
Block Ciphers I

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2020/21)

Block Ciphers 1 / 33 ,

Content

Introduction
iterated ciphers, Feistel ciphers
Simon and Speck

AES (Advanced Encryption Standard)
description
security

Multiple encryption
meet in the middle a�acks, 3DES

Slide a�ack

Block Ciphers 2 / 33 ,

Introduction - Block ciphers

plaintext

ciphertext

{0, 1}n

{0, 1}n

block cipher

(encryption)
key

{0, 1}k

I encryption/decryption E ,D : {0, 1}k × {0, 1}n → {0, 1}n
I k – key length, n – block length
I correctness: ∀K ∈ {0, 1}k ∀m ∈ {0, 1}n : DK (EK (m)) = m
I EK and DK are mutually inverse permutations on {0, 1}n

Block Ciphers 3 / 33 ,

Block ciphers – examples

I more versatile than stream ciphers (modes of operation)
I used more o�en than stream ciphers
I AES – block length: 128, key lengths: 128, 192, 256
I 3DES (also TDEA) – block length: 64, key lengths: 112, 168
I NIST SP 800-131A rev. 2 (March 2019):

I AES acceptable
I 3DES (with 168-bits keys) deprecated through 2023, disallowed a�er 2023

I ISO standardized the following block ciphers:
I ISO/IEC 18033-3:2010

64-bits block: TDEA, MISTY1, CAST-128, HIGHT
128-bits block: AES, Camellia, SEED

I ISO/IEC 29192-2:2019 (Lightweight cryptography)
64-bits block: PRESENT
128-bits block: CLEFIA, LEA

I standardized 6=⇒ used

Block Ciphers 4 / 33 ,

Block ciphers – remarks

I alternative view: block cipher as a simple substitution
I huge alphabet, frequency analysis impossible

I short block size – (possibly) easier cryptanalysis
I extremely short block size

I small alphabet
I max. (2n)! permutations, regardless of key length

I extremely short key length:
I exhaustive key search (brute-force a�ack) ∼ 2k

Block Ciphers 5 / 33 ,

Security

I exhaustive key search (EKS) complexity ∼ 2k

I expected EKS complexity ∼ 2k−1

I important assumption: keys with uniform distribution (!)
I otherwise enumerate keys by their probabilities (in descending order)
I keys o�en derived from user passwords (⇒ non-uniformity)

I (almost) anything with be�er complexity than EKS is a successful
cryptanalytic a�ack (at least in theory)

I can be still impractical, because of
I complexity, e.g. 2120 instead of 2128 is still infeasible
I assumptions, e.g. CPA with 290 of chosen plaintext blocks encrypted with

the same key is rather unrealistic

Block Ciphers 6 / 33 ,

Iterated ciphers

m F

k1

F

k2

F

kr

. . . c

I the most frequently used construction method for block ciphers
I iteration of round function F : {0, 1}k′ × {0, 1}n → {0, 1}n
I structure:

I key scheduling/expansion: producing round keys k1, … , kr from the key
I sequential iteration of F (r rounds): c = Fkr (… Fk2 (Fk1 (m))…)
I usually with some form of key whitening: c = kr+1 ⊕ Fkr (… Fk1 (m ⊕ k0)…)
I sometimes the first/the last round is di�erent

I decryption employs inverse round function
I examples: AES-128 has 10 rounds, PRESENT has 32 rounds

Block Ciphers 7 / 33 ,

Feistel ciphers

I method of constructing a round function
(its inverse has the same structure)

I decryption ∼ encryption (with reversed order of
round keys)⇒ equal speed of encryption and
decryption with pre-computed round keys

I plaintext divided into le� and right halves: L0, R0
I iterations (for i = 1, … , r − 1):

Li = Ri−1
Ri = Li−1 ⊕ F ′

ki
(Ri−1)

I last round:

Lr = Lr−1 ⊕ F ′
kr
(Rr−1)

Rr = Rr−1

L0 R0

F ′

k1

F ′

k2

ro
un

d

F ′

kr

Lr Rr

Block Ciphers 8 / 33 ,

Feistel ciphers – decryption
I using the same structure, changing the order of round keys
I denote L′0 = Lr and R′

0 = Rr (and other intermediate values L′i , R
′
i)

I we can show that L′i = Rr−i and R′
i = Lr−i for i = 1, … , r − 1:

I the first round:

L′1 = R′
0 = Rr = Rr−1

R′
1 = L′0 ⊕ F ′

kr
(R′

0) = Lr ⊕ F ′
kr
(Rr−1) = Lr−1

I the second round (other rounds similarly):

L′2 = R′
1 = Lr−1 = Rr−2

R′
2 = L′1 ⊕ F ′

kr−1
(R′

1) = Rr−1 ⊕ F ′
kr−1

(Rr−2) = Lr−2

I the last rounds (assuming L′r−1 = R1 and R′
r−1 = L1):

