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Motivation

▶ authenticate user/client using a password
▶ common scenario for authentication in web application:

▶ TLS, server authentication, secure channel
▶ username/password login form, server verifies submitted password

▶ some problems with this approach . . .
▶ phishing attacks – login to fake web site

▶ attacker gets all authentication data (username, password)
▶ multi-factor authentication can mitigate the risk

▶ TLS might not be available
▶ PAKE – Password Authenticated Key Exchange (agreement)

Goal: (mutual) authentication of two or more parties and establishing keys
for subsequent communication
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Passwords

▶ special type of shared secret
▶ easy to use
▶ potential problems: guessing (low entropy), brute-force attack

▶ limited length (“small” set of possible passwords)
▶ passwords from various dictionaries
▶ patterns/non-uniform selection of passwords
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Simple authentication protocol

▶ challenge/response protocol
▶ (+) password not transmitted in plaintext
▶ notation: password P , hash function H

C ←→ S

←− r selects random r

v = H(P , r) C, v −→ v
?
= H(P , r)

▶ drawbacks:
▶ one way authentication (only C is authenticated)
▶ attacker can accept any v and continue the session with C
▶ MITM attack: attacker relays communication between C and S
▶ no session key agreed in the protocol
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Simple key-agreement protocol

▶ Diffie-Hellman protocol (using a group where CDH is hard)
▶ MITM attack (cause: unauthenticated exchange of parameters)
▶ notation: generator g

C ←→ S

selects random a
A = ga A −→ selects random b

←− B B = gb

K = Ba = gab K = Ab = gab
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Simple AKE protocol

Goals: password never sent as a plaintext, authenticate both parties, agree
on a session key, prevent MITM attack

C ←→ S

selects random a, rC
A = ga C,A, rC −→ selects random b

←− B, rS , EP (H(0,msg)) B = gb

verifies EP (…)
K = Ba = gab EP (H(1,msg)) −→ verifies EP (…)

K = Ab = gab

▶ notation: msg = C | | A | | B | | rC | | rS ; H is a hash function
▶ EP – e.g. symmetric cipher or MACP , key is derived from P
▶ problem: offline dictionary attack – testing passwords offline using

eavesdropped communication
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EKE (Encrypted Key Exchange) – general description

▶ Bellovin, Merritt (1992)
▶ first PAKE protocol
▶ prevents offline dictionary attack (and achieves previous goals as well)

C ←→ S

generates (pkC , skC) C, EP (pkC) −→
←− EP (EpkC (K )) selects random K

decrypts K
selects random rC EK (rC) −→ decrypts rC

verifies rC ←− EK (rC , rS) select random rS
EK (rS) −→ verifies rS

▶ notation: (pkC , skC) pair of keys for asymmetric encryption; EpkC
public-key encryption, Ep symmetric encryption using a key derived
from P ; K session key
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EKE remarks

▶ EKE is secure against offline dictionary attack, if all (or almost all)
decryptions for distinct passwords yield
▶ valid public keys for message in the first step
▶ valid ciphertexts for message in the second step

▶ implementation problem – choosing suitable encryption schemes
(symmetric and public-key)

▶ partition attack
▶ offline attack
▶ if decryption with P ′ yield an incorrect/impossible public key, then P ≠ P ′
▶ example: RSA … n with small factors, even e
▶ multiple runs of the protocol⇒ password is uniquely determined
▶ EP should not leak information about P
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DH-EKE

▶ variant of EKE with DH protocol for key agreement
▶ only modular groups (!)
▶ this variant follows the original proposal (Bellovin, Merritt, 1992):

C ←→ S

selects random a
A = ga C, EP (A) −→ selects random b

B = gb

K = Ab = gab

decrypts rS ←− EP (B), EK (rS) selects random rS
K = Ba = gab

selects random rC EK (rC , rS) −→ decrypts rC
verifies rS

verifies rC ←− EK (rC)
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DH-EKE remarks

▶ more refined version of the protocol is EAP-EKE (RFC 6124), e.g.
▶ separate keys are derived for the protocol itself and for session
▶ encryption with MAC used for messages containing nonces (here: rC , rS)
▶ additional data are computed, using a key derived from the shared key

and all messages up to given point – protects integrity of the negotiated
parameters

