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Coding theory — basics

> motivation: detect and correct errors in data; compress data
> important classes of error-correcting codes

> linear codes

> convolution codes
» some problems in coding theory are hard

> possible use for cryptographic schemes

»> some notation:
> F, — finite field with g elements (GF(q))
> Hamming weight of a vector x = (x1,..., X,) € FZ:
wt(x) = |{i; x; #0,1 < i < n}|
> Hamming distance of two vectors x, y € Fg:
dist(x,y) = |{i; x; # yi,1 < i < n}|
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Linear codes

A g-ary linear [n, k] code C is a k-dimensional subspace of Fg.

>

>
| 2
>
>
>

codewords - set of all elements in C

n (length), k (dimension)

generator matrix G € FI(;X” of the code C: C = {xG; x € Fg}
G describes an encoder for C: given x € FX, codeword is xG
systematic (standard) form of generator matrix G = (I | R)

distance of a linear code: d = min{wt(c); c € C \ {0}}
equivalently, d = min{dist(b, c); b,c € C}
[n, k, d] code

> errorec Fk:c > c+e

> can detect any error with wt(e) < d — 1

> can correct any error with weight up to [ (d — 1)/2]
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Parity-check matrix

> g-ary linear [n, k] code C
> testing whether c € F{ is a codeword of C (what linear relations must
hold in the codeword)

> matrix H € F((]"_k)xn, forany ce Fj: cH'=0 & ceC

» H can be constructed easily from G given in a systematic form:

G=(k|R = H=(-R" |1,

> weget: GH' =R+ R=0
> syndrome for any x € Fg: s = xHT
> s=0 & ceC
> codeword c with an error e: s = (c+e)H' = eH'
> syndrome decoding by lookup table of syndromes for all (viable) errors
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Hamming (7,4) code

v

codeword length 7: 4 data bits, 3 parity bits

v

linear code with with distance 3, i.e. it corrects any single-bit errors

v

generator matrix:

S O O =
S O = O
S = O O
- O O O
—_ = A O
—_ e O
[ e S G

> encoding examples:
> (0,0,0,0) — (0,0,0,0,0,0,0)
> (1,0,0,1) — (1,0,0,1,1,0,0)
> (0,0,1,1) ~— (0,0,1,1,0,0,1)
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Hamming (7,4) code

> parity-check matrix (one of many):

T

1l
S O =
S =2 O
S —a -4
- O O
_ O -
—_ - o

—

» syndromes:
> (0,0,1,1,0,0,1)H" = (0,0,0)
> (1,0,1,1,0,0,1)H" = (1,0,0)
> (0,0,1,0,0,0,1)H" = (0,0,1)
> (0,0,1,1,0,1, 1)H" = (0,1,1)
> (0,0,1,1,0,0,00H" = (1,1,1)
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Binary BCH (31,11) code

> codeword length 31: 11 bits of data, 20 checksum bits
> corrects up to 5 errors

> generator matrix (a cyclic code):

EOROROEROEROOROOONROROOOO00O00O00O00O0O
OEOEOECOEEORROOROOOREORO0O0000000
OOEOEOEOERCOEROOROOONROROOOO0O00O0OO
OO0ORORONRCOEEOEROOROOOREOROOO00000
OO0O0OROROROENCOEROOROOONROROOOOOO
G =| DOoOOECOECOECOEECOEEOORO00EEORO00000
OO0O0O00OROROROERCOEROOROOCONROROOO0O
OO0O0O00O00ORORONCONRORROOROOONEOEOO0O
OO0O0O00O00O0RORORORRCOEROOROOCONRCOROO
OO0O0O00O00O00MONONCONRORROOROOCONECOED
OO0O0O00O00000RORORORECOEROOROOCONECN
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Some complexity problems

» random binary linear code
> defined by a random generator/parity-check matrix (chosen uniformly)
> optimal properties
» decoding is hard

» decoding, i.e. for given H and syndrome s compute a minimum weight e
such that eH" = s, is NP-hard

> computing distance of a code is NP-hard

> worst-case complexity

> codes used in practice must have an efficient decoding algorithm
> Reed-Solomon, Goppa, Reed-Muller, BCH, alternant, LDPC (Gallager), ...
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McEliece cryptosystem

