
Security of the RSA

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2020/21)

Content

Factorization, RSA problem
Problems with primes

Small plaintext space, small public/private exponent

Small public/private key

Homomorphism of RSA

Partial decryption oracles
Half and parity predicates
Bleichenbacher’s a�ack on PKCS#1 v 1.5
Manger’s a�ack

Other implementation a�acks

Security of the RSA 2 / 27 ,

RSA scheme

I n = p · q (product of two distinct primes)
I e · d ≡ 1 (mod 𝜑 (n)), where 𝜑 (n) = (p − 1) (q − 1)
I public key: (e, n)
I private key: d
I public/private transforms E ,D : Zn → Zn

I E (m) = me mod n
I D(c) = cd mod n

Security of the RSA 3 / 27 ,

Hybrid encryption

I encryption of message m for recipient A (his public key is pkA):

〈Ek (m), ERSA
pkA

(k)〉

I notation:
I E – symmetric cipher (e.g. AES)
I k – random symmetric key for E
I ERSA

pkA
– RSA encryption with A’s public key

I A can decrypt easily
I advantages: key management (asymmetric scheme), speed
I disadvantages: the security depends on both constructions

Security of the RSA 4 / 27 ,

Real world – key transport

I usually wrapping symmetric keys, providing confidentiality and
integrity

I key transport
I RFC 5990: Use of the RSA-KEM Key Transport Algorithm in the

Cryptographic Message Syntax (CMS)
I NIST SP 800-56B rev. 2: Recommendation for Pair-Wise

Key-Establishment Schemes Using Integer Factorization Cryptography;
various schemes, e.g. KTS-OAEP: Key-Transport Using RSA-OAEP

Security of the RSA 5 / 27 ,

Factorization and RSA

I factorization⇒ compute the private key⇒ decryption (trivial)
I decryption (knowing only the public key) =?⇒ factorization (open)
I knowledge of 𝜑 (n) is equivalent to factorization

⇐ trivial
⇒ solving 2 equations with 2 variables:

n = p · q
𝜑 (n) = (p − 1) (q − 1)

I knowledge of d is equivalent to factorization
⇐ trivial
⇒ more complicated procedure needed

I corollary: do not share n among group of users

Security of the RSA 6 / 27 ,

RSA problem

I RSA problem:
given (e, n) and c ∈ Zn; compute m such that me ≡ c (mod n)

I RSA problem is not more di�icult than factorization
I (open problem) Is the RSA problem as di�icult as factorization or easier?

Security of the RSA 7 / 27 ,

Problems with primes

I specific algorithms for factorization, when p, q satisfy some properties,
for example:
I small |p − q |,
I p − 1 (or q − 1) without a large prime factor, etc.

I suspicious methods of generating primes, e.g.
I weak or poorly initialized PRNG
I primes with some internal structure (“optimization”)

I Lenstra et al. (2012)
I 11.4 million RSA moduli (X.509 certificates, PGP keys)
I 26965 (incl. 10 RSA-2048) vulnerable (shared a single common prime

factor)

Security of the RSA 8 / 27 ,

Problems with primes (2)

I Bernstein et al. (2013)
I Taiwan’s national "Citizen Digital Certificate" database
I generated by government-issued smart cards (certified)
I 3.2 million unique RSA moduli
I 103 moduli factored by computing the gcd (sharing a non-trivial prime

divisor)
I observing non-randomness in the primes . . . 184 distinct 1024-bit RSA keys

factored
I Nemec et al. (2017)

I problem with “FastPrime” method for primes generation implemented in
library for particular hardware chips

I factor public modulus
I ID cards – e.g. Estonia (750.000), Slovakia (300.000)

Security of the RSA 9 / 27 ,

General factorization algorithms

I General number field sieve (GNFS)

I heuristic complexity: exp
(
(3
√︁
64/9 + o(1)) (ln n)1/3(ln ln n)2/3

)
I equivalent key lengths:

symmetric RSA
80 1024
112 2048
128 3072
192 7680
256 15360

– NIST Recommendations (SP 800-57 part 1 rev. 5) (2020)
– various estimates are compared at www.keylength.com

Security of the RSA 10 / 27 ,

Small message (plaintext) space

I RSA scheme is deterministic (the textbook version)
I small plaintext space:

I e.g. {“yes” , “no”, “maybe”}
I a�acker can compute E (m) for any m and compare the result with the

ciphertext

I potential plaintexts can be tested regardless of plaintext space
I randomization with padding

plaintextrandom

I is it secure (can you prove it)?
I see OAEP for provable security

Security of the RSA 11 / 27 ,

Small public exponent – broadcast

I small exponent – speed
I let e = 3 for three recipients A,B,C with moduli nA, nB, nC
I broadcasting m:

cA = m3 mod nA
cB = m3 mod nB
cC = m3 mod nC

I an a�acker solves the system of congruences (CRT):

x ≡ cA (mod nA)
x ≡ cB (mod nB)
x ≡ cC (mod nC)

Security of the RSA 12 / 27 ,

Small public exponent – broadcast (2)

