
Digital signature schemes

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2021/22)

Content

Introduction
digital signature scheme
security of digital signatures

RSA
textbook version
padding: PKCS #1, PSS

ElGamal

Digital Signature Algorithm – DSA and ECDSA

Schnorr

EdDSA

Digital signatures 2 / 28 ,

Introduction

▶ “electronic signatures” in legislation
▶ “digital signatures” in cryptology
▶ objectives:

▶ authenticity and integrity of signed data
▶ non-repudiation of origin
▶ (usually) universal verifiability, i.e. anyone can verify the signature
▶ unforgeability, efficiency etc.

▶ objectives impossible to satisfy by a digital signature scheme alone
▶ PKI, laws etc. (out of the scope of this lecture)

Digital signatures 3 / 28 ,

Digital signature scheme (1)

m (document)

sign

H(m)

σ (signature)

signer’s
private key

verify

m σ

signer’s
public key

OK ×

▶ asymmetric construction
▶ private key – signing
▶ public key – verification

Digital signatures 4 / 28 ,

Digital signature scheme (2)

▶ digital signature scheme: (Gen, Sig, Vrf)
▶ Gen – PPT algorithm, produces public and private key pair (pk, sk)
▶ Sig – PPT algorithm, produces a signature from a message and signer’s

private key: 𝜎 = Sigsk(m)
▶ Vrf – usually deterministic PT algorithm; input: message, signature and

signer’s public key; Vrfpk(m,𝜎) ∈ {true/OK, false/×}
▶ correctness of the scheme:

∀(pk, sk) ← Gen(1k) ∀m : Vrfpk(m, Sigsk(m)) = true

Digital signatures 5 / 28 ,

Digital signature schemes – remarks

▶ schemes with appendix
▶ the most common type
▶ original document needed for the signature verification

▶ schemes with message recovery
▶ verification produces from a signature the original message and some

additional data to verify its correctness
▶ rarely used

▶ this lecture – schemes with appendix
▶ reasons for using hash function in digital signature schemes

▶ shorter, fixed-length data for signing
▶ preventing certain attacks, e.g. random message forgery (see later)

▶ using h.f. makes the security of the scheme dependent on h.f. properties,
e.g. collision resistance

Digital signatures 6 / 28 ,

Security of digital signatures

▶ various possibilities; as usual: use the strongest definition
▶ idea similar to MAC security
▶ attacker has access to a public key
▶ EUF-CMA

▶ CMA (chosen message attack) – the attacker has access to Sigsk (·) oracle
▶ EUF (existential unforgeability) – the attacker tries to create a message m

(not previously queried) and a valid signature 𝜎 , i.e. Vrfpk (m,𝜎) = true

▶ scheme is EUF-CMA secure if the success probability of any PPT
attacker is negligible

Digital signatures 7 / 28 ,

RSA signature scheme

▶ RSA instance/parameters as before:
▶ public key: (e, n)
▶ private key: d
▶ all optimizations can be applied

▶ 1st attempt (without hashing):
▶ Sig: 𝜎 = md mod n
▶ Vrf: 𝜎e mod n = m ?
▶ correctness follows from the properties of RSA

▶ problems:
▶ only for short messages
▶ random message forgery: (𝜎e mod n︸ ︷︷ ︸

m

,𝜎) for 𝜎 ∈ Zn

the attacker has no control over the message value
▶ another forgery (using homomorphic property of RSA): take two valid

pairs (m1,𝜎1), (m2,𝜎2), and produce (m1m2 mod n,𝜎1𝜎2 mod n)

Digital signatures 8 / 28 ,

RSA signature scheme – standard “textbook” version

▶ 2nd attempt (with hashing):
▶ Sig: 𝜎 = H(m)d mod n
▶ Vrf: 𝜎e mod n = H(m) ?

▶ properties:
▶ messages of arbitrary length
▶ H is preimage resistant (infeasible to invert)⇒ prevents random message

forgery

▶ H should be collision resistant
▶ FDH (Full Domain Hash) signature scheme using H with image Zn

▶ EUF-CMA secure in random oracle model (for H), assuming the hardness
of the RSA problem

▶ H(m) usually shorter than n⇒ padding
for randomization and (sometimes) provable security

Digital signatures 9 / 28 ,

PKCS #1 v1.5

▶ construction standardized in 1998
▶ padded digest H(m):

0x00 || 0x01 || 0xff || . . . || 0xff || 0x00 || H(m)

“Moreover, while no attack is known against the EMSA-PKCS-v1_5 encoding
method, a gradual transition to EMSA-PSS is recommended as a precaution
against future developments.” (RFC 8017, 2016)

▶ frequently used in practice, e.g. X.509 certificates:
▶ “sha1RSA” or “PKCS #1 sha1 with RSA encryption” signature algorithm

. . . SHA1 problems – deprecation of SHA1 certificates in browsers
▶ “sha256RSA” or “PKCS #1 sha256 with RSA encryption” signature

algorithm

▶ proof of PKCS #1 security (2018), EUF-CMA in RO model under the
standard RSA assumption