Robert McEliece, 1978
originally proposed with irreducible binary Goppa codes

other codes can be used (be very careful - lots of broken proposals)

vVvyVvYyy

initialization:
1. select random binary linear [n, k] code C that corrects up to t errors;
let G be a generator matrix for C
(C must have an efficient decoder D : F] — Flz‘)
2. select random n X n permutation matrix P
3. select random k X k non-singular binary matrix S
4. compute G’ = SGP

private key: (G, S, P, D)
public key: (G’, t)
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McEliece cryptosystem — encryption and decryption

> encryption of plaintext m € F’Z‘:

1. choose random e € F} such that wt(e) =t
2. ciphertext: c=mG’ + e

> decryption of ciphertext c: m= D(cP~")S™!
> correctness:
> P! = (mSGP + e)P~' = mSG + eP™!
> wt(eP"") =t (Pisa permutation matrix)
> (mS)G is a codeword, and D can correct up to t errors, therefore
D(cP") =mS
> finally, (mS)S™"=m
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Niederreiter’s variant

> Harald Niederreiter, 1986
» variant of McEliece cryptosystem

> equivalent security
> faster decryption
> smaller public key

» syndrome decoder computes e for given syndrome eH" (wt(e) < t)
> initialization:
1. select random binary linear [n, k] code C that corrects up to t errors;
let H be a parity-check matrix for C
(C has an efficient syndrome decoder D : F) — F)
2. select random n X n permutation matrix P

select random (n — k) X (n— k) non-singular binary matrix S
4. compute H" = SHP

w

private key: (H, S, P, D)
public key: (H’, t)
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Niederreiter’s variant — encryption and decryption

plaintexts: {e € F] ; wt(e) = t}
encryption of plaintext e € Fé‘: c=H'e'
decryption of ciphertext c: e = D((S7'¢)T) - (PT)!
correctness:
> (57T =(STTH e = (H(Pe"))T = (ePT)HT
> wt(ePT) =t (P isapermutation matrix)
> D computes eP', and e can be recovered: eP" - (PT)~!

vV vy vy

> symmetric key transfer:

> generate random e with wt(e) =t
> symmetric key for encryption/authentication computed by hashing e
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McEliece/Niederreiter — remarks

> very fast encryption (vector-matrix multiplication)
> fast decryption possible (e.g. binary.cr.yp.to/mcbits.html)

> two types of attacks:

> generic attacks, e.g. information-set decoding
> structural attacks (specific structure of the code)

» the main problem of these systems: key size

> codes with shorter representation, e.g. Quasi-cyclic Moderate-Density
Parity-Check (QC-MDPC) code
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PQC Competition

> round 3 (2020): 3 code-based proposals (Encryption/KEM category)

> Classic McEliece (finalist!) — binary Goppa codes, Niederreiter variant
> merger of Classic McEliece and NTS-KEM

» Parameters for some of the proposed Classic McEliece instances:

m k=n-mt t

12 2720 64  mceliece348864
13 3360 96 mceliece460896
13 5024 128 mceliece6688128

> Sizes of parameters for some of the proposed Classic McEliece instances

security n

128 3488

192 4608

256 6688

(bytes):

security public key
128 261120
192 524 160
256 1044 992
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private key ciphertext
6 452 128

13 568 188

13 892 240

mceliece348864
mceliece460896
mceliece6688128
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Classic McEliece — remarks

> NIST Status Report on the 2nd Round:

Classic McEliece has a somewhat unusual performance profile—it has a very large
public key but the smallest ciphertexts of all competing KEMs.

Goppa code McEliece has been a well-known construction for over 40 years with

only incremental improvements on attacks.
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Key encapsulation in Classic McEliece

» ...and OW-CPA — IND-CCA2 transformation
» His a hash function
» Encapsulation and session key:
> eis random with wt(e) =t
» ciphertext C = (Cy, C7),
where C, is the public-key encryption of e, and C; = H(2,e)
> session key K= H(1,e, C)
> Decapsulation for (Cy, Cy):

> setbh=1

> decrypt Cy to get e (if error: set b = 0 and e = s for some s)
> verify that H(2,e) = C; (if not: set b= 0 and e = s)

> compute session key K = H(b, e, C)
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