▶ explicit requirements for groups, e.g. g is a primitive element (generator)
of the group, p is a “safe” prime

▶ explicit list of suitable groups and their generators
▶ what if g is not a generator:

▶ decrypt EP′ (A) and EP′ (B) using password P ′
▶ if a generator is obtained, P ′ is incorrect

▶ there is ≈ 50% generators in groups with safe prime modulus, i.e.
q = 2q′ + 1 (where q′ is a prime)
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Problems with EKE (DH-EKE, EAP-EKE)

▶ server knows the password (plaintext)
▶ successful attack on server results in compromised passwords
▶ passwords should be stored “salted” (best practice, recommendation)

▶ after a breach the offline dictionary attack is always possible – an attacker
can test passwords by recomputing the stored value, or by simulating the
server side of the protocol

▶ we don’t want to make it easier by storing plaintext passwords
▶ DH constructions are hard to translate to elliptic curves

▶ How to ensure that decryption with wrong password yields a point on
elliptic curve?
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Secure Remote Password protocol (SRP)

▶ PAKE protocol, server does not store password in plaintext
▶ other properties are preserved (prevention of offline dictionary attack etc.)

▶ original proposal: Thomas Wu (1998)
▶ RFC 2945 (2000) version SRP-3
▶ using SRP-6 (2002) together with TLS: RFC 5054 (2007)
▶ other standardization: IEEE P1363.2, ISO IEC 11770-4
▶ Apple uses SRP in iCloud, according iOS Security (2018):

The HSM cluster verifies that a user knows their iCloud Security Code using
Secure Remote Password protocol (SRP); the code itself isn’t sent to Apple.
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Evolution of SRP: SRP-3

▶ T. Wu, The Secure Remote Password Protocol, 1998
▶ RFC 2945, The SRP Authentication and Key Exchange System
▶ protocol slightly differs in these documents (we will follow the first one)

▶ explicit choice of random u vs. derivation of u from B
▶ construction of the first verification message M1

▶ calculation in GF(n), where n is a large prime
▶ both operations are used (“+” and “·”)

▶ notation:
▶ g – generator of (Z∗n, ·)
▶ password P
▶ random salt s
▶ hash function H

▶ P is stored on server as a verifier v = gx , where x = H(s, P)
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SRP-3 – protocol

C ←→ S

selects random a
A = ga C,A −→ selects random b, u

←− s,B, u B = v + gb

computes: computes:
x = H(s, P) S = (Avu)b

S = (B − gx )a+ux K = H(S)
K = H(S)

M1 = H(A,B,K ) M1 −→ verifies M1

verifies M2 ←− M2 M2 = H(A,M1,K )

▶ computation of shared secret S:
▶ client: (B − gx )a+ux = (gx + gb − gx )a+ux = gab+ubx
▶ server: (Avu)b = (ga · gxu)b = gab+ubx
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SRP-3 – security goals

▶ assumption: active attacker with ability to eavesdrop and manipulate
transmitted data

▶ What security goals does SRP have?
▶ confidentiality of P and x
▶ confidentiality of K
▶ security against offline dictionary attack
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SRP-3 – remarks (1)
▶ Why B depends on v?

▶ simpler alternative: B = gb, C does not need to compute gx , rest of the
protocol intact

▶ attacker E asks the server for s and then impersonates the server

1. C → E (S): C,A = ga

2. E (S) → C: s,B = gb, u, for randomly selected b, u
3. C → E (S): M1 = H(A,B,K ), where S = Ba+ux and K = H(S)

▶ now E can perform this offline dictionary attack:
▶ E computes x ′, v ′ for a password P ′ and then computes S ′ = (Av ′u)b and

K ′ = H(S ′)
▶ if P = P ′ then those values are equal to values computed by C
▶ E verifies this with check H(A,B,K ′) = M1

▶ “+v” prevents attack – the attacker can’t use a single instance to test
unlimited number of passwords (he must choose v ′ that C substracts)

▶ Exercise: What is wrong with this modification?
▶ use B = v · gb and C computes S = (B/gx )a+ux
▶ advantage: we work only in the group (Z∗n, ·)
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SRP-3 – remarks (2)

▶ Why is u random, instead of some constant?
▶ attacker E can impersonate C
▶ assumptions: E obtains v and s (knowing v requires access to server’s

data)

