 thread
platform: i7-2600 @ 3.40 GHz (4 cores/8 threads, AES-NI)
implementation: openssl 1.1.1c

Remark: Intel SHA Extensions — instructions for improving performance of SHA-1
and SHA-256 hash functions (not used in above table); AMD Ryzen and few Intel
processors.
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SHA-3 overview

v

Keccak — winner of SHA-3 competition (2012)
> standard: NIST FIPS 202 (2015)

» 4 hash functions with fixed-length output:
SHA3-224, SHA3-256, SHA3-384, SHA3-512

> 2 functions with variable-length output (XOF — extendable-output
functions): SHAKE128, SHAKE256

different approach than SHA-1 or SHA-2 hash functions
Keccak is not an MD-construction

sponge construction

vV vy VvYy

other functions/variants/constructions proposed:

» SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and Paralle|[Hash
(NIST SP 800-185, 2016)
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SHA-3 structure

> sponge construction — absorbing & squeezing
> arbitrary output length
> f — permutation on {0, 1
> r — bitrate (e.g. 1088 for SHA3-256)
> ¢ - capacity (e.g. 512 for SHA3-256)
> padding for SHA3-256: x || 01]] 10*1

}r+c

input x output
padding
bitrate r | 0]/} &5 N
f f f f f
capacity ¢ |0 > — ™ —
absorbing <---------- | """ » squeezing
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SHA-3 inside permutation f (1)

> state: 5 x 5 x 2! bits (2! = 64 for SHA3-256)

lane

slice
row

column
> 12+ 2/ rounds (24 rounds for SHA3-256)
> round function: R=10 yomropof, (6isapplied first)

Hash functions 34/ 35



SHA-3 inside permutation f (2)

> 0 (theta) — xor each bit of a column with
parities of two neighboring columns

» p (rho) - rotate each lane by a constant 2 2
value =

» 1 (pi) — permute the positions of the L
lanes —

» x (chi) - flip bit if neighbors to the right —
are 0,1

>y operates on rows (independently, in
parallel)

> 1 (iota) — xor a round specific constant to
lane[0,0] 0
> destroying symmetry
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