
Hash functions

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2021/22)

Content

Hash function properties
preimage / second preimage / collision resistance

Birthday attack

Constructions
hard problems
block cipher based
Merkle-Damgård construction

Examples of real-world hash functions
SHA-256
SHA-3 (Keccak)

Hash functions 2 / 35 ,

Introduction

▶ hash function computes a fixed-length fingerprint/digest/hash from a
message/document of (almost) arbitrary length

▶ h : X → Y function (deterministic computation)
▶ efficient (fast) & no key used
▶ usually X = {0, 1}∗, X = {0, 1}≤264 , X = {0, 1}≤2128 , . . .

Y = {0, 1}160 for SHA-1, {0, 1}256 for SHA-256 and SHA3-256, . . .
▶ various uses of h.f.:

▶ digital signature schemes (digest of the message is signed)
▶ padding in public-key encryption schemes
▶ verifying integrity of data
▶ instantiation of random oracles and pseudorandom functions
▶ MAC constructions
▶ password storing methods etc.

Hash functions 3 / 35 ,

Basic requirements of hash functions (informally)

▶ preimage resistance (one-way)
▶ It is infeasible to compute x ∈ X given y ∈ h(X) such that h(x) = y .

▶ second preimage resistance
▶ It is infeasible to compute x ′ ∈ X given x ∈ X such that

x ≠ x ′ & h(x) = h(x ′).
▶ collision resistance

▶ It is infeasible to compute x , x ′ ∈ X such that x ≠ x ′ & h(x) = h(x ′).

▶ remarks:
▶ |X | ≫ |Y |, otherwise the h.f. is useless⇒ large number of collisions
▶ Y is finite, h is deterministic⇒ in theory, e.g. collisions can be found in

O(1) time (“hardcoded”)
▶ formalizing the requirements is not straightforward (introduction of hash

function families, multiple “flavors” of preimage and second preimage
resistance) – however, above intuition satisfies our needs

▶ Pre, Sec, Coll, (aPre, ePre, aSec, eSec), MAC, Prf, Pro, TCR, CTFP, . . .

Hash functions 4 / 35 ,

Basic requirements of hash functions (informally)

▶ preimage resistance (one-way)
▶ It is infeasible to compute x ∈ X given y ∈ h(X) such that h(x) = y .

▶ second preimage resistance
▶ It is infeasible to compute x ′ ∈ X given x ∈ X such that

x ≠ x ′ & h(x) = h(x ′).
▶ collision resistance

▶ It is infeasible to compute x , x ′ ∈ X such that x ≠ x ′ & h(x) = h(x ′).

▶ remarks:
▶ |X | ≫ |Y |, otherwise the h.f. is useless⇒ large number of collisions
▶ Y is finite, h is deterministic⇒ in theory, e.g. collisions can be found in

O(1) time (“hardcoded”)
▶ formalizing the requirements is not straightforward (introduction of hash

function families, multiple “flavors” of preimage and second preimage
resistance) – however, above intuition satisfies our needs

▶ Pre, Sec, Coll, (aPre, ePre, aSec, eSec), MAC, Prf, Pro, TCR, CTFP, . . .

Hash functions 4 / 35 ,

Properties of h.f. – discussion

▶ collision resistance⇒ second preimage resistance
▶ if you can find a second preimage, then you have a collision

▶ collision resistance ⇏ preimage resistance
▶ identity: X = Y , ∀x ∈ X : h(x) = x (Coll, ¬Pre)
▶ let g with range {0, 1}n be collision and preimage resistant; then

h(x) =
{
0 | | x if |x | = n

1 | | g(x) otherwise

is collision resistant but not preimage resistant
▶ second preimage resistance ⇏ preimage resistance

▶ identity again (Sec, ¬Pre)
▶ however, in a “normal” situation . . .

