
Cryptographic protocols – introduction

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2021/22)

Content

Introduction

Some protocols and basic notions
Diffie-Hellman protocol
Interlock protocol
Dolev-Yao model
Freshness – nonces and timestamps

Basic protocols and attacks
Needham-Schroeder protocol
WMF protocol

Attacks
Replay attacks and symmetry – WMF, NSPK
Implementation issues (Otway-Rees)
Denning-Sacco protocol

Cryptographic protocols – introduction 2 / 33 ,

Introduction

▶ cryptographic protocols
▶ goals: secrecy, authentication, integrity, anonymity, unlinkability, . . .
▶ environment: untrusted channels, dishonest participants

▶ our focus: authentication and key agreement (session-key)
▶ session-key

▶ less data for cryptanalyis
▶ logical separation of data from different sessions
▶ using symmetric constructions for confidentiality and authenticity

▶ IPSec (IKE), TLS (handshake), SSH, WPA3 (SAE/Dragonfly), Noise
Protocol Framework, . . .

▶ prerequisite for secure communication
▶ various proposals (requirements, capabilities, environment)
▶ other protocols (not discussed here):

▶ voting, money, private information retrieval, multiparty computation, etc.

Cryptographic protocols – introduction 3 / 33 ,

Diffie-Hellman protocol

▶ two principals A, B
▶ shared group G of prime order q with generator g

▶ public, known to everyone (e.g. an attacker)

▶ goal: key agreement
▶ DH protocol:

1. A → B: ga, for random a ∈ Zq
2. B → A: gb, for random b ∈ Zq
▶ A computes K = (gb)a = gab, and B computes K = (ga)b = gab
▶ the shared secret can be used to derive a symmetric key(s)

▶ passive adversary: CDH problem ga, gb → gab

Cryptographic protocols – introduction 4 / 33 ,

MITM attack

▶ active adversary in DH protocol
▶ can intercept and change messages

▶ man-in-the-middle attack (M is an attacker):
1. A → M(B): ga
2. M(A) → B: gx

3. B → M(A): gb
4. M(B) → A: gy

▶ A computes KA = gay , B computes KB = gxb
▶ M can compute KA = (ga)y = gay as well as KB = (gb)x = gbx
▶ M can “translate” messages between A and B (or create his/her own)

▶ Can M enforce KA = KB in the MITM attack?
▶ if not, M should be there till the end or “simulate” a connection error
▶ gx = gy = 1⇒ KA = KB = 1

Cryptographic protocols – introduction 5 / 33 ,

Fixing DH protocol

▶ authenticate messages in the protocol
▶ additional assumptions – PKI (distribution of authentic public keys),

preshared secrets, etc.
▶ DH in various forms is a base for majority of key agreement protocols
▶ Station-to-Station protocol:

1. A → B: ga

2. B → A: gb, CertB, EK (SigB (gb, ga))
3. A → B: CertA, EK (SigA (ga, gb))
▶ key agreement and authentication of participants
▶ the shared secret K = gab
▶ SigU denotes signature produced by user U
▶ certificates contain public keys for verifying signatures
▶ E is symmetric encryption and “proves” the possession of K

Cryptographic protocols – introduction 6 / 33 ,

Interlock protocol

▶ idea: let’s force the MITM attacker to be “active” in the communication
▶ scenarios (possible MITM attack):

▶ after unauthenticated DH protocol
▶ after unauthenticated distribution of key using asymmetric encryption

▶ A/B wants to send a message mA/mB to B/A
▶ both encrypt their message and exchange halves of the ciphertexts

(cA/cB), and then the other halves:
1. A → B: cA1 (first half of cA)
2. B → A: cB1 (first half of cB)
3. A → B: cA2 (second half of cA)
4. B → A: cB2 (second half of cB)

▶ a half of the ciphertext should be useless for the recipient
▶ e.g. even/odd bits, encryption combined with MAC, . . .

