Random stuff

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs.fmph.uniba. sk

Cryptology 1(2020/21)

Content

Secret sharing schemes
Shamir’s secret sharing scheme
Information rate

Commitment schemes

Interactive proof systems and Zero-knowledge proofs

Random stuff

2/32

5

Secret sharing schemes — introduction

> secret sharing schemes
> distribute a secret (e.g. key) among some group of participants (users,
servers)
> rules — what group can reconstruct the secret
> share - secret piece of information owned by individual participant
> a scheme consists of two algorithms/protocols:
> producing and distributing the shares (usually uses a dealer)
> reconstructing the shared secret
> motivation
> Can you trust a single authority (admin or server)?
> basis for other constructions — threshold cryptography, distributing
computation among group of trusted servers, multi-party secure
computation, electronic voting, ...

Random stuff 3/32

Secret sharing schemes

n participants P = {P;, Py, ..., P,}
shared secret s

shares: P; « s;

vVvyVvYyy

access structure A C 27 (power set)

> AC P canreconstructs & Ae A
> usually monotone access structure:

VABCP: ACB&AEA = BeA
» (t, n) threshold access structure, for 1 < t < m:

{AJACP &A=t}

Random stuff 4/32

Simple examples

> (1, n) threshold
> distribute the secret as individual shares: s; = s
> (n, n) threshold - 1st attempt
> letse {0,1}!
> divide s into n shares sy, ..., s, of length ~ [/n bits

> reconstruction: s = s1|| ... || sp
> n— 1 participants reconstruct a large part of s, approx. [(n— 1)/n bits

Random stuff 5/32

Simple examples

> (1, n) threshold

>

distribute the secret as individual shares: s; = s

> (n, n) threshold - 1st attempt

>
>
>
>

let s € {0, 1}
divide s into n shares sy, ..., s, of length ~ [/n bits
reconstruction: s = s1 || ... || sn

n — 1 participants reconstruct a large part of s, approx. [(n— 1)/n bits

> (n, n) threshold

>

>
>
>
>

let s € {0, 1}

$.
let s; <—{0,1}[for i=1,...,n—1,and s, =s® s D ... ® sy
reconstruction: s=51® ... D s,
security: any n— 1 (or less) participants learn nothing about s
perfect scheme

Random stuff 5/32

Shamir’s secret sharing scheme

> idea: t points uniquely determine some polynomial of degree t — 1

v

finite field Z,, for a prime p > n

$
shared secret s € Z,; let us assume s < Z,

vy

computing the shares:

> choose a random polynomial f(x) = s+ a;x +... + ai_1x"™",

where a; in fori=1,...,t—1
> notice that £(0) =s
> share for P;: (i,s;), where s; = f (i)

Random stuff 6/32

Shamir’s secret sharing scheme

> idea: t points uniquely determine some polynomial of degree t — 1

> finite field Z, for a prime p > n

$
> shared secret s € Z; let us assume s «—Z,

> computing the shares:

> choose a random polynomial f(x) = s+ a;x +... + ai_1x"™",

where a; in fori=1,...,t—1
> notice that £(0) =s
> share for P;: (i,s;), where s; = f (i)

» reconstruction; WLOG let us assume t participants Py, ..., P
> Lagrange interpolation using (i,s;) for i=1,...,t
f) =

i=1 \f-’1</<t
Sj J#I

> compute s = f(0) (all computations are in the finite field)

Random stuff 6/32

Shamir’s secret sharing scheme — security

> consider group of t — 1 participants (WLOG Py, ..., Pi_q)
> the shared secret can be anything;:
> combine the shares and add point (0, s) for an arbitrary s’ € Z,
> t points = unique polynomial f’
> f’is consistent with shares of Py,..., P4
> Py,..., Pi_q are in the same position as someone without any share

> probability of finding s ~ is 1/p (guessing)

> perfect secret sharing scheme

Random stuff 7/32

Linear equations perspective

» unknown polynomial f (its coefficients)
> ashare (i,s;) forms a linear equation: s; = ap + aji + ... + a;_1i"”"
> t cooperating participants — the system of t equations with ¢ variables

> square Vandermonde matrix with distinct elements (i.e. non-zero
determinant)
> the system has a unique solution

» t— 1 cooperating participants — the system of t — 1 equations with t
variables
> add an additional equation: 5" = a
> square Vandermonde matrix with distinct elements (because any i # 0)
> the system has a unique solution for any s’ ... perfect scheme