Hash functions 5 / 35 ,

Collision by inverting h.f.
▶ assumption: h can be inverted efficiently
▶ algorithm:

1. x
$←− X

2. invert h(x) ↦→ x ′

3. if x ′ ≠ x . . . collision found

▶ let us estimate the probability of success
▶ notation: [x] = {x ′ ∈ X ; h(x ′) = h(x)} equivalence class
▶ C – set of all equivalence classes

Prsucc =
1
|X |

∑︁
x∈X

| [x] | − 1
| [x] | =

1
|X |

∑︁
c∈C

∑︁
x∈c

|c | − 1
|c | =

1
|X |

∑︁
c∈C
(|c | − 1)

=
1
|X |

(∑︁
c∈C
|c |︸︷︷︸
|X |

−
∑︁
c∈C

1︸︷︷︸
≤ |Y |

)
≥ 1 − |Y ||X | … ≥ 1 −

(|Y |
|X |

)k
︸ ︷︷ ︸

after k repetitions

Hash functions 6 / 35 ,

Generic attack for finding preimage/2nd preimage

▶ generic attack, finding a preimage for given y ∈ h(X):
▶ algorithm:

1. choose x ∈ X (randomly or systematically)
2. if h(x) = y then the preimage is found, otherwise repeat

▶ expected complexity O(2n) for Y = {0, 1}n
▶ similar generic attack for finding a second preimage

Hash functions 7 / 35 ,

Birthday attack – introduction

▶ generic attack for finding collision(s)
▶ example: What is the probability that at least two people in a room

share the same birthday?

Pr2 = 1 − 365 · 364
3652

≈ 0.0027; Pr3 = 1 − 365 · 364 · 363
3653

≈ 0.0082

▶ k people: Prk = 1 − 365k/365k
▶ at least 23 people needed for probability ≥ 1/2
▶ “hash function” maps people to dates; |Y | = 365

Hash functions 8 / 35 ,

Birthday attack – introduction (2)

Hash functions 9 / 35 ,

Birthday attack on h.f.

1. choose (distinct) x1, … , xk
$←− X

2. compute h(x1), … , h(xk)
3. find collisions, for example by sorting (h(xi), xi) and searching for

collisions in adjacent elements, or by storing (h(xi), xi) in a hash table
using the hash value as a key

▶ linear time and memory complexity O(k)
▶ we treat n as a constant (for Y = {0, 1}n); also assuming constant time to

evaluate h
▶ time: using Radixsort for sorting in O(k) or using a hash table with

k × O(1) operations
▶ memory complexity can be improved (see later)

What is the probability of success?

Hash functions 10 / 35 ,

Birthday attack – analysis (1)

▶ trivial observations – the probability of success increases:
▶ for increasing k
▶ for unbalanced distribution of images

▶ assume the worst situation: h distributes the hash values uniformly, i.e.

Pr[h(x) = y] = 1/|Y | ∀y ∈ Y

▶ let y1, … , yk be random, independent and uniform elements from Y
▶ notation: |Y | = N
▶ probability that all yi’s are distinct:

Prdist =
N (N − 1)… (N − k + 1)

Nk
=

(
1 − 1

N

) (
1 − 2

N

)
…
(
1 − k − 1

N

)

Hash functions 11 / 35 ,

Birthday attack – analysis (2)

▶ probability of at least one collision: Prcol = 1 − Prdist
▶ estimate Prcol:

Prcol = 1 −
k−1∏
i=1

(
1 − i

N

)
≥ 1 − e− 1

N −
2
N −…−

k−1
N = 1 − e

−k (k−1)
2N

we use inequality 1 − x ≤ e−x

it follows from Taylor series:
e−x = 1 − x + x2

2! −
x3
3! +…

Hash functions 12 / 35 ,

Birthday attack – analysis (3)

▶ find k such that Prcol ≥ Y, for some constant Y ∈ (0, 1)

Prcol ≥ 1 − e−k (k−1)/(2N) ≥ Y

1 − Y ≥ e−k (k−1)/(2N)

2N ln(1 − Y) ≥ −k2 + k
k2 − k + 2N ln(1 − Y) ≥ 0

k ≥ 1
2
+
√︂

1
4
+ 2N ln

1
1 − Y

k ≥
√
N ·

√︂
2 ln

1
1 − Y

Hash functions 13 / 35 ,

Birthday attack – results

▶ the complexity of b.a. for “reasonable” Y, e.g. 1/2, 2/3, is O(N1/2)
▶ for Y = {0, 1}n we get ≈ 2n/2 (e.g. for SHA-1 ≈ 280)
▶ expected k for given success probability:

50% k ≈ 1.177 · 2n/2
90% k ≈ 2.146 · 2n/2
99% k ≈ 3.035 · 2n/2

Hash functions 14 / 35 ,

Implications of birthday attack

▶ generic attack, i.e. any h.f. can be attacked this way
▶ recall: generic attack for symmetric encryption is brute-force, O(2k) for

key length k

▶ the length of hash value (digest) should be twice the length of
symmetric key used for encryption

▶ standardized parameters of AES and SHA-2 family:

AES key length 128 192 256
SHA-2 output length 224(∗) 256 384 512

(∗) this corresponds to the effective key length of 3DES (112 bits)

Hash functions 15 / 35 ,

“Meaningful” collisions

▶ prepare documents m, m′ with t places that can be changed without
changing the meaning of the document
▶ one space vs. two spaces, synonyms etc.

▶ 2t variants of each document
▶ hash and find a collision between these two sets
▶ the same asymptotic time and memory complexity of b.a.

Hash functions 16 / 35 ,

Improving memory complexity of birthday attack (1)

▶ assumption: h as a random function on h(X)
▶ sequence: x0, x1, x2 …, where xi = h(xi−1) for i ≥ 1

x0 x1 xλ

xλ+1

xλ+µ−1

▶ expected (as N →∞): 𝜌 = _ + ` =
√︁
𝜋N/2

▶ finding collision in constant memory:

1. x0
$←− X (using X ∖ Y guarantees the existence of a collision, _ ≥ 1)

2. compute (xi , x2i) for i ≥ 1: xi = h(xi−1), x2i = h(h(x2(i−1)))
3. if xi = x2i then hi (x0) = h2i (x0), we found a point on the cycle, _ ≤ i, and

the collision can be computed as follows:
3.1 compute (xj , xi+j) for j = 0, 1, … , i starting with (x0, xi)
3.2 check for situation when xj ≠ xi+j and xj+1 = xi+j+1
3.3 collision h(xj) = h(xi+j); remark: ` | (2i − i) ⇒ x_ = xi+_

Hash functions 17 / 35 ,

Improving memory complexity of birthday attack (2)

▶ only a constant number of values (e.g. x0, and the recent pair of values
(xi , x2i) or (xj , xi+j)) should be stored

▶ complexity:
▶ cycle is detected (point is found) if i ≥ _ and ` | i
▶ the difference 2i − i increases by 1 in each iteration, i.e. the cycle is

detected with _ + ` iterations maximum
▶ complexity O(_ + `) = O(

√
N)

▶ this method does not change the asymptotic time complexity of b.a.
▶ no control over the colliding messages/inputs

Hash functions 18 / 35 ,

Collision resistance in practice

▶ collision resistance is not easy
▶ MD5

▶ designed by Ron Rivest (1991)
▶ collision published in 2005

▶ SHA-1
▶ designed by NSA, published as a standard in 1995
▶ deprecated in major web browsers in 2017
▶ first collision published in 2017; two pdf files, see https://shattered.io/
▶ attack complexity: 263.1 SHA-1 compressions

▶ hash functions in web servers certificates (for signatures):

01/2015 01/2016 01/2017 01/2018 01/2019

SHA-1 66.7% 13.2% 1.5% 0.0% 0.0%
SHA-256 33.3% 86.8% 98.4% 99.8% 99.8%

source: SSL Pulse, https://www.ssllabs.com/ssl-pulse/

Hash functions 19 / 35 ,

Hash functions based on hard problems

▶ provable properties (assuming the hardness of underlying problem)
▶ slow, impractical⇒ not used in practice
▶ example based on discrete logarithm problem:

▶ (G, ·) – group of prime order p; let g be a generator of (G, ·)
▶ f ∈ G, such that 𝛼 = logg f is unknown
▶ h : Zp × Zp → G is defined as follows: h(a, b) = ga · f b
▶ h is collision resistant, otherwise we can find 𝛼 :

h(a, b) = h(a′, b′) where (a, b) ≠ (a′, b′)
ga · f b = ga

′ · f b′

ga+𝛼b = ga
′+𝛼b′ ⇒ 𝛼 =

a − a′
b′ − b mod p

Hash functions 20 / 35 ,

Hash functions based on block ciphers

▶ m = m1,m2, … ,mk input divided into blocks
▶ h0 – initialization vector; hi – intermediate hash value (1 ≤ i ≤ k)
▶ iteration – sequential processing of input blocks
▶ examples:

▶ Matyas, Meyer, Oseas: hi = Eg (hi−1) (mi) ⊕ mi
▶ Davies, Meyer: hi = Emi (hi−1) ⊕ hi−1
▶ Miyaguchi, Preneel: hi = Eg (hi−1) (mi) ⊕ hi−1 ⊕ mi

▶ H(m) = hk (the hash value is the output of the last iteration)
▶ problem: standard block ciphers have small block length

▶ specific block ciphers (SHACAL for SHA-1, W cipher for Whirlpool etc.)
▶ double block length constructions (MDC-4, Hirose, Tandem-DM etc.)

Hash functions 21 / 35 ,

Dedicated constructions

▶ no proofs of security based on some “hard underlying problem”
▶ fast (usually one of the design goals)
▶ iterated construction (informally):

▶ message padding and “slicing”
▶ start with IV and sequentially process the slices
▶ result is the output of the final iteration (sometimes after some additional

processing)
▶ most common approaches

▶ Merkle-Damgård: SHA-1, SHA-2 family
▶ sponge: SHA-3 (Keccak)

Hash functions 22 / 35 ,

Merkle-Damgård construction (1)

▶ collision resistance of compression function implies collision resistance
of hash function

▶ fixed input length compression function f : {0, 1}n+r → {0, 1}n
▶ hash function H : {0, 1}≤l → {0, 1}n
▶ input x = x1, x2, … , xt (block length r)

▶ last block padded by 10… 0 (if needed)
▶ additional block xt+1 = |x |; in binary, thus l < 2r

▶ other variants of padding used in practice or proposed in the literature
▶ using the length in padding ∼MD strengthening

▶ ensures suffix-free property of the padding:
for any x ≠ x ′, pad(x) is not a suffix of pad(x ′)

▶ suffix-free ∼ necessary and sufficient condition for collision-preserving
padding

Hash functions 23 / 35 ,

Merkle-Damgård construction (2)

IV

x1

f

x2

. . .

|x|

f f output

xt

f

computation:

1. h0 = 0n (initialization vector)

2. hi = f (hi−1 | | xi), for i = 1, … , t + 1
3. H(x) = ht+1

Hash functions 24 / 35 ,

Collision resistance of MD construction

let x ≠ x ′ be a collision in H: H(x) = H(x ′), i.e. ht+1 = h′t′+1
a. if t ≠ t ′ then xt+1 ≠ x ′t′+1 and f (ht , xt+1) = f (h′t′ , x ′t′+1) . . . collision in f

b. t = t ′: x = x1, … , xt+1, x ′ = x ′1, … , x ′t+1
f (ht , xt+1) = f (h′t , x ′t+1) . . . either collision in f or
▶ ht = h′t & xt+1 = x ′t+1

f (ht−1, xt) = f (h′t−1, x ′t) . . . either collision in f or
▶ ht−1 = h′t−1 & xt = x ′t

. . .

▶ either we get a collision in f or x = x ′

Hash functions 25 / 35 ,

Collision resistance of MD construction

let x ≠ x ′ be a collision in H: H(x) = H(x ′), i.e. ht+1 = h′t′+1
a. if t ≠ t ′ then xt+1 ≠ x ′t′+1 and f (ht , xt+1) = f (h′t′ , x ′t′+1) . . . collision in f

b. t = t ′: x = x1, … , xt+1, x ′ = x ′1, … , x ′t+1
f (ht , xt+1) = f (h′t , x ′t+1) . . . either collision in f or
▶ ht = h′t & xt+1 = x ′t+1

f (ht−1, xt) = f (h′t−1, x ′t) . . . either collision in f or
▶ ht−1 = h′t−1 & xt = x ′t

. . .