Cryptographic protocols – introduction 7 / 33 ,

Interlock protocol (2)

▶ assume MITM attacker M and keys KA and KB used for A ↔ M and
M ↔ B communications, respectively

▶ M can send the original message to A or B but not both
▶ example (sending mB to A)

1. A → M(B): cA1 (first half of cA)
2. M(A) → B: c′A1 (first half of c′A, for some made-up m′

A)
3. B → M(A): cB1 (first half of cB)
4. M(A) → B: c′A2 (second half of c′A)
5. B → M(A): cB2 (second half of cB, M can decrypt mB)
6. M(B) → A: c′B1 (first half of c′B, M encrypts mB with KA)
7. A → M(B): cA2 (second half of cA, M can decrypt mA)
8. M(B) → A: c′B2 (second half of c′B, A decrypts mB)

▶ Can we detect made-up messages?
▶ phones – reading aloud the messages from interlock protocol or

session-key checksum (voice synthesis ?)

Cryptographic protocols – introduction 8 / 33 ,

Dolev-Yao model

▶ the adversary controls the network completely
▶ eavesdrop, forge, delete, inject, replay, redirect messages
▶ perform any computation with data (and keys) learned or possessed

▶ very strong (but appropriate) model
▶ protocol secure in DY model will be secure also in a weaker model
▶ sometimes weaker model is assumed in practice:

▶ verification SMS sent to a mobile phone

▶ we will assume DY model in this lecture

Cryptographic protocols – introduction 9 / 33 ,

Assumptions

▶ ideal cryptography:
▶ perfect encryption, signatures, hash functions, message authentication

codes, random number generators etc.
▶ even more, e.g. encrypted messages cannot be manipulated without

detection, no info about message without a key, tuples with two or three
messages cannot be confused etc.

▶ flawless implementation (see history of problems in SSL/TLS)
▶ instantiation of crypto algorithms (e.g. oracle padding attacks (POODLE),

combination with compression (CRIME, BREACH))
▶ getting implementation right (e.g. Heartbleed, export versions of

algorithms, timing attacks, Bleichenbacher’s attack)

▶ even then the analysis is non-trivial

Cryptographic protocols – introduction 10 / 33 ,

What is wrong with this protocol?

▶ A generates a session-key K and sends it encrypted and signed to B
▶ one-way authentication and key distribution

1. A → B: EB (A,B,K), SigA (EB (A,B,K))
▶ assumptions: A knows the public key of B (for asymmetric encryption), B

knows the public key of A (for signature verification)
▶ B verifies the signature and decrypts K

▶ the problem: replay attack
▶ after K leaks the attacker can replay the message
▶ B is tricked into using K as a good key for communication with A

Cryptographic protocols – introduction 11 / 33 ,

What is wrong with this protocol?

▶ A generates a session-key K and sends it encrypted and signed to B
▶ one-way authentication and key distribution

1. A → B: EB (A,B,K), SigA (EB (A,B,K))
▶ assumptions: A knows the public key of B (for asymmetric encryption), B

knows the public key of A (for signature verification)
▶ B verifies the signature and decrypts K

▶ the problem: replay attack
▶ after K leaks the attacker can replay the message
▶ B is tricked into using K as a good key for communication with A

Cryptographic protocols – introduction 11 / 33 ,

Freshness of messages

▶ prevention of replay attacks: nonces and timestamps
▶ nonce

▶ usually sufficiently long random string/number (i.e. unpredictable);
(sometimes “unique” is sufficient)

▶ used just for a particular instance of the protocol
▶ unlikely to be present in some previous instances of the protocol
▶ usually the confidentiality is not needed
▶ examples: SSL/TLS, IKEv2

▶ timestamp
▶ sufficiently precise time information included into a message
▶ somewhat synchronized clocks are required
▶ clock manipulation should be prevented
▶ example: Kerberos

Cryptographic protocols – introduction 12 / 33 ,

Needham-Schroeder protocol

▶ the protocol uses trusted third party – server S
▶ S shares symmetric keys with participants (KU with participant U)

▶ participants A and B
▶ goals: authentication and distribution of a session-key KAB

▶ assumptions: NA/NB nonces generated by A/B,
▶ the protocol:

1. A → S: A,B,NA

2. S → A: {NA,KAB,B, {KAB,A}KB }KA

3. A → B: {KAB,A}KB

4. B → A: {NB}KAB

5. A → B: {NB − 1}KAB

▶ positives: S involved only once, stateless, . . .
▶ insecure!