Random stuff 8/32

Remarks

> reconstruction is just a linear combination of shares:
FO) =) sin
i€eS

for coefficients r; = [1jes iy —J/(i—j),and S C {1,....n}, [S| =t
> any points (x;, f (x;)) for distinct non-zero xi, ..., x, can be used as shares
» homomorphic property with respect to addition:
> two (t, n) threshold schemes defined by polynomials f and g
> adding shares: (i, (i), (i, g(i)) = (i, f(i) + g(i))

> polynomial (the shared secret is the addition of shared secrets ay + a;):
=1

f(x)+g(x) = Z aix’ + tZ] a;xi = i(a; + a;)xi
=1 =1

i=1

Random stuff 9/32

Remarks (2)

> efficiency
> polynomial time
> long s can be divided into shorter pieces and shared by independent
schemes (or we can encrypt s and share the encryption key)
> trusted dealer — generates the polynomial and distributes the shares
> one-time scheme?
> secret revealed after reconstruction vs. black-box reconstruction
» cheating in reconstruction:

> for example - Py, ..., P try to reconstruct s

> P; cheats and reveals an incorrect share (1, s7)

> the participants compute: s" = s+ s7r; — 519
...and P; can easily compute s from s’

Random stuff 10/ 32

Information rate

> the size of share(s) vs. the size of the shared secret
> notation

> S - set of secrets
> K(P;) - set of all possible shares for P;
> random variables

> information rate for P;: p; = H(S)/H(K(P;))
» information rate of the scheme: p = min; p;

> uniform probability case: p = min;lg|S|/lg|K(P;)|

Random stuff 11/ 32

Information rate (2)

> information rate for Shamir’s scheme: p = 1
> perfect secret sharing scheme ...p < 1

> letusassumethatp >1 = Vi:p; > 1
> forall i:

Ig |S1/1g |K(P)| > 1
g |S| > Ig [K(P)]
IS > |K(P)I
there exists AC P: Pi¢ A,A¢ A,and AU {P;} € A
take all shares from participants in A and all candidate shares from K(P;)

>

>

> compute all possible values of the shared secret ...less than |S|

> the scheme cannot be perfect (we can exclude some “impossible” secrets)

> a perfect secret sharing scheme with p = 1is called ideal

Random stuff 12/ 32

Commitment schemes — introduction

> How to flip a coin or play rock-paper-scissors(-lizard-Spock) over
phone/network?
> “no, it was a head/tail” (or whatever suits me)
> we want to guarantee a fairness
» commitment scheme: participant “commits” himself to some value
> later, the participant opens the commitment to show the value
> the commitment does not allow to compute the value (efficiently)
> the participant cannot open the commitment as a different value
> bit commitment
> flipping a coin (two participants):
1. A commits to a bit b

2. Bguesses b’
3. A opens the commitment; result can be defined as b @ b’

Random stuff 13/ 32

Commitment schemes — properties

> commitment scheme: two-phase protocol between Sender and Receiver
1. commit: Sender produces a commitment of some value m for Receiver
2. reveal: Sender opens the commitment for Receiver
Receiver can verify the correctness of the commitment
> hiding
> Receiver cannot compute anything about m from its commitment
> computational vs. perfect hiding
> binding
> Sender cannot open the commitment as a different value m” # m
> computational vs. perfect binding

Random stuff 14/ 32

Examples

> analogy: a box with a lock

>

>
>

commit: Sender writes a value on a paper and locks it inside the box.
Sender gives the box to Receiver.

reveal: Sender gives the key to Receiver.

properties:

binding (Sender does not have the box),

hiding (Receiver does not have the key)

> Ad-hoc construction from hash function: f(b,r) = H(b|| r)

»

| 4
| 4
>

b € {0, 1}, random r

reveal: show b and r

binding ~ collision resistance

hiding ~ inability to find the first bit of preimage (this is weaker than
preimage resistance)

Random stuff 15/ 32

Examples 2

> RSA based construction: r¢ mod n(where r mod 2 = b)
> randomr € Z,
> reveal: show r
> perfect binding (unconditionally), RSA encryption is a permutation on Z,
» computational hiding: RSA asumption, security of plaintext parity bit

