Stream Ciphers

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1 (2020/21)

Content

Introduction
idea, general properties

Linear Feedback Shift Register (LFSR)
correlation attack

Examples of stream ciphers
RC4
A5/1
ChaCha20
Snow 3G

Stream Ciphers 2/25

Introduction

> Vernam cipher (one-time pad)
> perfect secrecy
> impractical - long key that cannot be reused
> (some) stream ciphers examples:
» RC4 - old software and protocols, e.g. WEP, SSL/TLS etc.
> A5/1 - GSM communication (phone < base station)
remark: UMTS and LTE use other ciphers
> EO — Bluetooth (BR/EDR - basic rate/enhanced data rate)

remark: Bluetooth Low Energy uses AES-CCM
> ChaCha20 - TLS (RFC 7905)

» basic types of stream ciphers: synchronous and self-synchronizing

Stream Ciphers 3/25

Synchronous stream ciphers

v key

vy

pseudo-random
generator

keystream

plaintext —»ég—» ciphertext

the most common stream ciphers used in practice

encryption and decryption are the same

keystream does not depend on plaintext

vV v. vy

usually binary additive stream ciphers (XOR of plaintext and keystream)

Stream Ciphers 4/25

Synchronous stream ciphers 2

> periodic
> require synchronization
> decryption breaks after losing some bits of ciphertext
> vulnerable to active attacks
> e.g. changing bits in ciphertext results in change of corresponding
plaintext bits
> errors are not propagated
> |V and key must not repeat (otherwise ...two-time pad)

> be careful of possible keystreams overlaps

Stream Ciphers 5/25

Self-synchronizing stream ciphers

Ci—ns Ci—np+1s+ + 5 Ci—1 % A%

key 4" function function }& key

pi 4’@ 5—’Pi

keystream depends on ciphertext (and therefore on plaintext)

A% ﬂ Ci—ns Ci—p+1s -+ -5 Ci—1

Cj

ability to self-synchronize after the loss of same cipherext
aperiodic

hard to analyze, hard to guarantee security properties

Stream Ciphers 6/25

Remarks

v

stream ciphers can be constructed from block ciphers

v

specific modes of operation:

» synchronous: OFB, CTR
> self-synchronizing: CFB

v

Why stream ciphers at all?
> speed
> simplicity (HW implementation, constrained environment)

v

requirements (preliminary observations):

> long period
...How do you attack stream cipher with short period?
> good statistical properties
...statistical tests of randomness are not sufficient
> keystream should be unpredictable (indistinguishable from a random
sequence)
...KPA = knowing some part of the keystream

Stream Ciphers 7/25

Linear Feedback Shift Register (LFSR)

%

S—D S
Cn—1 Ch—2 G €
Sn—1 | Sp—2 ‘ - ‘ 51 | So }—» output

» common primitive for stream cipher construction

> easy to implement in hardware
> the output sequence has good (basic) statistical properties

> easy to analyze

Stream Ciphers 8/25

LFSR - notation and function

—P d
Ch—1x Cn—2 G G
Sn_1 | Sn_2 \ .. \ 5 | So }—» output

we focus on binary registers (over GF(2))

N\

n — length of register

initial state: s,_1,..., s1, 5o € {0, 1}"

vV v. vy

LFSR produces sequence {s;};>o, where for k > 0:
Sk+n = Cn-1Sk+n-1t Cn—2Sk4+n—2 T ... T C1Sk41 + CoSk

> state after k > 0 steps: (Skrn—1,---» Sk+1> Sk)

> characteristic polynomial: f(x) = x" + c,o1x" '+ ...+ c1x +

Stream Ciphers

9/25

LFSR — example

f(x)=x*+x3+1

e

VA

N

0110
0011

0001

1000
1100
1110
1111

0111

1001

0100
0010

0001

1011

0101

1010
1101

10/25

Stream Ciphers

LFSR - remarks

» all-zero state never changes = max. period is 2”7 — 1

LFSR generates a sequence with period 2" — 1 if and only if its
characteristic polynomial is a primitive polynomial over GF(2).

