
TLS – introduction

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2021/22)

Content

History, goals, and current support

Structure of the TLS
Record Layer (TLS Record Protocol)
Application Data
Change Cipher Spec Protocol
Alert Protocol
Handshake Protocol

Some cryptographic details

TLS 2 / 33 ,

SSL/TLS History

▶ SSL – Secure Socket Layer
▶ TLS – Transport Layer Security
▶ History:

▶ 1995 SSL 2.0 (Netscape Communications)
▶ 1996 SSL 3.0 (Netscape Communications)
▶ 1999 TLS 1.0 (RFC 2246, “SSL 3.1”)
▶ 2006 TLS 1.1 (RFC 4346)
▶ 2008 TLS 1.2 (RFC 5246), updated by 10 other RFCs
▶ 2018 TLS 1.3 (RFC 8446)

TLS 3 / 33 ,

Goals of TLS

▶ According to TLS 1.2 (prioritized):
1. Cryptographic security – to establish a secure connection between two

parties (data confidentiality and integrity/authenticity)
2. Interoperability
3. Extensibility – to provide a framework into which new public key and

bulk encryption methods can be incorporated as necessary
4. Relative efficiency – optional session caching scheme, reducing network

activity

▶ basic cryptographic components:
▶ key agreement schemes (DH, RSA)
▶ server authentication (certificates), client authentication optional
▶ symmetric encryption: block/stream ciphers
▶ authenticating data: HMAC, AEAD (authenticated encryption with

additional data)
▶ PRF (pseudorandom function)
▶ PRNG (pseudorandom number generator)

TLS 4 / 33 ,

Support: browsers and servers

▶ Browsers – default settings:
▶ Chrome (96), Firefox (94): TLS 1.2, 1.3
▶ removed/disabled by default – TLS 1.0 and 1.1

▶ Servers:

XII/2016 XII/2017 XII/2018 XI/2019 X/2020 XI/2021
sites 140.000 150.000 139.000 133.900 138.100 135.500
TLS 1.0 95.5% 91.0% 71.3% 64.2% 51.5% 40.5%
TLS 1.1 80.0% 84.9% 79.1% 74.6% 58.5% 44.3%
TLS 1.2 82.6% 89.4% 94.3% 96.0% 99.0% 99.6%
TLS 1.3 10.5% 15.4% 39.8% 50.4%

SSL Pulse (https://www.ssllabs.com/ssl-pulse/)

TLS 5 / 33 ,

TLS applications

▶ TLS requires a reliable transport protocol (e.g. TCP)
▶ see DTLS (RFC 6347) for using TLS with datagram protocols

▶ almost transparent to higher level protocols
▶ various applications:

▶ web: HTTPS ∼ HTTP + TLS (the most frequently used application)
▶ accessing mail: IMAP/POP3 + TLS
▶ transferring mail: SMTP + TLS
▶ building VPN over TLS

. . .

TLS 6 / 33 ,

Limitations of the TLS

▶ no data non-repudiation
▶ depends on PKI

▶ certificate management (trust, distribution, revocation, etc.)
▶ TLS does not provide solution for web application vulnerabilities

▶ SQL injection, XSS, CSRF, . . .
▶ TLS does not provide solution for weaknesses on user’s side

▶ weak passwords, accepting suspicious certificates, . . .

TLS 7 / 33 ,

Structure of the TLS

▶ client ↔ server (asymmetric communication)
▶ two layers, subprotocols

Change
Cipher Spec

Alert Handshake Application

Record Layer

TLS

HTTP, . . .

TLS 8 / 33 ,

TLS Connection State (1)
▶ client and server maintain/update their connection states

▶ connection end (client/server)
▶ encryption algorithm (block, stream, AEAD)
▶ MAC algorithm
▶ compression algorithm
▶ PRF function
▶ master secret (shared secret, 48 B)
▶ client random (32 B)
▶ server random (32 B)
▶ sequence number (starting at 0, less than 264, does not wrap, incremented

after each record)
▶ all required keys and initialization vectors are derived from master

secret, client random and server random values
▶ client write [MAC key | encryption key | IV]
▶ server write [MAC key | encryption key | IV]

▶ other data required for the state:
▶ compression state, cipher state (e.g. scheduled key /stream cipher’s state)

TLS 9 / 33 ,

TLS Connection State (2)

▶ 4 states for each connection end:
▶ current [read | write] state
▶ pending [read | write] state

▶ initial state: ciphersuite TLS_NULL_WITH_NULL_NULL
▶ transformation of data ∼ identity (no MAC, no encryption, no

compression)

TLS 10 / 33 ,

TLS Record Protocol

▶ record layer processes data from higher layers:
▶ fragmentation (≤ 214B)
▶ compression (NULL)
▶ MAC computation and encryption, or AEAD encryption

▶ content: [type, version, length, fragment data]
▶ type – 20 (ChangeCipher), 21 (Alert), 22 (Handshake), 23 (Application)
▶ version – 3.0 (SSL 3.0), 3.1 (TLS 1.0), 3.2 (TLS 1.1), 3.3 (TLS 1.2)
▶ length – length of the fragment data
▶ fragment data – processed data (MAC and encryption, or AEAD)