» Pedersen bit-commitment scheme

\4

(G,) cyclic group of prime order g
& h - generators with unknown dlog h = x
commit: f(b, r) = g"h? for random r € Zqg
reveal: show b and r
computational binding: find r, r’ such that g’h = g” = h=g" " yields x
perfect hiding: any commitment ¢ € G can be
0: there exists r such that g" = ¢
1: there exists r such that g" = ch™!
> the scheme can be used for arbitrary values b € Z,

vyvyvVvyYVvyy

Random stuff 16/ 32

Perfectly hiding & perfectly binding scheme

you can have one or other but you cannot have both properties
let us discuss a bit-commitment scheme

assume the existence of such scheme

vV v.v Yy

for any commitment c of 0 there exists r’: f(r’, 1) = c (because of perfect

hiding); therefore it cannot be perfectly binding (unlimited Sender can
find r’)

Random stuff 17/ 32

Interactive proof systems (IPS)

v

What is a proof?

v

communicating parties: P — prover, V — verifier

v

protocol, modeled as a pair of interactive Turing machines
> common input x
>V is probabilistic polynomial time
> P is computationally unlimited
> V accepts or rejects at the end (we say that (P, V) accepts/rejects)

> let L C {0, 1} be some language

> P tries to “convince” V that x € L

Random stuff 18 /32

IPS — definition

> (P,V)isan IPS for L if

1. completeness: Vx € L: Pr[(P, V)(x) accepts] > 2/3
2. soundness: Yx & LVYP* : Pr[(P*, V)(x) accepts] < 1/3

> reducing error probabilities by sequential iteration of IPS
> taking a majority of accept/reject votes
» apply Chernoff’s bound

> let Xj,..., Xi be independent 0/1 random variables, with Pr[X;] = p for all i
and some probability p; then for 0 < § < 1:

52 pk

Pr Zx,- <(1 —S)pk} <e 2
i

> nindependent repetitions

> error probability at most 2770 for some polynomial f

Random stuff 19/ 32

IP class

IP - class of languages with IPS

IP = PSPACE

large class of languages

QSAT is a complete language for PSPACE:

vV v. vy

(Qi x1)(Q2 x2) ... (Qn xn) (X1, X2, ...

Random stuff

’ Xn)

20/ 32

IPS — remarks

> Vis polynomial =
> polynomial number of rounds
> polynomial length of messages
> perfect completeness & soundness
> perfect completeness does not change the power of IPS
> perfect soundness results in NP
> “ingredients” of IPS
> randomness — without randomness (deterministic verifier) we get NP
> interaction — without interaction
single message from P to V ... MA (Merlin-Arthur) class

no message at all ...BPP class
> private coins not necessary — public coins do not change the power of IPS

Random stuff 21/32

Graph non-isomorphism

> GNI={(G,Gy) | Gy # Gy}
> GNI seems to be outside of NP (trivially Gl € NP)
> |IPS for GNI:

1. V — P: H, random isomorphic copy H =~ G; for i & {1,2}
2. P>V
3. if i # i’ then V rejects

V accepts after k successful iterations

Random stuff 22/32

Graph non-isomorphism 2

> completeness: let G; # G, (i.e. (G;, Gy) € GNI)

> H is isomorphic to just one G;
> P can always succeed, i.e. Pr[(P, V)(G;, Gy) accepts] = 1

> soundness: let G; ~ G, (i.e. (G;, G,) ¢ GNI)
> H is isomorphic to both Gy, G,
> any P* can only guess the correct value of i

> probability of success in a single round is 1/2
> Pr[(P*, V)(Gi, Gy) accepts] < 27F

Random stuff 23/32

Remarks

> completeness assumes an honest prover (and verifier)
> completeness is not about security
> sometimes it can be easy to prove that x € L if it is true
» soundness protects the verifier against accepting x ¢ L while interacting
with malicious prover
> consider Gl = {(G;, Gy) | G; = Gy}
> easy to design an IPS for Gl
> P can compute and send the isomorphism ¢ : Gy — G, to V

> V can verify ¢ in polynomial time
> completeness & soundness 100%

> similar idea can be used for any L € NP (e.g. SAT, HAM, ...)

