
Weaknesses in real-world protocols

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2020/21)



Content

KRACK

Dragonfly (SAE)

Bluetooth

Weaknesses in real-world protocols 2 / 19 ,



KRACK

I Key Reinstallation A�acks (Vanhoef, Piessens, 2017)
I just an idea
I details and paper available at www.kracka�acks.com

I WPA (Wi-Fi Protected Access)
I WPA – 802.11i (dra� D3.0); WPA2 – 802.11i (final version D9.0)
I two data confidentiality and integrity protocols: (WPA-)TKIP and

(AES-)CCMP
I 802.11ad amendment: Galios/Counter Mode Protocol (GCMP)

I 4-way handshake protocol
I mutual authentication based on PMK (Pairwise Master Key)
I PMK derived from preshared secret (WPA-Personal) or negotiated in

802.1x (WPA-Enterprise)
I establish a session key PTK (Pairwise Transient Key)

I supplicant/station (client) and authenticator (AP)

Weaknesses in real-world protocols 3 / 19 ,



4-way handshake

I simplified presentation
I 4-way handshake:

1. AP → S: ANonce (now the supplicant can derive PTK)
2. S → AP: SNonce, MICKCK (now the authenticator can derive PTK)
3. AP → S: GTK, MICKCK (GTK encrypted with KEK)
4. S → AP: Ack, MICKCK (Ack)

I MIC (Message Integity Check)
I GTK (Group Temporal Key . . . broadcast/multicast)
I PTK = PRF(PMK, APMac, SMac, ANonce, SNonce), divided into

I KCK (EAPOL-Key Confirmation Key) – for MIC computation
I KEK (EAPOL-Key Encryption Key) – for encryption of GTK
I TK (Temporal Key) – for encryption of data frames
I TMK1, TMK2 (Temporal AP MIC Key) – keys for MIC computation

(unicast), one for each direction

Weaknesses in real-world protocols 4 / 19 ,



KRACK – idea

I remark: o�line dictionary a�ack (4th message), no forward secrecy
I the third (or the first) message can be retransmi�ed (multiple times)

I for example, if the authenticator does not receive message 4 (or 2)
I reinstall the PTK and reset initialization vector (nonce) for data

encryption and authentication
I according 802.11i “AP retransmits message 1 or 3 if it did not receive a

reply”

I behavior of clients di�ers (depends on NIC and supplicant
implementation)

I other variants: key reinstallation against group key handshake . . .

Weaknesses in real-world protocols 5 / 19 ,



KRACK – impact

I CCMP – AES-CCM (CTR and CBC-MAC)
I key and IV are re-used, i.e. keystream is re-used
I a�acker can decrypt

I GCMP – AES-GCM
I keystream re-use
I authentication key can be recovered a�er nonce reuse (Joux, 2006)
I a�acker can decrypt and inject own data

I special weakness in Android and Linux:
I retransmi�ed message 3 causes all-zero key

I other variants of KRACK a�ack (2018)

Weaknesses in real-world protocols 6 / 19 ,



Dragonfly (SAE)

I WPA3 (2018)
I mandatory: new protocol Simultaneous Authentication of Equals (SAE)
I original design – Harkins (2008)

I balanced PAKE protocol
I IEEE 802.11-2016
I RFC 7664 (Dragonfly Key Exchange)
I other variants: EAP-pwd (RFC 5931), IKEv2 Secure PSK Authentication

(RFC 6617)

I EAP-pwd: can be used in some enterpise WiFi networks
I SAE is used to derive new PMK for the 4-way handshake

I does not prevent KRACK per-se
I prevents o�line dictionary a�ack
I ensures forward secrecy

I M. Vanhoef, E. Ronen: Dragonblood: A�acking the Dragonfly Handshake
of WPA3 (2019) – weaknesses in SAE and EAP-pwd