▶ either we get a collision in f or x = x ′

Hash functions 25 / 35 ,

Collision resistance of MD construction

let x ≠ x ′ be a collision in H: H(x) = H(x ′), i.e. ht+1 = h′t′+1
a. if t ≠ t ′ then xt+1 ≠ x ′t′+1 and f (ht , xt+1) = f (h′t′ , x ′t′+1) . . . collision in f

b. t = t ′: x = x1, … , xt+1, x ′ = x ′1, … , x ′t+1
f (ht , xt+1) = f (h′t , x ′t+1) . . . either collision in f or
▶ ht = h′t & xt+1 = x ′t+1

f (ht−1, xt) = f (h′t−1, x ′t) . . . either collision in f or
▶ ht−1 = h′t−1 & xt = x ′t

. . .

▶ either we get a collision in f or x = x ′

Hash functions 25 / 35 ,

Collision resistance of MD construction

let x ≠ x ′ be a collision in H: H(x) = H(x ′), i.e. ht+1 = h′t′+1
a. if t ≠ t ′ then xt+1 ≠ x ′t′+1 and f (ht , xt+1) = f (h′t′ , x ′t′+1) . . . collision in f

b. t = t ′: x = x1, … , xt+1, x ′ = x ′1, … , x ′t+1
f (ht , xt+1) = f (h′t , x ′t+1) . . . either collision in f or
▶ ht = h′t & xt+1 = x ′t+1

f (ht−1, xt) = f (h′t−1, x ′t) . . . either collision in f or
▶ ht−1 = h′t−1 & xt = x ′t

. . .

▶ either we get a collision in f or x = x ′

Hash functions 25 / 35 ,

Collision resistance of MD construction

let x ≠ x ′ be a collision in H: H(x) = H(x ′), i.e. ht+1 = h′t′+1
a. if t ≠ t ′ then xt+1 ≠ x ′t′+1 and f (ht , xt+1) = f (h′t′ , x ′t′+1) . . . collision in f

b. t = t ′: x = x1, … , xt+1, x ′ = x ′1, … , x ′t+1
f (ht , xt+1) = f (h′t , x ′t+1) . . . either collision in f or
▶ ht = h′t & xt+1 = x ′t+1

f (ht−1, xt) = f (h′t−1, x ′t) . . . either collision in f or
▶ ht−1 = h′t−1 & xt = x ′t

. . .

▶ either we get a collision in f or x = x ′

Hash functions 25 / 35 ,

Parameters of real-world hash function

family function length [bits]
max. input output block

MD-5 264 − 1 128 512
SHA-1 264 − 1 160 512
Whirlpool 2256 − 1 512 512

SHA-2 SHA-256 264 − 1 256 512
SHA-384 2128 − 1 384 1024
SHA-512 2128 − 1 512 1024

SHA-3 SHA3-256 ∞ 256 1088
SHA3-384 ∞ 384 832
SHA3-512 ∞ 512 576

Hash functions 26 / 35 ,

SHA-2

▶ SHA-2 family of hash function
(SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256)

▶ standard: FIPS PUB 180-4
▶ similar design of SHA-256 (32-bit words, block size 512 bits) and

SHA-512 (64-bit words, block size 1024 bits)
▶ other variants are truncated versions with different initialization vectors
▶ Merkle-Damgård construction

Hash functions 27 / 35 ,

Example: SHA-256

▶ input message M; l = |M| (0 ≤ l < 264 bits)
▶ padding and parsing:

▶ padding: M1 00… 0︸︷︷︸
k

(l)2︸︷︷︸
64 bits

, where k is the smallest value such that the

overall length is a multiple of 512
▶ parsing into 512-bit blocks: M(1) ,M(2) , … ,M(N)

▶ each block consists of 16 32-bit words: M(i) = M(i)0 ,M(i)1 , … ,M(i)15
▶ initialization vector (8 32-bit words): H (0)0 ,H (0)1 , … ,H (0)7

▶ intermediate hash values: H (i)0 ,H (i)1 , … ,H (i)7
▶ SHA-256 digest: H (N)0 ,H (N)1 , … ,H (N)7

Hash functions 28 / 35 ,

SHA-256 compression function

compression function (for i = 1, … ,N):

1. expanding a message block (↦→ W0, … ,W63)