Cryptographic protocols – introduction 13 / 33 ,

Needham-Schroeder protocol

▶ the protocol uses trusted third party – server S
▶ S shares symmetric keys with participants (KU with participant U)

▶ participants A and B
▶ goals: authentication and distribution of a session-key KAB

▶ assumptions: NA/NB nonces generated by A/B,
▶ the protocol:

1. A → S: A,B,NA

2. S → A: {NA,KAB,B, {KAB,A}KB }KA

3. A → B: {KAB,A}KB

4. B → A: {NB}KAB

5. A → B: {NB − 1}KAB

▶ positives: S involved only once, stateless, . . .
▶ insecure!

Cryptographic protocols – introduction 13 / 33 ,

Attacking Needham-Schroeder protocol

▶ attack found by Denning and Sacco
▶ weakness: B cannot verify the freshness of KAB

▶ the attacker can force B to accept a compromised KAB (by cryptanalysis
or by leak)

▶ the attack (M knows KAB and thus (s)he can finish the protocol):
3. M(A) → B: {KAB,A}KB (replay of old message)
4. B → M(A): {N ′

B}KAB

5. M(A) → B: {N ′
B − 1}KAB

▶ How to fix the protocol?
▶ e.g. A requests NB from B at the beginning

Cryptographic protocols – introduction 14 / 33 ,

Modified Wide Mouth Frog protocol

▶ participants A and B, trusted third party (server S)
▶ timestamps (TU generated by U)
▶ S shares symmetric keys with participants
▶ goals: one-way authentication and distribution of the session-key K
▶ the protocol

1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,B,K }KB

▶ Original WMF:
1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,K }KB

▶ Can you find a weakness?

Cryptographic protocols – introduction 15 / 33 ,

Modified Wide Mouth Frog protocol

▶ participants A and B, trusted third party (server S)
▶ timestamps (TU generated by U)
▶ S shares symmetric keys with participants
▶ goals: one-way authentication and distribution of the session-key K
▶ the protocol

1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,B,K }KB

▶ Original WMF:
1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,K }KB

▶ Can you find a weakness?

Cryptographic protocols – introduction 15 / 33 ,

Attacks

▶ examples:
▶ Needham-Schroeder public-key protocol (1978) – attack, Lowe (1995)
▶ various weaknesses in real-world protocols: PPTP, SSL/TLS, . . .
▶ WPA 4-way handshake (802.11i, 2004) - attack, Vanhoef (2017)

▶ Weaknesses/attack types
▶ replay attacks
▶ imprecise description
▶ implementation issues
▶ symmetry of messages
▶ variable length of objects
▶ interaction of protocols, etc.

▶ usually a combination of weaknesses and attack techniques

Cryptographic protocols – introduction 16 / 33 ,

Replay attack

▶ “classic” example: Needham-Schroeder protocol
▶ Wide mouth frog protocol

1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

▶ notation and assumptions:
▶ T – trusted third party / server
▶ KA / KB – symmetric key shared between A and T or B and T
▶ TA / TT – time-stamp produced by A and T , respectively

▶ objectives:
▶ distribution of session-key K
▶ authentication of A (B is authenticated after the use of K)

Cryptographic protocols – introduction 17 / 33 ,

Attacking WMF
▶ attack – repeating messages, employing their symmetry, and using T as

an oracle:
1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

3. E (B) → T : B, {TT ,A,K }KB

4. T → E (A) : {T ′
T ,B,K }KA

5. E (A) → T : A, {T ′
T ,B,K }KA

6. T → E (B) : {T ′′
T ,A,K }KB

…
refreshing the time-stamp
after obtaining K (leak, cryptanalysis):
1’. E (A) → T : A, {T ∗