Weaknesses in real-world protocols 7 / 19 ,



Dragonfly (SAE) – introduction

I simplified for presentation
I main goals and properties

I no fixed roles (e.g. initiator, client, server, . . . )
I both parties can initiate the protocol (simultaneously)
I forward secrecy
I resistance to o�line dictionary a�ack (and other a�acks)
I based on DLOG problem

I proposed for modular and elliptic curves groups
I parameters: primes p, q, and q | (p − 1)
I modular group: subgroup of order q is used
I elliptic curve group over GF(p): group order q, curve

y2 = x3 + ax2 + b mod p

I H – hash function (random oracle); KDF – key derivation function

Weaknesses in real-world protocols 8 / 19 ,



Dragonfly (SAE) – password element P
I map password pw to a group element P
I hash to group:

for counter in range(1, 256):
seed = H(addrA, addrB, pw, counter)
x = KDF(seed, p)
if x ≥ p: continue
P = x (p−1)/q mod p
if P > 1: return P

I hash to curve:
base = pw, counter = 1
while counter++ < 40 or P not found:

seed = H(addrA, addrB, base, counter)
x = KDF(seed, p)
if x ≥ p: continue
if x3 + ax + b ∈ QRp and P not found:

P = (x , sqrt(x3 + ax + b) mod p)
base = random()

return P

Weaknesses in real-world protocols 9 / 19 ,



SAE – protocol

1. Commit Exchange (presentation uses elliptic curves)
I A select random rA,mA ∈ Z∗q ;

A computes sA = (rA +mA) mod q, and EA = −mA · P
I B select random rB,mB ∈ Z∗q ;

B computes sB = (rB +mB) mod q, and EB = −mB · P
A → B : sA, EA
B → A : sB, EB

I check validity of sX , check that EX is on the curve
I shared secret element K is computed:

A: K = rA · (sB · P + EB) = rA · ((rB +mB) · P −mB · P) = (rArB) · P
B: K = rB · (sA · P + EA) = rB · ((rA +mA) · P −mA · P) = (rArB) · P

I shared key k = H(K )

Weaknesses in real-world protocols 10 / 19 ,



SAE – protocol (2)

2. Confirmation Exchange
I verify k and transcript of the protocol:

A → B : cA = HMACk (sA, EA, sB, EB)
B → A : cB = HMACk (sB, EB, sA, EA)

I variants of Dragonfly di�er in
I computation of password element
I computation of confirmation messages
I key derivation and usage (e.g. multiple keys are derived), . . .

Weaknesses in real-world protocols 11 / 19 ,



SAE – some earlier results

I D. Clarke, F. Hao: Cryptanalysis of the Dragonfly Key Exchange
Protocol (2013)
I o�line dictionary a�ack for small subgroups
I important to perform checks in “Commit Exchange” step (validity of EX

and sX )
I J. Lancrenon, M. Škrobot: On the Provable Security of the Dragonfly

Protocol (2015)
I security proof in model by Bellare, Pointcheval and Rogaway (other

models exist)
I assumptions: random oracle model (H), CDH, DIDH (Decisional

Inverted-Additive Di�ie-Hellman)
I DIDH: hard to distinguish g1/(x+y) and a random g1/z when given g1/x

and g1/y .

Weaknesses in real-world protocols 12 / 19 ,



Timing a�acks – MODP groups

I hash to group – number of iterations depends on password
I KDF returns bit string of length |p|
I probability that x ≥ p is not negligible for some groups
I RFC 5114 – group 22 (30.84%), group 23 (32.40%), group 24 (47.01%)
I Is the di�erence between r and r + 1 iterations measurable?