Wi =

{
M(i)t for 0 ≤ t ≤ 15

𝜎1(Wt−2) +Wt−7 + 𝜎0(Wt−15) +Wt−16 for 16 ≤ t ≤ 63

2. (a, b, c, d , e, f , g, h) ← (H (i−1)0 ,H (i−1)1 , … ,H (i−1)7)
3. for t = 0, … , 63:

3.1 T1 = h +∑1 (e) + Ch(e, f , g) + Kt +Wt

3.2 T2 =
∑

0 (a) +Maj(a, b, c)
3.3 (a, b, c, d , e, f , g, h) ← (T1 + T2, a, b, c, d + T1, e, f , g)

4. (H (i)0 ,H (i)1 , … ,H (i)7) ← (a + H
(i−1)
0 , b + H (i−1)1 , … , h + H (i−1)7)

SHACAL-2 block cipher in Davies-Meyer mode

Hash functions 29 / 35 ,

Functions used in SHA-256

▶ functions operate on 32-bit words
▶ addition is computed mod 232

▶ Ch(x , y , z) = (x ∧ y) ⊕ (¬x ∧ z)
▶ Maj(x , y , z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)
▶

∑
0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)

▶
∑

1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)
▶ 𝜎0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)
▶ 𝜎1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)
▶ ROTR – circular shift rotation to the right
▶ SHR – shift to the right

Hash functions 30 / 35 ,

Some performance numbers

MB/s
MD5 687
SHA-1 738
SHA-256 323
SHA-512 417
SHA3-256 287
SHA2-512 154

block size: 8192 bytes, 1 thread
platform: i7-2600 @ 3.40 GHz (4 cores/8 threads, AES-NI)
implementation: openssl 1.1.1c

Remark: Intel SHA Extensions – instructions for improving performance of SHA-1
and SHA-256 hash functions (not used in above table); AMD Ryzen and few Intel
processors.

Hash functions 31 / 35 ,

SHA-3 overview

▶ Keccak – winner of SHA-3 competition (2012)
▶ standard: NIST FIPS 202 (2015)

▶ 4 hash functions with fixed-length output:
SHA3-224, SHA3-256, SHA3-384, SHA3-512

▶ 2 functions with variable-length output (XOF – extendable-output
functions): SHAKE128, SHAKE256

▶ different approach than SHA-1 or SHA-2 hash functions
▶ Keccak is not an MD-construction
▶ sponge construction
▶ other functions/variants/constructions proposed:

▶ SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash
(NIST SP 800-185, 2016)

Hash functions 32 / 35 ,

SHA-3 structure
▶ sponge construction – absorbing & squeezing

▶ arbitrary output length
▶ f – permutation on {0, 1}r+c
▶ r – bitrate (e.g. 1088 for SHA3-256)
▶ c – capacity (e.g. 512 for SHA3-256)
▶ padding for SHA3-256: x | | 01 | | 10∗1

f . . .

input x

padding

bitrate r

capacity c

f f

. . .

f f

output

. . .

absorbing squeezing

0

0

Hash functions 33 / 35 ,

SHA-3 inside permutation f (1)

▶ state: 5 × 5 × 2l bits (2l = 64 for SHA3-256)

y

x

z

lane

column

slice
row

▶ 12 + 2l rounds (24 rounds for SHA3-256)
▶ round function: R =] ◦ 𝜒 ◦ 𝜋 ◦ 𝜌 ◦ \ , (\ is applied first)

Hash functions 34 / 35 ,

SHA-3 inside permutation f (2)

▶ \ (theta) – xor each bit of a column with
parities of two neighboring columns

▶ 𝜌 (rho) – rotate each lane by a constant
value

▶ 𝜋 (pi) – permute the positions of the
lanes

▶ 𝜒 (chi) – flip bit if neighbors to the right
are 0, 1
▶ 𝜒 operates on rows (independently, in

parallel)
▶] (iota) – xor a round specific constant to

lane[0,0]
▶ destroying symmetry

∑ ∑

θ

Hash functions 35 / 35 ,

	Hash function properties
	preimage / second preimage / collision resistance

	Birthday attack
	Constructions
	hard problems
	block cipher based
	Merkle-Damgård construction

	Examples of real-world hash functions
	SHA-256
	SHA-3 (Keccak)