▶ MAC-then-Encrypt
▶ MAC is computed from concatenated sequence number, type, version,

length and data

TLS 11 / 33 ,

Application Data

▶ processed transparently by record layer (fragmented, encrypted etc.)
▶ processing based on the connection state

TLS 12 / 33 ,

Change Cipher Spec Protocol

▶ single message (single byte containing value 1)
▶ signals a change in cryptographic state
▶ switch to pending write state immediately after sending
▶ switch to pending read state immediately after receiving

TLS 13 / 33 ,

Alert Protocol

▶ information about error state, connection closure
▶ message (2 bytes):

▶ level – 01 (warning), 02 (fatal)
▶ code (25 overall) – close notify, bad record MAC, unknown_ca,

record_overflow, protocol_version etc.

▶ fatal ⇒ terminate the connection immediately

TLS 14 / 33 ,

Handshake Protocol – overview (1)

1. Exchange hello messages, agree on algorithms, exchange random values
(nonces), check for session resumption.

2. Exchange certificates to authenticate server (mandatory) and client
(optional).

3. Exchange parameters and values to agree on a pre-master secret.

4. Calculate master secret from the pre-master secret and random values.
Calculate necessary keys and other parameters.

5. Switch to agreed algorithms and keys.

6. Verify that the other communication end calculated the same
parameters.

TLS 15 / 33 ,

Handshake Protocol – overview (2)

ServerHello

Certificate

ServerKeyExchange

ClientKeyExchange

CertificateRequest

ServerHelloDone

ClientHello

Certificate

CertificateVerify

ChangeCipherSpec

Finished
ChangeCipherSpec

Finished

(opt.)

(enc.)

TLS 16 / 33 ,

ClientHello

▶ structure:
▶ TLS version
▶ client_random (4B seconds from 1.1.1970; 28B random bytes)
▶ session ID: allows reusing the parameters from previous or simultaneous

connection
▶ supported cipher suites (sorted by client’s preference)
▶ compression methods
▶ extensions (optional)

▶ extension examples:
▶ server_name (SNI): which hostname the client is attempting to connect to
▶ elliptic_curves: set of elliptic curves supported by the client
▶ TLS session ticket: encrypted session state sent to client (later used for

session resumption)
▶ signature_algorithms: indicates supported combinations of algorithm and

hash function for digital signatures

TLS 17 / 33 ,

List of supported cipher suites – example

User Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:94.0) Gecko/20100101 Firefox/94.0
client-preferred order:
TLS_AES_128_GCM_SHA256 (TLS 1.3)
TLS_CHACHA20_POLY1305_SHA256 (TLS 1.3)
TLS_AES_256_GCM_SHA384 (TLS 1.3)
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS 18 / 33 ,

List of supported signatures and curves – example

Firefox/94.0

▶ signature_algorithms:

SHA256/ECDSA, SHA384/ECDSA, SHA512/ECDSA, RSA_PSS_SHA256,
RSA_PSS_SHA384, RSA_PSS_SHA512, SHA256/RSA, SHA384/RSA,
SHA512/RSA, SHA1/ECDSA, SHA1/RSA

(*) PSS schemes defined in TLS 1.3

▶ named groups:

x25519, secp256r1, secp384r1, secp521r1, ffdhe2048, ffdhe3072

TLS 19 / 33 ,

ServerHello

▶ structure:
▶ TLS version
▶ server_random (4B seconds from 1.1.1970; 28B random bytes)
▶ session ID: identification of the session

session ID from ClientHello found in session cache ⇒ session resumption,
proceed to Finished message
non-empty (different value): new session ID
empty: session will not be cached

▶ selected cipher suite (from the client’s list)
▶ selected compression method
▶ extensions (optional, subset of extensions offered by client)

TLS 20 / 33 ,

(Server) Certificate

▶ server’s certificate chain (X.509v3 certificates)
▶ self-signed certificate of root CA distributed independently
▶ required if key exchange methods use it for authentication (all except

DH_anon)
▶ server’s certificate type must by suitable for selected key exchange

method, e.g.
▶ RSA method requires RSA public key certificate that allows the key to be

used for encryption
▶ ECDHE_RSA method requires RSA public key that allows selected digital

signature scheme and hash algorithm

TLS 21 / 33 ,

Key exchange methods

▶ RSA
▶ client generates a pre-master secret (48B)
▶ client encrypts the pre-master secret using RSA public key of the server
▶ server decrypts using its private key
▶ remark: RSA encryption – PKCS#1 v 1.5 (no RSA-OAEP for TLS 1.2)

▶ Diffie-Hellman protocol
▶ fixed DH – public parameters are part of the server’s certificate
▶ ephemeral DH – public parameters specified by the server, signed (RSA,

DSA, ECDSA) and sent to the client in a message
▶ anonymous DH – no authentication, MITM possible