> primitive polynomial: irreducible & its root is a generator of
multiplicative group in generated finite field

> irreducible but non-primitive polynomial over GF(2): x* + x3 + x> + x + 1

» popular polynomials with degree n, where n is a Mersenne prime
(i.e. 2" — 1is also prime; e.g. n = 19,31,61, 89, 107, 127)
> in this case each irreducible polynomial is primitive
> connection (feedback) polynomial: 1+ ¢,_1x + ... + ¢;x" ' + ¢ox”

> reciprocal polynomial of the characteristic polynomial

Stream Ciphers 11/25

LFSR - properties

> some statistical properties (for sequence with maximal period)
> all states except all-zero state
> all n-tuples, (n— 1)-tuples, ...almost the same frequency:
#o+ 1 =4#q, #o0+ 1 =#01 = #10 = #11, ...
> very easy to predict (= do not use LFSR as a stream cipher)

> knowledge of 2n consecutive bits of output sequence
> computation of feedback coefficients (system of linear equations)

Sk+n = Cn—1Sk+n-1+ Cn-2Sk+n-2 + ... + C1Sk41 + CoSk

Sk+14n = Cn—1Sk+n * Cn—2Sksn—1F ... + C1Sk42 + C0Sk41

> the state is known anyway
> LFSR can be clocked forward as well as backward

Stream Ciphers

12/25

5

LFSR - synthesis and linear complexity

input: arbitrary sequence {s;}o<i<1
output: the shortest LFSR generating the input sequence
trivial solution: solve system of linear equations and enlarge LFSR

better approach: Berlekamp-Massey algorithm O(L - n)

vVvy vy VvYyy

linear complexity of a sequence:

> expected for a random sequence: ~ L/2
> large linear complexity is necessary, but not sufficient: 00...01

» linear complexity profile

> proper profile necessary, but not sufficient:
11010%1071... with “perfect” profile | (L + 1)/2]

Stream Ciphers 13/25

Increasing linear complexity

> filter generator

> state or its subset is filtered through a Boolean function
> properties depend on properties of filter function

> combination generator

> multiple LFSRs — combination of outputs

> properties depend on combination function (balanced, high algebraic
degree, nonlinearity ...)

> example: XOR = sum of linear complexities

> linear complexity is not everything ...

Stream Ciphers 14/ 25

Geffe generator — correlation attack

> combination of three LFSRs: F(xq, X2, X3) = x1x2 & (x1 & 1)x3

> brute-force attack — searching through all states: 2™+

» linear complexity < nyn, + ninz + n3

> Prlxz = F(x1,%,x3)] = Prlxa = F(x1,%,x3)] = 3/4
x1 xa x3 F(xi,x,x3) > KPA (i.e. we know the keystream)
0 0 0 0 > independent attack on LFSR3 state
0 0 1 1 (correct state will correlate with
o 1 0 0 keystream)
0 1 1 1 .
L o0 o 0 > independent attack on LFSR2 state
1 0 1 0 > finally, attack on LFSR1
1 1 0 1 > overall 2™ + 2™ + 2™
1 1 1 1

Stream Ciphers 15/ 25

Examples of other constructions based on LSFR

> alternating step generator

> output of LFSR1 controls if LFSR2 or LFSR3 is clocked (the second one is
paused)

| LFsR1

» shrinking generator

> two LFSRs: LSFR1 and LFSR2
> if output of LSFR1 is 1 then output is the output of LFSR2
> otherwise there is no output from the generator

» both generators have exponential period and linear complexity

Stream Ciphers 16/ 25

RC4

Ron Rivest, 1987

trade secret; posted anonymously to a mailing list in 1994
internal state S[0... 255] — permutation {0, ..., 255}

key K[0... k] — array of bytes (16 for 128-bit key)

initialization:

vV v v Vv Y

fori=0,...,255: S[i] = i

J=0

fori=0,...,255:
j=(+S[i]+K[i mod k]) mod 256;
swap(S[i], S[j]);

Stream Ciphers 17/ 25

RC4 (2)

> generating keystream:

i=0;j=0;
while (is needed):
i=(i+1) mod 256;
j =+ S[i]) mod 256;
swap(S[il, S[j]);
output S[(S[/] + S[j]) mod 256];

» additive cipher, the output is XOR-ed with plaintext bytes
> first bytes of keystream leak information about key