I solution x (obtained from CRT) and m3 satisfy the system of
congruences, thus

x ≡ m3 (mod nAnBnC)
I x = m3, since m < nA, nB, nC
I m can be computed as a cube root of x
I padding as a prevention

Security of the RSA 13 / 27 ,

Small public exponent – related messages
I m1, m2 linearly dependent messages; c1 = E (m1), c2 = E (m2)
I ∃a, b ∈ Z: m2 = am1 + b, the a�acker knows a, b
I variable z (m1 is a root of the following polynomials):

ze − c1 ≡ 0 (mod n)
(az + b)e − c2 ≡ 0 (mod n)

I (z −m1) divides both polynomials; (ze − c1)/(z −m1) is irreducible
I gcd(ze − c1, (az + b)e − c2) reveals m1 and m2

I Example: n = 91, e = 5. Let c1 = 45, c2 = 28, and m2 = 30 · m1 + 11.

gcd(z5 − 45, (30z + 11)5 − 28) =
= gcd(z5 + 46, 88z5 + 40z4 + 90z3 + 33z2 + 47z + 44) = z + 37 = z − 54

Thus m1 = 54 and m2 = 30 · 54 + 11 = 84.
I easy to generalize for any known polynomial relation
I prevention: suitable padding

I not every padding is secure (see Coppersmith’s a�ack)
Security of the RSA 14 / 27 ,

Small private exponent

I motivation: fast decryption
I implementation: choose d first, e computed a�erward
I results – d can be computed from a public key:

I Wiener (1990): d < 1
3n

0.25 (continued fraction)
I Boneh, Durfee (1999): d < n0.292 (Coppersmith, LLL)
I some other improvements exist

I do not “optimize” d (!)

Security of the RSA 15 / 27 ,

Some applications of Coppersmith’s theorem

I Coppersmith’s theorem – finding all small solutions of modular
polynomial equation

I computing plaintext when using short/improper padding (and small e)
I computing primes given some fraction of their bits
I reconstructing d given some fraction of its bits

Security of the RSA 16 / 27 ,

Using homomorphism of RSA

I E (m1 · m2) = E (m1) · E (m2), computations are modn
I let’s assume, that l-bit symmetric key k is encrypted, i.e. k < 2l

I the a�acker pre-computes E (1), E (2), E (3), … , E (2l/2), and stores the
values 〈E (i), i〉 in a hash table

I if k = k1 · k2, for ki ≤ 2l/2:
I the a�acker tries k1 = 1, 2, 3, … , 2l/2, and searches c/E (k1) = E (k/k1) in

the table
I a match yields k1, k2, i.e. k

I time complexity O(2l/2)
I increasing the number of pre-computed values⇒ higher probability of

success

I (!) for small e, e.g. e = 3, the a�acker can compute 3
√
c directly (if k3 < n)

Security of the RSA 17 / 27 ,

Half predicate

I Knowing a ciphertext – can anything be computed about the plaintext?
I (textbook) RSA is not semantically secure (e.g. testing any plaintext)
I oracle half(c) = 0 if 0 ≤ m < n/2, or 1 otherwise
I we decrypt any c using predicate half()

half(c) = 0 ⇔ m ∈ {0, … , bn/2c}
half(c · E (2)) = 0 ⇔ m ∈ {0, … , bn/4c} ∪ {d2n/4e, … , b3n/4c}
half(c · E (22)) = 0 ⇔ m ∈ {0, … , bn/8c} ∪…

I we can compute m by binary search (c · E (2l) = E (m · 2l))
I remark: d is not used nor computed in this a�ack

Security of the RSA 18 / 27 ,

Parity predicate

I similarly to half(), we can use the predicate parity()
I parity(c) = m & 0x1

I relation between predicates: half(c) = parity(c · E (2))
I if 0 ≤ m < n/2:

then 0 ≤ 2m < n and the plaintext corresponding to c · E (2) is even
I if n/2 < m < n:

then n ≤ 2m < 2n ⇒ 2m mod n = 2m − n,
i.e. the plaintext corresponding to c · E (2) is odd

Security of the RSA 19 / 27 ,

Bleichenbacher’s a�ack on PKCS#1 v1.5 (1)

I chosen ciphertext a�ack (1998)
I PKCS#1 v1.5 oracle (error message, timing, etc.) ⇒ decryption of

arbitrary ciphertext
I PKCS#1 v1.5 padding:

00 02 ≥ 8 random non-zero bytes 00 message

I k – byte length of n; 28(k−1) ≤ n < 28k

I PKCS conforming block:
1. starts with bytes 00 02
2. bytes 3… 10 are non-zero
3. there is some 00 byte later (bytes 11… k)

I let’s denote B = 28(k−2) , i.e. PKCS conforming block: 2B ≤ m < 3B
I ciphertext is called PKCS conforming if its decryption is PKCS conf.