Yes (see the experiments in Dragonblood paper)
e.g. for group 22 ≈ 75 measurements were enough to identify r

I number of iteration depends on MAC addresses as well
I spoofing MAC, measuring iterations . . . building a password “profile”
I o�line dictionary/brute-force a�ack

Weaknesses in real-world protocols 13 / 19 ,



Timing a�acks – elliptic curves

I hash to curve for EAP-pwd
I iterate until P is on the curve
I similar timing leak as for hash to group

I hash to curve for SAE – timing a�acks countermeasures already present
I x ≥ p is not negligible for Brainpool curves (RFC 6932)
I multiple measurements for a MAC:

more iteration with real password yield lower variance
average time depends on real iterations and number of x ≥ p results
(see the experiments in Dragonblood paper)

I cache a�acks (Flush and Reload)
I blinding the y value in the QR test
I detection of QR test result in the first iteration
I assumption: a�acker runs a process on victim host (e.g. Android app)

Weaknesses in real-world protocols 14 / 19 ,



Other issues and observations

I AP must store the password in plaintext
I WPA3 Transition Mode – AP accepts WPA3-SAE and WPA2 with the

same password
I compatibility with old clients
I downgrade a�ack are detected, thanks to properties of 4-way handshake
I a�ack has enough data for o�line dictionary a�acks
I countermeasure: remember if the network supports WPA3-SAE

(“pinning”)
I high overhead of hash to curve

I timing a�acks defense (40 iterations) is costly for lightweight devices
I existing DoS countermeasures can be defeated

e.g. experiment with 8 connections/s – AP’s CPU saturated
I fatal impact of bad PRNG

I a�acker reconstructs P and K
I impact worse than bad PRNG in WPA2

I update to WPA3?

Weaknesses in real-world protocols 15 / 19 ,



Bluetooth

I widely deployed protocol
I mobile phones, laptops, fitness/smart watches, headphones, . . .

I two protocols (similar):
I Bluetooth BR/EDR – Secure Simple Pairing (SSP)
I Bluetooth Low Energy – Low Energy Secure Connection (LE SC)

I goals for both protocols: confidentiality and MITM protection
I authenticated ECDH key exchange
I both protocols are vulnerable
I E.Biham, L. Neumann: Breaking the Bluetooth Pairing – Fixed Coordinate

Invalid Curve A�ack (2018)
I other a�acks for older versions exist (e.g. crackle)

Weaknesses in real-world protocols 16 / 19 ,



Invalid Curve A�ack on ECDH

I ECDH (elliptic curve E , generator P):
1. A → B: U = u · P
2. B → A: V = v · P
⇒ shared key: K = (uv) · P

I a�acker uses invalid points (not on the curve) to find shared key
I group operation does not depend on b (y2 = x3 + ax2 + b), see the “dlog”

lecture
I a�acker can choose a curve E ′ (di�erent b′) with subgroup of small order
I let P ′ be a generator, and q′ is the order

Weaknesses in real-world protocols 17 / 19 ,



Invalid Curve A�ack on ECDH (2)

I a�ack:
1. A → M: U = u · P
2. M → A: P ′ . . . A computes K = u · P ′

. . . A → M: c = EK (m)
I assumption: M knows m
I M finds u′ ∈ Zq′ : Eu′ ·P′ (m) = c ⇒ u ≡ u′ (mod q′)
I recovering u:

I iterate a�ack for multiple times for di�erent (co-prime) q′
I use CRT to compute u

I assumptions:
I the protocol can be executed multiple times and u does not change
I a�acker can choose arbitrary P ′

I Bluetooth specification: to prevent this a�ack, refresh your parameters
for every pairing

Weaknesses in real-world protocols 18 / 19 ,



Fixed Coordinate Invalid Curve A�ack (idea)

I let’s ignore all other SSP / LE SC details
I main problem:

y-coordinate is not authenticated (only x-coordinate of “public key”)
I semi-passive a�ack:

I set y-coordinate of both public keys to 0 (a curve with di�erent b′)
I the order of these points is 2
I if both “private keys” are even (prob. 25%), then K = 0 (point at infinity)
I a�acker knows the shared key (shared by both parties)

I fully-active a�ack:
I improved a�ack with 50% probability of success

I large majority of the Bluetooth devices are vulnerable (CVE-2018-5383)
I chips/implementations: Broadcom,�alcomm, Intel / Apple, Google, . . .

Weaknesses in real-world protocols 19 / 19 ,


	KRACK
	Dragonfly (SAE)
	Bluetooth