R′
r = R′

r−1 = L1 = R0
L′r = L′r−1 ⊕ F ′

k1
(R′

r−1) = R1 ⊕ F ′
k1
(L1) = L0

Block Ciphers 9 / 33 ,

Feistel ciphers – remarks

I examples: DES (3DES), Camellia, Blowfish, etc.
I generalizations:

unbalanced Feistel (spli�ing block into parts of unequal length)
I Feistel network is used in other cryptographic constructions, e.g.:

I OAEP (Optimal Asymmetric Encryption Padding) for RSA encryption
I format preserving encryption

I theoretical construction:
pseudorandom function→ pseudorandom permutation

Block Ciphers 10 / 33 ,

Simon and Speck

I lightweight block ciphers
I families, variants with various block and key sizes
I both ciphers with excellent performance in HW and SW

I published by NSA (2013)
I Simon

I optimized for hardware, balanced Feistel network
I XOR, bitwise AND, ROT (rotation)

I Speck
I optimized for so�ware, ARX cipher (modular addition, XOR, ROT)

I proposed as ISO standard in 2014
I rejected in 2018 by subcommi�ee ISO/IEC JTC 1/SC 27 (Information

security, cybersecurity and privacy protection)
I standardized later in 2018 by other subcommi�ee ISO/IEC JTC 1/SC 31

(Automatic identification and data capture techniques)

Block Ciphers 11 / 33 ,

Speck

I 10 variants of block/key lengths
I starting with 32-bit block and 64-bit key . . .
I e.g. 128-bit block with 128, 192, or 256-bit key (32, 33, 34 rounds)

I Speck2n
I 2n-bit block (two n-bit words)
I round function (round key ki):

xL xR

ki

>>> 8

<<< 3

Block Ciphers 12 / 33 ,

Speck – key expansion

I a key K consists of m words, m ∈ {2, 3, 4} (m = |K |/n)
I for example: m = 2 for Speck128/128, m = 4 for Speck128/256

I K = (lm−2, … , l0, k0)
I round function is used for key expansion:

li ki

i

>>> 8

<<< 3

li+1 ki+1

case m = 2

li kili+m−2

Ri

general scheme

Block Ciphers 13 / 33 ,

AES (Advanced Encryption Standard)

I DES deficiency: short key length (56 bits)
I public standardization process for new encryption standard (1997–2000)
I requirements: block cipher, block length 128 bits, key lengths 128, 192,

256 bits
I Rijndael – winning algorithm (Vincent Rijmen, Joan Daemen)
I NIST standardized AES in 2001 (other standardizations followed)
I the most important symmetric cipher today
I used (almost) everywhere

Block Ciphers 14 / 33 ,

AES

I not a Feistel cipher
I di�erent number of rounds depending on key length:

AES-128 10 rounds, AES-192 12 rounds, AES-256 14 rounds
I slight performance degradation for longer key lengths

1 thread (millions AES/s)
with AES-NI no AES-NI

AES-128 42.8 7.1
AES-192 36.1 6.0
AES-256 31.4 5.3

platform: i7-2600 @ 3.40 GHz (4 cores/8 threads, AES-NI)
implementation: openssl 1.0.1
overall encryption performance AES-128: 0.75 GB/s (1 thread, AES-NI)

Block Ciphers 15 / 33 ,

AES – state and operations

I state (plaintext, internal state, ciphertext): 4 × 4 array of bytes:

s0,0 s0,1 s0,2 s0,3
0 4 8 12

s1,0 s1,1 s1,2 s1,3
1 5 9 13

s2,0 s2,1 s2,2 s2,3
2 6 10 14

s3,0 s3,1 s3,2 s3,3
3 7 11 15

row

column
I 4 basic operations (invertible):

1. AddRoundKey – XOR the state with 128-bit round key
2. SubBytes – replace each byte using a fixed permutation (S-box)
3. Shi�Rows – cyclically shi� each row of the state
4. MixColumns – multiply each column by a fixed matrix

Block Ciphers 16 / 33 ,

AES – details of operations

1. AddRoundKey: fast mix of round key in; self-inverse
2. SubBytes: si,j = S(si,j) for all 0 ≤ i, j ≤ 3

I the only nonlinear operation in AES
I carefully chosen (a linear/a�ine ciphers are easy to break)
I invertible: inverse permutation on {0, 1}8

3. Shi�Rows:
I 1st row is not shi�ed
I 2nd/3rd/4th row: bytes are cyclically shi�ed to the le� by 1/2/3 bytes
I example: (s1,0, s1,1, s1,2, s1,3) ↦→ (s1,1, s1,2, s1,3, s1,0)
I invertible: shi� to the right