Security of the RSA 20 / 27 ,

Bleichenbacher’s a�ack on PKCS#1 v1.5 (2)

I given c ∈ Zn the a�acker wants to compute m = cd mod n
I Step 1 (blinding)

I not used if c is PKCS conforming
I generate random s0 ∈ Zn until c · se0 mod n is PKCS conforming
I homomorphic property of RSA: m0 = m · s0 mod n
I probability of random ciphertext being PKCS conf. is > 0.58 · 2−16 (for

2048 bit n)
I we know that 2B ≤ m0 ≤ 3B − 1
I set of intervals for m0: M0 = {〈2B, 3B − 1〉}

I Step 2 (searching): 2a, 2b, 2c
I Step 2a (for the first iteration i = 1)

I find the smallest possible s1 ≥ n/3B: c0 · se1 mod n is PKCS conf.
I for s1 < n/3B the result cannot be PKCS conf.

Security of the RSA 21 / 27 ,

Bleichenbacher’s a�ack on PKCS#1 v1.5 (3)

I Step 2b (more than 1 interval in Mi−1)
I rare situation (if ever, then for i = 2)
I find the smallest possible si > si−1: c0 · sei mod b is PKCS conf.

I Step 3c (Mi−1 = {〈a, b〉} contains a single interval)
I find small ri ≥ 2 · (bsi−1 − 2B)/n (approx. halving the interval) and si such

that c0 · sei mod n is PKCS conf.
I thus, 2B ≤ m0si − rin ≤ 3B − 1 and we get:

2B + rin
m0

≤ si ≤
3B − 1 + rin

m0

2B + rin
b

≤ si ≤
3B − 1 + rin

a

I the last derivation used the fact that m0 ∈ 〈a, b〉

Security of the RSA 22 / 27 ,

Bleichenbacher’s a�ack on PKCS#1 v1.5 (4)

I Step 3 (narrowing a�er si was found)
I compute Mi by updating all intervals 〈a, b〉 ∈ Mi−1:

Mi =
⋃
(a,b,r)

{〈
max

(
a,
⌈
2B + rn

si

⌉)
, min

(
b,
⌊
3B − 1 + rn

si

⌋)〉}
I the union must consider all potential r values intersecting with 〈a, b〉:

2B ≤m0si − rn ≤ 3B − 1 (★)
m0si − 3B + 1

n
≤ r ≤ m0si − 2B

n
asi − 3B + 1

n
≤ r ≤ bsi − 2B

n

I new intervals for Mi are obtained by rearranging (★)

Security of the RSA 23 / 27 ,

Bleichenbacher’s a�ack on PKCS#1 v1.5 (5)

I Final step:
I if Mi = 〈a, a〉 we have m0 = a and m = m0 · s−10 mod n

I Impact:
I SSL/TLS RSA key exchange method: client sends pre-master secret

encrypted with server’s public key (PKCS#1 v1.5)
I decryption of the pre-master secret yields the session keys
I careful implementation needed, see TLS 1.2 (RFC 5246)
I when relevant, the a�ack allows to create a PKCS#1 v1.5 signature of

arbitrary message (using server’s private key)
I ROBOT (Return Of Bleichenbacher’s Oracle Threat)

I recent a�ack on TLS a�er 19 years (2018)
I advice: disable all TLS_RSA ciphersuits
I non-standard message flow (shortened)
I di�erent responses: di�erent alert codes, TCP FIN, TCP timeout, TCP

reset, two alerts . . .

Security of the RSA 24 / 27 ,

Manger’s a�ack

I Does OAEP help (it is almost impossible to generate a valid ciphertext)?
I Manger’s a�ack (2001): compute m = cd mod n for any c
I assumption: access to the following oracle:

I Given c′, is the first byte of (c′)d mod n zero?
I let k be the byte length of n, and B = 28(k−1)
I oracle: (c′)d mod n < B

I recognizing bad first byte vs. bad internal integrity of decrypted block
I gradually reduce an interval of possible m values

I can be adapted to PKCS#1 v1.5
I there are also improvements to Bleichenbacher’s a�ack

Security of the RSA 25 / 27 ,

Combining various a�ack ideas

I The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS
Implementations (2018)

I cache-based a�ack techniques for side channel
I . . . leading to Manger’s oracle, Bleichenbacher’s oracle and several other

types of oracles
I optimizations to speed up the a�acks
I most TLS implementations were vulnerable

Security of the RSA 26 / 27 ,

Other implementation a�acks – examples

I Timing a�acks
I straightforward implementation of modular exponentiation
I computation time of D(c) depends on c, d , and n
I statistical correlation analysis to recover d from many samples (ci , timei)
I variant used to a�ack SSL implementation (2003) with approx. million

queries for extracting private key and factoring 1024 bit modulus n
I prevention: blinding

I Fault a�acks
I induce faults while executing sensitive operations
I heat, power spikes, clock glitches, etc.
I example: fault in a single value/computation in RSA CRT (signature

computation) – correct and fault signatures yield the factorization of n

Security of the RSA 27 / 27 ,

	Factorization, RSA problem
	Problems with primes

	Small plaintext space, small public/private exponent
	Small public/private key
	Homomorphism of RSA
	Partial decryption oracles
	Half and parity predicates
	Bleichenbacher's attack on PKCS#1 v 1.5
	Manger's attack

	Other implementation attacks