TLS 22 / 33 ,

ServerKeyExchange

▶ if server needs to send parameters required for key exchange method
▶ typical use cases: (EC)DHE_[DSS|RSA]
▶ DH_anon

▶ DH parameters:
▶ DHE: p, g, server’s public “key” and their signature
▶ ECDHE: usually ID of a named curve (e.g. 0x0017 – P-256, generator is

then fixed implicitly), public “key” and their signature
▶ signatures:

▶ client used the signature_algorithm extension ⇒ server selects
accordingly

▶ client did not use the extension⇒ server uses appropriate default
RSA+SHA-1 / DSA+SHA-1 / ECDSA+SHA-1 (depending on cipher suite)

▶ remark: RSA signatures – PKCS#1 v 1.5 (no RSA-PSS for TLS 1.2)

TLS 23 / 33 ,

List of supported cipher suits – example

www.uniba.sk (december 2021), server-preferred order for TLS 1.2

TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA DH 2048
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA DH 2048

. . . bad

TLS 24 / 33 ,

CertificateRequest and ServerHelloDone

▶ if client authentication is required (rarely)
▶ only non-anonymous server can request client authentication

▶ structure:
▶ list of accepted certificate types (e.g. rsa_sign, dss_sign)
▶ list of supported signature and hash algorithm pairs
▶ list of distinguished names of acceptable CAs

▶ ServerHelloDone
▶ signaling the end of server’s messages

TLS 25 / 33 ,

ClientKeyExchange

▶ structure and content depend on key exchange method
▶ RSA:

▶ client generates pre-master_secret (48B):
preMS = TLS version from ClientHello || random value (46B)

▶ client encrypts preMS using server’s RSA public key

▶ DH:
▶ client’s public “key” (not signed)
▶ empty content if static DH exponent (in certificate) is used

preMS = key obtained from DH exchange

TLS 26 / 33 ,

Computing keys from pre-master secret

▶ computing master_secret (MS, length always 48B):

MS = PRF(pre-master secret, “master secret”,
client_random || server_random)

▶ key material computed in defined order by partitioning sufficiently long
output from

PRF(MS, “key expansion”, client_random || server_random)

order (remark: IV values are used only for AEAD modes):
client_write_MAC_key
server_write_MAC_key
client_write_key
server_write_key
client_write_IV
server_write_IV

TLS 27 / 33 ,

CertificateVerify

▶ explicit verification of a client certificate
▶ client’s certificate must be suitable for digital signatures

▶ content: digital signature of all handshake messages sent and received
up to this point

▶ ChangeCipherSpec – switch pending write state
▶ all subsequent messages/data are protected

TLS 28 / 33 ,

Finished

▶ transmitted after ChangeCipherSpec
▶ verification that key exchange and authentication were successful
▶ content (length 12B, if cipher suite does not specify longer):

PRF(MS, label, H(msgs))

▶ label = “client finished” / “server finished”
▶ H – hash function used in PRF construction
▶ msgs = all messages in handshake protocol up to this point

▶ server and client verify Finished messages once received
▶ Handshake protocols ends successfully only after verifying these

messages

TLS 29 / 33 ,

Some cryptographic details

▶ MAC (in case of non-AEAD cipher): HMAC based on selected hash
function
▶ other MAC construction can be used, e.g. Poly1305 (using stream cipher

ChaCha20 inside, RFC 7539)

▶ Mandatory implemented cipher suite:
TLS_RSA_WITH_AES_128_CBC_SHA

▶ CBC mode for block ciphers:
▶ explicit IV, (should be) random, (must be) unpredictable
▶ padding examples: (incomplete last block || 00), (i. last block || 02 02 02)

TLS 30 / 33 ,

PRF construction

▶ computing PRF(secret, label, seed) = P_hash(secret, label || seed)
▶ hash is SHA256 for TLS 1.2 (default)
▶ P_hash(secret, seed) – data expansion function:

P_hash(secret, seed) = HMAC_hash(secret, A(1) || seed) ||
HMAC_hash(secret, A(2) || seed) ||
HMAC_hash(secret, A(3) || seed) || . . .

A(0) = seed
A(i) = HMAC_hash(secret, A(i-1))

TLS 31 / 33 ,

Handshake Protocol – session resumption

ServerHello
ClientHello

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

(enc.)

▶ Session ID, state stored (cached) by client and server
▶ alternative: Session tickets (state stored by client)

TLS 32 / 33 ,

Forward Secrecy (FS)

▶ FS:
▶ previous session keys are not compromised even if the long term keys are

▶ desirable property of key agreement/distribution protocols
▶ TLS 1.2:

▶ RSA: obtaining server’s RSA private key reveals all previous and future
pre-master secrets (all keys can be recomputed from pre-master secret)

▶ ephemeral non-anonymous DH (DHE, ECDHE): PFS

TLS 33 / 33 ,

	History, goals, and current support
	Structure of the TLS
	Record Layer (TLS Record Protocol)
	Application Data
	Change Cipher Spec Protocol
	Alert Protocol
	Handshake Protocol

	Some cryptographic details