T ,B,K }KA

2’. T → B : {T ∗∗
T ,A,K }KB

▶ fix: break the symmetry, e.g. add sender’s identifier (or message
number) into the second message

Cryptographic protocols – introduction 18 / 33 ,

Attacking WMF
▶ attack – repeating messages, employing their symmetry, and using T as

an oracle:
1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

3. E (B) → T : B, {TT ,A,K }KB

4. T → E (A) : {T ′
T ,B,K }KA

5. E (A) → T : A, {T ′
T ,B,K }KA

6. T → E (B) : {T ′′
T ,A,K }KB

…
refreshing the time-stamp
after obtaining K (leak, cryptanalysis):
1’. E (A) → T : A, {T ∗

T ,B,K }KA

2’. T → B : {T ∗∗
T ,A,K }KB

▶ fix: break the symmetry, e.g. add sender’s identifier (or message
number) into the second message

Cryptographic protocols – introduction 18 / 33 ,

NSPK

▶ Needham-Schroeder public-key protocol (1978)
1. A → B : {A,NA}KB

2. B → A : {NA,NB}KA

3. A → B : {NB}KB

▶ notation and assumptions:
▶ KA / KB – A’s / B’s public key
▶ NA / NB – nonce produced by A / B

▶ objectives:
▶ mutual (two-way) authentication of A and B
▶ NA and NB can be used for session-key construction

Cryptographic protocols – introduction 19 / 33 ,

Attacking NSPK

▶ attack – after initial message from A, E starts a session with B
pretending to be A (both instances complete successfully):

1. A → E : {A,NA}KE

1’. E (A) → B : {A,NA}KB

2’. B → E (A) : {NA,NB}KA

2. E → A : {NA,NB}KA

3. A → E : {NB}KE

3’. E (A) → B : {NB}KB

▶ fix: e.g. adding an identifier of B into the second message:

1. A → B : {A,NA}KB

2. B → A : {NA,NB,B}KA

3. A → B : {NB}KB

Cryptographic protocols – introduction 20 / 33 ,

Attacking NSPK

▶ attack – after initial message from A, E starts a session with B
pretending to be A (both instances complete successfully):

1. A → E : {A,NA}KE

1’. E (A) → B : {A,NA}KB

2’. B → E (A) : {NA,NB}KA

2. E → A : {NA,NB}KA

3. A → E : {NB}KE

3’. E (A) → B : {NB}KB

▶ fix: e.g. adding an identifier of B into the second message:

1. A → B : {A,NA}KB

2. B → A : {NA,NB,B}KA

3. A → B : {NB}KB

Cryptographic protocols – introduction 20 / 33 ,

Otway-Rees protocol

▶ Otway, Rees (1987)
1. A → B : M,A,B, {NA,M,A,B}KA

2. B → T : M,A,B, {NA,M,A,B}KA , {NB,M,A,B}KB

3. T → B : M, {NA,K }KA , {NB,K }KB

4. B → A : M, {NA,K }KA

▶ notation and assumptions:
▶ T – trusted server
▶ KA / KB – symmetric key shared between A / B and T
▶ NA / NB – nonce produced by A / B
▶ M – randomly chosen identifier of this protocol run

▶ objectives:
▶ distribution of session-key K
▶ authentication of A (B is authenticated after the use of K)

Cryptographic protocols – introduction 21 / 33 ,

Attacking Otway-Rees protocol – attack 1

▶ implementation issue
▶ attack: improper block cipher mode – ECB:

▶ let |NB | be a multiply of block length
▶ encrypted nonce can be replaced in {NB,K }KB

▶ result: old session-key can be forced for use in a new session

Cryptographic protocols – introduction 22 / 33 ,

Attacking Otway-Rees protocol – attack 2

again an implementation issue
attack: improper block cipher mode – CBC:

▶ assumption: the plaintext NB,M,A,B fits into 3 blocks:

P1 = NB, P2 = M, P3 = A,B.