4. MixColumns
I fixed (invertible !) matrixM
I good di�usion properties (small di�erence on input “amplifies”)

Block Ciphers 17 / 33 ,

AES – encryption structure

plaintext

S
S

S

S

ciphertext

AddRoundKey

SubBytes

Shi�Rows

MixColumns

1st round

2nd round

last round

Block Ciphers 18 / 33 ,

AES – decryption structure

inverse operations: InvShi�Rows, InvMixColumns, InvSubBytes

ciphertext
AddRoundKey

InvSubBytes

InvShi�Rows

InvMixColumns

1st round

2nd round

last round

S′

S′

S′

S′

plaintext

Block Ciphers 19 / 33 ,

AES – key expansion (for 128 bit key) 1

I AES-128⇒ 10 rounds⇒ 11 round keys (i.e. 11 · 16 = 176 B)
I first 16 B (first round key) is the encryption key
I rcon(i) – round constant
I 1st 4-byte word in each new round key:

16 B

S S S S
rcon(i)

Block Ciphers 20 / 33 ,

AES – key expansion (for 128 bit key) 2

I for the 2nd, 3rd and 4th 4-byte word in each round key:

16 B

I round keys are formed from consecutive bytes of the expanded key
I slightly di�erent key expansion for key length 256

Block Ciphers 21 / 33 ,

AES – security

I exhaustive key search complexity ∼ 2128 or 2192 or 2256

I best key recovery a�acks
I Bogdanov et al. 2011, KPA:

time data
AES-128 2126.2 288

AES-192 2189.7 280

AES-256 2254.4 240

I Tao and Wu 2015, KPA:
time data

AES-128 2126.1 256

AES-192 2189.9 248

AES-256 2254.3 240

Block Ciphers 22 / 33 ,

Multiple encryption

I multiple encryption (cascade encryption)
I using the same or di�erent ciphers, usually with independent keys

Ek1 ,k2 (p) = E ′
k2
(E∗

k1
(p))

I possible goals:
I increasing the key space
I security (what if a cipher is broken . . . use two or three distinct)

I some ciphers cannot be strengthened (the key space does not increase),
regardless of cascade length
I examples: simple substitution, Vigenere, permutation, Vernam, etc.

∀k1, k2 ∃k ∀p : Ek1 (Ek1 (p)) = Ek (p)
I independence of keys can be crucial

I example: using the same key in double Vernam cipher⇒ no encryption

Block Ciphers 23 / 33 ,

3DES (TDEA)

I 3DES is defined as a cascade of the length 3:
I encryption: Ek3 (Dk2 (Ek1 (p)))
I decryption: Dk1 (Ek2 (Dk3 (c)))

I keying options (and corresponding key length):
I option 1: independent keys (168 bits)
I option 2: k1 = k3 (112 bits)
I option 3: k1 = k2 = k3 (56 bits)

I EDE mode (instead of EEE mode) and keying option 3 ensures backward
compatibility with DES

I real strength (bit security) of 3DES:
I option 1: 112 bits (meet in the middle a�ack)
I option 2: 80 bits (assuming 240 known plaintext/ciphertext pairs)

Block Ciphers 24 / 33 ,

Meet in the middle a�ack (MITM)

I disadvantage of multiple encryption – slower than single encryption
I why not “double encryption” – MITM a�ack

I MITM is generally applicable to multiple encryption schemes
I MITM is known plaintext a�ack (several pairs (pi , ci) known)

c = Ek2 (Ek1 (p))
1. ∀k ′2: compute x = Dk′2 (c) and store (x , k ′2) in a

hash table indexed by x
2. ∀k ′1: compute x = Ek′1 (p)

2.1 find entry(ies) (x , k ′2) in the table
2.2 verify a candidate key(s) (k ′1, k ′2) using other

plaintext/ciphertext pairs

p

c

Ek1

Ek2

x

Dk′2 (c)

Ek′1 (p)

Block Ciphers 25 / 33 ,

MITM – complexity

I assume key length k and block length n
I expected number of required plaintext/ciphertext pairs d2k/ne

I ≈ 22k/2n “valid” key pairs for a single (p, c) pair
I ≈ 22k/2tn for t plaintext/ciphertext pairs
I from 1 ∼ 22k/2tn we get t ∼ 2k/n

I time complexity O(2k)
I first cycle 2k iterations; second cycle 2k iterations
I single hash table operation O(1)

I space complexity O(2k)
I each key k ′2 produces one fixed-length entry in the hash table
I second cycle in constant memory

I easily generalized for longer cascades
I example: MITM on 3DES with 3 keys – time 2112 and space 256

Block Ciphers 26 / 33 ,

A KPA on two-key triple encryption

I assume t plaintext/ciphertext pairs (pi , ci)ti=1
I 3DES with keying option 2: c = Ek1 (Dk2 (Ek1 (p)))