Random stuff 24/ 32

Graph isomorphism

» another IPS for GI:
1. P — V: H, random isomorphic copy H =~ G,
2 Vo Pii (1,2}
3. P — V: x (permutation on vertices of G;)
4. V checks if & is isomorphism of G; and H; if not then V rejects
V accepts after k successful iterations
> completeness: let G; = G, (i.e. (G1, Gy) € Gl)

> P can compute isomorphism between H and any G;
» P can always answer with correct =

> soundness: let G # G, (i.e. (G, Gy) ¢ Gl)
> P* sends some graph H in step 1
> H is isomorphic to at most one graph G;
> P* succeeds in single round with probability < 1/2
> V accepts with probability at most 27%

Random stuff 25/32

Zero-knowledge IPS with honest verifier

> P wants to prove x € L without providing anything beyond this fact

> zero-knowledge
>V will not learn anything that he cannot compute by himself

> view(P, V,x) — random variable containing transcript of P <> V
communication on input x

» idea: the communication does not contain any knowledge if it can be
simulated efficiently

> IPS (P, V) for L is perfect zero-knowledge for honest verifier if
APPT SVx e L: view(P,V,x) = S(x)

> the distributions of real and simulated communications are equal

Random stuff 26/ 32

Simulating IPS for Gl

> S works as follows (repeating k times):

. $
1. choose i —{1,2}
2. choose random permutation &
3. output: (7(G;)), i,)

> each triple is distributed identically (we assume G; = G,) to original
P < V communication

Random stuff 27/ 32

Perfect ZK IPS

> verifier can be malicious

> V* tries to get as much knowledge as possible from the prover
> V* can deviate from the protocol (selecting his challenge according some
“strategy”)

» IPS (P, V) for L is perfect zero-knowledge if

VPPT V* 3PPT SVx € L: view(P, V", x) = S(x)

Random stuff 28 /32

Perfect ZK IPS for Gl

> the IPS for Gl is perfect zero-knowledge

>

v

aohwDd =

6.

black-box simulation, S remembers the state of V*
single round:

S chooses random i” and x’

S computes H' = ' (Gy)

S simulates V* on message H’

S obtains a challenge i

if i # i’ then S resets V* into previous state and the round starts again
output: (H’,i’,7"); S remembers new state of V*

producing H” and 7z’ is exactly how P works

i’ is independent on i, i.e. = Pr[i=i]=1/2

>
> the choice of i is the genuine V*’s choice
>
>

expected number of repetitions: 1+ 1/2+1/4+...=2,i.e. Srunsin PPT

Random stuff 29/32

Remarks

> types of ZK (wrt simulated and real communications)
> perfect — equal/identical
> statistical — negligible statistical difference
> computational (CZK) - indistinguishable in PPT, i.e. the probability of
distinguishing the distributions is negligible
» CZK = IP (if one-way functions exist)
> let show NP € CZK

» HAM = {G | G has an Hamiltonian cycle}
> NP-complete language

Random stuff 30/32

CZK IPS for HAM

> repeat k times for an input G (V accepts after k successful rounds):

1. P— V :c(H), where H is a random isomorphic copy of G, and c¢(H) is a
commitment of H (commitments of all values in its incidence matrix)

2. V> P:ci{0,1}

3. P> V:
if c = 0: P opens all commitments and sends z: 7(G) = H
if c = 1: P opens those commitments that reveal a Hamiltonian cycle in
c(H)

4. V verifies received data and rejects if there is anything wrong

Random stuff 31/32

CZK IPS for HAM

> repeat k times for an input G (V accepts after k successful rounds):

1. P— V :c(H), where H is a random isomorphic copy of G, and c¢(H) is a
commitment of H (commitments of all values in its incidence matrix)

2. V> P:ci{0,1}

3. P> V:
if c = 0: P opens all commitments and sends z: 7(G) = H
if c = 1: P opens those commitments that reveal a Hamiltonian cycle in
c(H)

4. V verifies received data and rejects if there is anything wrong

» completeness: if G € HAM then P always succeeds
» soundness: G ¢ HAM

> assume perfectly binding BC scheme (because P* is unlimited)
> P* succeeds in single round < correct guess of the challenge in advance
> probability of success after k rounds < 27

Random stuff 31/32

CZK IPS for HAM 2 - zero-knowledge

> black-box simulation for single round:

S chooses ¢’ & {0, 1}

if ¢’ = 0 then S selects random 7 and computes c(7(G))

if ¢’ = 1then S chooses Hamiltonian graph H and computes ¢(H)
S simulates V* and obtains ¢

if ¢ # ¢’ then reset V* into previous state and start again
otherwise S can produce the output; remember a new state of V*

ok wN =

» simulated communication is not identical to the real one

> computationally unbounded distinguisher can distinguish them
> they cannot be distinguished in PPT (BC is computationally hiding)
> CZK

> we need efficient provers for practical applications ...

Random stuff 32/32

	Secret sharing schemes
	Shamir's secret sharing scheme
	Information rate

	Commitment schemes
	Interactive proof systems and Zero-knowledge proofs