▶ CBC: random IV , encrypted and prepended as the first block of
ciphertext

▶ attacker E starts the first protocol instance with B:

1. E → B : M′, E ,B, {NE ,M′, E ,B}KE

2. B → E (T) : M′, E ,B, {NE ,M′, E ,B}KE , {N ′
B,M

′, E ,B}KB

▶ {N ′
B,M

′, E ,B}KB = {IV ′}KB ,C
′
1,C

′
2,C

′
3

Cryptographic protocols – introduction 23 / 33 ,

. . . attack 2 continues

▶ E starts the second instance with B, pretending to be A:

1’. E (A) → B : M,A,B, {NE ,M, E ,B}KE

2’. B → E (T) : M,A,B, {NE ,M, E ,B}KE , {NB,M,A,B}KB

▶ let {NB,M,A,B}KB = {IV }KB ,C1,C2,C3

▶ E modifies the intercepted message and sends to T :

3’. E (B) → T : S, E ,B, {NE , S, E ,B}KE ,X

where X = {IV }KB ,C1,C′
2,C

′
3

Cryptographic protocols – introduction 24 / 33 ,

. . . attack 2 continues

▶ decrypting X :

DKB (X) = NB,C1 ⊕ DKB (C′
2),C′

2 ⊕ DKB (C′
3)

= NB,C1 ⊕ M′ ⊕ C′
1, E ,B.

▶ E sets S = C1 ⊕ M′ ⊕ C′
1

▶ 3’ is a legitimate message from T ’s point of view

4’. T → E (B) : S, {NE ,K }KE , {NB,K }KB

5’. E (T) → B : M, {NE ,K }KE , {NB,K }KB

6’. B → E (A) : M, {NE ,K }KE

▶ result: B thinks (s)he communicates with A; E knows the key K

fix: add some redundant data into encrypted message (e.g. hash); use MAC,
authenticated encryption etc.

Cryptographic protocols – introduction 25 / 33 ,

. . . attack 2 continues

▶ decrypting X :

DKB (X) = NB,C1 ⊕ DKB (C′
2),C′

2 ⊕ DKB (C′
3)

= NB,C1 ⊕ M′ ⊕ C′
1, E ,B.

▶ E sets S = C1 ⊕ M′ ⊕ C′
1

▶ 3’ is a legitimate message from T ’s point of view

4’. T → E (B) : S, {NE ,K }KE , {NB,K }KB

5’. E (T) → B : M, {NE ,K }KE , {NB,K }KB

6’. B → E (A) : M, {NE ,K }KE

▶ result: B thinks (s)he communicates with A; E knows the key K

fix: add some redundant data into encrypted message (e.g. hash); use MAC,
authenticated encryption etc.

Cryptographic protocols – introduction 25 / 33 ,

Imprecise description of protocol – attack 3

▶ let’s assume that T does not check the consistence of plaintext and
encrypted data

▶ attack:
1’. A → B : M,A,B, {NA,M,A,B}KA

2’. B → E (T) : M,A,B, {NA,M,A,B}KA , {NB,M,A,B}KB

3’. E → T : M,A, E , {NA,M,A,B}KA , {NE ,M,A,B}KE

4’. T → E : M, {NA,K }KA , {NE ,K }KE

5’. E (B) → A : M, {NA,K }KA

▶ result:
▶ A assumes to be communicating with B
▶ E impersonates B and E knows the session-key K

Cryptographic protocols – introduction 26 / 33 ,

Improper length of objects – attack 4

▶ let |K | = |M,A,B|
1’. A → E (B) : M,A,B, {NA,M,A,B}KA

4’. E (B) → A : M, {NA,M,A,B}KA

▶ result:
▶ A assumes the communication with B
▶ E impersonates B and E knows the “session-key” (regardless of mode

used for encryption)

▶ general observation: messages should bounded to the particular step of
the protocol

Cryptographic protocols – introduction 27 / 33 ,

Symmetry of messages

▶ examples: NSPK protocol, WMF protocol
▶ usually multiple simultaneous protocol instances
▶ protocol for mutual authentication:

1. A → B : NA

2. B → A : {NA,NB}K
3. A → B : NB

▶ notation and assumptions:
▶ K – symmetric key shared between A and B
▶ NA / NB – nonce generated by A and B, respectively

Cryptographic protocols – introduction 28 / 33 ,

Attack employing the symmetry

1. A → E (B) : NA

1’. E (B) → A : NA

2’. A → E (B) : {NA,N ′
A}K

2. E (B) → A : {NA,N ′
A}K

3. A → E (B) : N ′
A

3’. E (B) → A : N ′
A

▶ result: A believes that (s)he communicates with B
▶ fix:

▶ restrict the number of parallel runs or keeping track of recent nones (not a
good solution)

▶ break the symmetry, e.g. insert participant’s identifier into encrypted
message

Cryptographic protocols – introduction 29 / 33 ,

Denning-Sacco protocol

▶ Denning, Sacco (1981)
1. A → T : A,B
2. T → A : CA,CB

3. A → B : CA,CB, {{K , TA}K−1
A
}KB

▶ notation and assumption:
▶ CA / CB – public-key certificate of A / B
▶ TA – time-stamp produced by A
▶ K – session-key generated by A
▶ {X }K−1

A
– message X signed by A

▶ objectives:
▶ distribution of session-key K
▶ one-way authentication of A

Cryptographic protocols – introduction 30 / 33 ,

Attacking Denning-Sacco protocol

Abadi (1994):

1. A → T : A, E
2. T → A : CA,CE

3. A → E : CA,CE , {{K , TA}K−1
A
}KE

3’. E (A) → B : CA,CB, {{K , TA}K−1
A
}KB

▶ result: E authenticates as A for B with known session-key K
▶ fix: e.g. insert recipient identifier into the signed data

Cryptographic protocols – introduction 31 / 33 ,

Attacking Denning-Sacco protocol

Abadi (1994):

1. A → T : A, E
2. T → A : CA,CE

3. A → E : CA,CE , {{K , TA}K−1
A
}KE

3’. E (A) → B : CA,CB, {{K , TA}K−1
A
}KB

▶ result: E authenticates as A for B with known session-key K
▶ fix: e.g. insert recipient identifier into the signed data

Cryptographic protocols – introduction 31 / 33 ,

Protection of predictable data

▶ requesting a current time:
1. A → S : A,NA

2. S → A : {TS ,NA}KA

▶ if NA is predictable:
1. E (A) → S : A,NA

2. S → E (A) : {TS ,NA}KA (this can be use as a reply for A’s request later)

▶ fix (doesn’t work if NA is a constant):
1. A → S : A, {NA}KA

2. S → A : {TS , {NA}KA }KA

Cryptographic protocols – introduction 32 / 33 ,

Protection of predictable data

▶ requesting a current time:
1. A → S : A,NA

2. S → A : {TS ,NA}KA

▶ if NA is predictable:
1. E (A) → S : A,NA

2. S → E (A) : {TS ,NA}KA (this can be use as a reply for A’s request later)

▶ fix (doesn’t work if NA is a constant):
1. A → S : A, {NA}KA

2. S → A : {TS , {NA}KA }KA

Cryptographic protocols – introduction 32 / 33 ,

Formal methods for protocol security?

▶ formal methods and tools for reasoning about the security of
cryptographic protocols
▶ ProVerif, Scyther, OFMC, Tamarin, Verifpal . . .

▶ . . . they help to increase our trust in protocol’s security
▶ what is modeled?
▶ the implementation can change everything

▶ various protocols were analyzed formally – with some vulnerabilities
found later (WPA 4-way handshake, TLS 1.3, . . .)

Cryptographic protocols – introduction 33 / 33 ,

	Introduction
	Some protocols and basic notions
	Diffie-Hellman protocol
	Interlock protocol
	Dolev-Yao model
	Freshness – nonces and timestamps

	Basic protocols and attacks
	Needham-Schroeder protocol
	WMF protocol

	Attacks
	Replay attacks and symmetry – WMF, NSPK
	Implementation issues (Otway-Rees)
	Denning-Sacco protocol