> WEP attack (key and IV used as RC4 key)
> drop some keystrem prefix / different construction of the key

Stream Ciphers 18/ 25

Klein’s attack on WEP 1

> WEP (Wired Equivalent Privacy) — security for 802.11 WiFi networks
> superseded by WPA2 (WiFi Protected Access)

> data frame:

IV, padding, IDgg, data, ICV
| —
plaintext encrypted

> |V - initialization vector (3B)
> DRk — Rk’s identifier (2 bits)
> ICV - integrity check value (CRC32)
> RC4 with key K = IV || Rk (Rk - root key)
> Notation:
> S; — internal permutation after i-th round (i < 256 corresponds to
initialization)
> ji — internal variable j after i-th round
> X - keystream (obtained by XORing ciphertext and known plaintext data)

Stream Ciphers 19/25

Klein’s attack on WEP 2

> Klein proved the following property of RC4 (n = 256):
1.36

PrK[i mod k] = S;'[i = X[i — 1]] = (Si[i] +ji)] = —
instead of desired 1/n.

> IV = K[0],K[1],K[2] is known = S5 and j3 can be computed

> the value w = S;'[3 - X[2]] — (S3[3] +3) is K[3] with probability ~ 13

> attacker observes many frames (fixed Rk and different IV) ... correct
value of K[3] (the first byte of Rk) revealed by statistics

> knowing K[3] = next RC4 round computation: S, j, ...etc.

» improvements for WEP, e.g. PTW attack (2007)
> attack on RC4 in TLS: AlFardan et al. (2013)

Stream Ciphers 20/ 25

A5/1

used in GSM networks; designed in 1987; reverse engineered in 1999
LFSRs lengths: 19, 22 a 23 bits (i.e. internal state: 64 bits)
at least 2 LSFRs clocked in each step (those that agree on selected bits)

for each frame: first 100 bits are discarded, next 228 bits are used (114
for encryption, 114 for decryption)

> weak cipher, various attacks published (A5/1 replaced by KASUMI in
UMTS)

vV v.v Yy

Stream Ciphers 21/25

ChaCha20

vVVvy VvV VVvYYy

high-speed ARX cipher (add-rotate-xor)
designed by D.J. Bernstein (2008)
details described e.g. in RFC 8439
ChaCha20 - specific instance of ChaCha with 20 rounds
state: 4 X 4 matrix, elements are 32-bit words
inputs:
> key: 256 bits (8 words)

> nonce (IV): 96 bits (3 words)
> counter: 32 bits (1 word) = max. 256 GB

> output: 512 bits (64 bytes, 16 words)
> different nonce/counter lengths possible (we follow RFC 8439)

Stream Ciphers

22/25

ChaCha20 - initialization and quarter-round

const | const | const | const

key |key |key |key

key |key |key |key

12 13 14 15
cnt nonce | nonce | nonce

QuarterRound(a,b,c,d):
a += b; d r= a; d <<<= 16;

c += d; b A= c; b <<<= 12;
a += b; d A= a; d <<<= 8;
c += d; b A= c; b <<<= 7;

Stream Ciphers 23/25

ChaCha20 - block function

> iterate 10 times following two rounds:

QuarterRound (0, 4, 8, 12)
QuarterRound(1, 5, 9, 13)

QuarterRound(2, 6, 10, 14)
QuarterRound (3, 7, 11, 15)
QuarterRound(0, 5, 10, 15)
QuarterRound(1, 6, 11, 12)
QuarterRound(2, 7, 8, 13)
QuarterRound(3, 4, 9, 14)

> the output state is added (word by word) to the input state —
keystream block

> the output state is used again as an input to the block function

Stream Ciphers 24 /25

Snow 3G - keystream generator

| 2
| 2
>

SNOW 3G is the base of confidentiality and integrity algorithms UEA2
and UIA2 (for LTE)

LSFR: 16 32-bit words; S;, S, — s-boxes
FSM (finite state machine): Ry, Ry, Rz — 32-bit values

«a is the root of some fixed polynomial

Stream Ciphers 25/25

	Introduction
	idea, general properties

	Linear Feedback Shift Register (LFSR)
	correlation attack

	Examples of stream ciphers
	RC4
	A5/1
	ChaCha20
	Snow 3G