1. E (C) → S: C,A = ga · v−u
2. S → E (C): s,B, where B = v + gb
3. E computes: S = (B − v)a = gab

S computes: S = (A · vu)b = (ga · v−u · vu)b = gab

▶ therefore u must be unpredictable (unknown till C sends A)

▶ no proofs of security claims
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SRP-3 – two-for-one password guessing attack
▶ neither x nor v are known to attacker
▶ online password guessing using interaction with C:

▶ attacker E (knows s) guesses P ′ and computes x ′ = H(s, P ′), v ′ = gx
′

▶ E impersonates the server using these values x ′, v ′
▶ if the protocol finishes successfully (M1 is correct), then P ′ is correct

▶ guessing two passwords simultaneously:
1. E make a guess P1, P2 and computes corresponding x1, x2 and v1, v2
2. C → E (S): C,A
3. E (S) → C: s,B = gx1 + gx2 , u
4. C → E (S): M1 = H(A,B,K ), where K = H(S) = H((B − gx )a+ux )

▶ value S = (B − gx )a+ux = (gx1 + gx2 − gx )a+ux
▶ if P = P1 (or P = P2), then C computes S1 = gx2 (a+ux1) (or S2 = gx1 (a+ux2) )
▶ E can compute S ′1 = (A · vu1 )x2 a S ′2 = (A · vu2 )x1
▶ if P = P1: S ′1 = (ga · gx1u)x2 = gx2 (a+ux1) = S1
▶ if P = P2: S ′2 = (ga · gx2u)x1 = gx1 (a+ux2) = S2
▶ E can decide if any of those cases happened using M1

▶ E does not have to chose u in a special way, the attack works even if u is
computed as a truncated H(B) (RFC 2945)
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SRP-6

▶ T. Wu, SRP-6: Improvements and Refinements to the Secure Remote
Password Protocol, 2002

▶ motivation for new version:
1. two-for-one attack (parameter k used as a multiplication factor for v)
2. implementation problem with message order (when group parameters

must be sent)
▶ 1 additional round required
▶ solution: parameters/group ID and B sent before A
▶ A sent together with M1

▶ parameter k
▶ SRP-6: k = 3; SRP-6a: k = H(n, g)
▶ without knowledge of dloggk the two-for-one attack does not work
▶ computation k = H(n, g) makes harder malicious choice n, g, where the

attacker knows dloggk
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SRP-6 protocol (original message order)

C ←→ S

selects random a
A = ga C,A −→ selects random b

←− s,B B = kv + gb

computes: computes:
u = H(A,B) u = H(A,B)
x = H(s, P) S = (Avu)b

S = (B − kgx )a+ux K = H(S)
K = H(S)

▶ computation of shared secret S:
▶ client: (B − kgx )a+ux = (kgx + gb − kgx )a+ux = gab+ubx
▶ server: (Avu)b = (ga · gxu)b = gab+ubx
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SRP-6 protocol (cont.)

▶ additional messages for verifying K (equality on both ends):

C ←→ S

M1 = H(H(n) ⊕ H(g),H(C), s,A,B,K ) M1 −→ verifies M1

verifies M2 ←− M2 M2 = H(A,M1,K )
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SRP remarks (1)

▶ S send s to anyone
▶ salt is not secret, however …
▶ knowing s allows a pre-computation (before obtaining v), e.g.

constructing TMTO tables⇒ pre-computation attack
▶ protocol uses multiplication and addition

▶ group operation is not enough
▶ can’t be translated to elliptic curves (less efficient)

▶ specific requirements for n and g (“safe prime” and generator)
▶ direct use of some standardized parameters if not possible
▶ RFC 5054 defines specific 1024, 1536 a 2048-bit primes and generators
▶ larger primes are adopted from RFC 3526 (More Modular Exponential

(MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)), but with
different g (generator)
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SRP remarks (2)

▶ What if g is not a generator?
▶ g generates a proper subgroup [g] of (Z∗n, ·)
▶ if for some P ′ the value B − v ′ = B − gH (s,P′) ∉ [g], then P ′ is not correct

password⇒ partition attack
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Conclusion

▶ many PAKE protocols exist
▶ balanced PAKE protocols (both parties know the password):