1. build a hash table T1 with (pi , ci)ti=1 indexed by
plaintexts

repeat steps 2–4 until the key pair is recovered:

2. choose random x
3. ∀k ′1:

3.1 compute p′ = Dk′1 (x) and find (p′ = pi , ci) ∈ T1
(if exists)

3.2 compute y = Dk′1 (ci), put (y , k
′
1) into hash table

T2 indexed by y

4. ∀k ′2: compute Dk′2 (x), find entry in T2, verify
(k ′1, k ′2) pair

pi

ci

Ek1

Dk2

x

Dk′1 (ci)

Dk′1 (x)

Ek1

y

Dk′2 (x)

3.1

4

3.2

Block Ciphers 27 / 33 ,

Analysis of the a�ack

I time complexity:
I building T1: O(t)
I for single x : step 3 O(2k), step 4 O(2k)
I a�ack succeeds i� x is an intermediate value for some (pi , ci)
I expected number of tries to “guess” correct x (non-repeated guesses):

I (2n − t) random variables Xz (for incorrect “middle” values)
I Xz is 0/1 r.v. (0 i� z is not guessed before any correct x)
I Ex denotes an expected value of random variable, Ex(Xz) is constant for all z
I Ex(Xz) = 1/(t + 1) (counting arrangements of z and t correct values)
I guesses: 1 + Ex(∑z Xz) = 1 + (2n − t) · Ex(Xz) ≈ (2n − t)/(t + 1) ≈ 2n−lg t

I let’s summarize: O(t + 2k · 2n−lg t) = O(t + 2k+n−lg t)
I space complexity: O(t + 2k−n · t)

I T1: O(t) fixed-length entries;
I T2 (new one for each x): expected number of entries ≈ (2k/2n) · t
I space for T2 can be reused (not needed a�er finishing with x)

I easily adjustable for EEE (instead of EDE) mode of triple encryption

Block Ciphers 28 / 33 ,

Examples

I 3DES with two key option:
I parameters: k = 56, n = 64, t = 240
I time complexity: O(t + 2k+n−lg t) ≈ 2120−40 = 280
I space complexity: O(t + 2k−n · t) ≈ 240

I Triple AES-128 (not used in practice) with two-key option:
I parameters: k = 128, n = 128, t = 260
I time complexity: O(t + 2k+n−lg t) ≈ 2256−60 = 2196
I space complexity: O(t + 2k−n · t) ≈ 260

I di�erent trade-o�s for di�erent t values

Block Ciphers 29 / 33 ,

Data requirements of KPA/CPA

I assumption: block length n = 128
I only the ciphertext is considered for size computation, and for

calculation of transmission time

data size [TB] time for 1Gb/s
240 17.6 39 hours
260 1.8 · 108 4676 years
280 1.9 · 1013 4.9 · 109 years
2100 2.0 · 1019 5.1 · 1015 years

Block Ciphers 30 / 33 ,

Slide a�ack 1

I iterated ciphers
I easy to change the number of rounds
I usually more rounds ∼ increased security

I Biryukov, Wagner (1999)
I general a�ack on iterated cipher with identical round transform
I arbitrary number of rounds
I other variants exist

I cipher: C = Fk ◦ Fk ◦… ◦ Fk (P)
I slid pair is a known pair of (P ,C) and (P ′,C′) such that P ′ = Fk (P) and

C′ = Fk (C)

P Fk . . . CFk Fk

Fk . . . C′Fk FkP ′

Block Ciphers 31 / 33 ,

Slide a�ack 2

I we assume that Fk is “weak”:
I easy to compute k from equations y0 = Fk (x0), y1 = Fk (x1)
I usually very easy; for example, try this for Speck2n or AES

I KPA a�ack
I approx. 2n/2 of known plaintext-ciphertext pairs

expecting ≈ 1 slid pair (birthday paradox)
I testing all combinations if there is a slid pair (P ,C), (P ′,C′)

Is there k such that P ′ = Fk (P) ∧ C′ = Fk (C) ? . . . (≈ 2n)
I one slid pair recovers approx. n bits of the key

I Why bother when time complexity is O(2n)?
I single round (slide a�ack) vs. full cipher (brute-force)
I other improvements depending on F

Block Ciphers 32 / 33 ,

Slide a�ack 3

I KPA and CPA slide a�acks much be�er with Feistel ciphers
I single round . . . half of the block does not change
I ≈ 2n/4 plaintext-ciphertext pairs for finding a slid pair
I i.e. complexity is O(2n/2)

I advanced variants of slide a�ack exist
I pay a�ention to key scheduling

Block Ciphers 33 / 33 ,

	Introduction
	iterated ciphers, Feistel ciphers
	Simon and Speck

	AES (Advanced Encryption Standard)
	description
	security

	Multiple encryption
	meet in the middle attacks, 3DES

	Slide attack