▶ EKE, DH-EKE, Dragonfly (SAE), SPEKE, J-PAKE, …
▶ augmented, or asymmetric PAKE protocols (client/server)

▶ server does not store password-equivalent data (i.e. data that allow
successful authentication as a client)

▶ SRP, Augmented-EKE, B-SPEKE, OPAQUE, …

▶ first protocol resistant to pre-computation attack: OPAQUE (2018)
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OPAQUE

▶ PAKE secure against pre-computation attack
▶ main idea:

▶ combination of OPRF and AKE protocol, or
▶ combination of OPRF and PAKE protocol
▶ AKE and PAKE must have suitable properties (they can’t be arbitrary)

▶ OPRF (Oblivious Pseudorandom Function)
▶ pseudorandom function Fk (x)
▶ OPRF is a protocol with two parties C (input x) and S (input k)
▶ C learns Fk (x) at the end, and nothing else
▶ S learns nothing (in particular, nothing about x)
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Example: DH-OPRF
▶ l – security parameter
▶ group G of prime order q (where |q | = l)
▶ hash function H′ : {0, 1}l → G, H with range {0, 1}l
▶ PRF F : Zq × {0, 1}l → {0, 1}l :

Fk (x) = H(x ,H′(x)k)

▶ protocol:
1. C → S: a = H′(x)r , for random r ∈ Zq
2. S → C: b = ak

3. C computes H(x , b1/r )
▶ correctness: b1/r = (H′(x)r )k/r = H′(x)k
▶ security: ROM (for hash function) + “one more DH” assumption

▶ informally, after Q oracle queries (oracle returns k-th power) the attacker
cannot compute one-more k-th power (moreover, attacker has access to
DDH oracle)
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Idea: combining OPRF and PAKE

▶ S stores k,H(R) for C

C ←→ S

password P ⇐= OPRF =⇒ k
output R = Fk (P)

R ⇐= PAKE =⇒ H(R)
session key K session key K

▶ pre-computation attack is impossible, since R is random to the attacker
▶ attacker learns k and H(R) only after S is compromised
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Idea: combining OPRF and AKE

▶ assumptions for AKE:
▶ C’s public/private key: pkC/skC
▶ S’s public/private key: pkS/skS

▶ AuthEnc – authenticated encryption c = AuthEncR (pkC , skC , pkS)
▶ S stores k, c, pkC for C

C ←→ S

password P ⇐= OPRF =⇒ k
output R = Fk (P)

decrypts and verifies ←− c c

pkC , skC , pkS ⇐= AKE =⇒ pkS , skS , pkC
session key K session key K
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AKE example – HMQV
▶ HMQV: variant of DH protocol with implicit authentication of K
▶ modifiable for arbitrary finite groups, e.g. elliptic curves
▶ multiple variants of MQV (Menezes-Qu-Vanstone) / HMQV (hash MQV)
▶ private and public key for participant A: pkA = gskA

C ←→ S

selects random xC XC = gxC −→
←− XS = gxS selects random sS

K = KE(skC , xC , pkS ,XS) K = KE(skS , xS , pkC ,XC)
session key K session key K

▶ computation:
U:
KE(skC , xC , pkS ,XS) = H((XS · pkeSS )

xC+skC ·eC ) = H(g (xS+skS ·eS) (xC+eC ·skC) )
S:
KE(skS , xS , pkC ,XC) = H((XC · pkeCC )

xS+skS ·eS ) = H(g (xC+eC ·skC) (xS+skS ·eS) )
▶ parameters eC = H(XC , S) and eS = H(XS ,C)
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Remark – small group confinement

▶ DH-like schemes or schemes with security related to DLOG
▶ unauthenticated data – group element
▶ existence of small subgroups
▶ example: DH protocol in (Z∗p, ·) with generator g
▶ let w | (p − 1) be a small prime and let k = (p − 1)/w
▶ attack:

1. A→ E (B): A = ga

2. E (A) → B: Ak

3. B→ E (A): B = gb

4. E (B) → A: Bk

▶ A and B compute shared secret gkab

▶ E can find this secret searching in small subgroup [gk] (order w)
▶ (gk)w = g (p−1)w/w = gp−1 = 1

▶ choose suitable groups and check parameters
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