Digital signatures 10 / 28 ,

PKCS #1 v1.5 examples

Digital signatures 11 / 28 ,

RSA-PSS
▶ Probabilistic Signature Scheme, PKCS #1 v2.2 (RFC 8017)
▶ provable security in random oracle model

maskedDB

MGF

︸ ︷︷ ︸
input to RSA priv. function D

(0x00)8 H(m) salt

padding salt
H

H∗

MGF

0xbc

▶ salt – sequence of random bytes
▶ padding = 0x00 || . . . || 0x00 || 0x01
▶ MGF – mask generation function (used in OAEP as well)

Digital signatures 12 / 28 ,

RSA-PSS – verify

Vrfpk(m,𝜎):
1. parse and verify: 𝜎e mod n ↦→ maskedDB || H∗ || 0xbc

2. DB = maskedDB ⊕MGF(H∗)
3. parse and verify: DB ↦→ padding || salt

4. verify that H∗ = H((0x00)8 || H(m) || salt)

the signature is correct if all verifications succeed

Digital signatures 13 / 28 ,

ElGamal signature scheme

▶ T. ElGamal (1984)
▶ it is impossible to use ElGamal encryption scheme’s algorithms for

digital signatures
▶ encryption is not a function (randomized . . . a good thing)
▶ very few schemes offer bijections like RSA
▶ specific signature scheme must be designed

▶ initialization identical to encryption scheme: pk = (p, g, y), sk = x
▶ y = gx mod p
▶ let g be a generator of (Z∗p, ·)
▶ scheme can be “rephrased” in other groups

▶ Sigsk(m) = (r , s):
1. k

$←− Zp−1 such that gcd(k, p − 1) = 1
2. r = gk mod p
3. s = (H(m) − xr) · k−1 mod (p − 1)

Digital signatures 14 / 28 ,

ElGamal signature scheme – verification and correctness

▶ Vrfpk(m, (r , s)): correct if

1 ≤ r < p & yr · rs ≡ gH (m) (mod p)

▶ correctness:
▶ the first part is trivial
▶ the second part: yr · rs ≡ gxr · gks ≡ gxr+ks ≡ gH (m) (mod p)

▶ efficiency
▶ Sig – single modular exponentiation (can be precomputed)
▶ Vrf – 3 modular exponentiations
▶ signature’s length ∼ a pair from Zp × Zp

Digital signatures 15 / 28 ,

ElGamal – security (1)
▶ computing x from y is a discrete logarithm problem
▶ predictable (leaked) k results in private key compromise:

s = (H(m)−xr) ·k−1 mod (p−1) ⇒ x = (H(m)−ks)r−1 mod (p−1)

▶ test 1 ≤ r < p is necessary; let us assume verification without the test:
▶ let (r , s) be a signature for m, i.e. gH (m) ≡ yr · rs (mod p)
▶ we compute a signature (r ′, s′) for some m′ ≠ m
1. u = H(m′) ·H(m)−1 mod (p − 1) (assuming that H(m) is coprime to p − 1)

gH (m
′) ≡ gH (m)u ≡ yur · rus (mod p)

2. we set s′ = us mod (p − 1) and compute r ′ satisfying

r ′ ≡ ru (mod p − 1)
r ′ ≡ r (mod p)

▶ apply CRT; with overwhelming probability r ′ ≥ p, otherwise u = 1 and we
have a collision in H: H(m′) ≡ H(m) (mod p − 1)

Digital signatures 16 / 28 ,

ElGamal – security (1)
▶ computing x from y is a discrete logarithm problem
▶ predictable (leaked) k results in private key compromise:

s = (H(m)−xr) ·k−1 mod (p−1) ⇒ x = (H(m)−ks)r−1 mod (p−1)

▶ test 1 ≤ r < p is necessary; let us assume verification without the test:
▶ let (r , s) be a signature for m, i.e. gH (m) ≡ yr · rs (mod p)
▶ we compute a signature (r ′, s′) for some m′ ≠ m
1. u = H(m′) ·H(m)−1 mod (p − 1) (assuming that H(m) is coprime to p − 1)

gH (m
′) ≡ gH (m)u ≡ yur · rus (mod p)

2. we set s′ = us mod (p − 1) and compute r ′ satisfying

r ′ ≡ ru (mod p − 1)
r ′ ≡ r (mod p)

▶ apply CRT; with overwhelming probability r ′ ≥ p, otherwise u = 1 and we
have a collision in H: H(m′) ≡ H(m) (mod p − 1)

Digital signatures 16 / 28 ,

ElGamal – security (2)

▶ Bleichenbacher’s attack (1996)
▶ forging signatures if g has only small factors and g | (p − 1)
▶ e.g. g = 2 is a bad choice
▶ Remark: for discrete logarithm problem all generators are equivalent

▶ reusing k (for two distinct messages):
▶ m1, (r , s1) ⇒ H(m1) ≡ xr + ks1 (mod p − 1)

m2, (r , s2) ⇒ H(m2) ≡ xr + ks2 (mod p − 1)
▶ we have H(m1) − H(m2) ≡ k (s1 − s2) (mod p − 1) (★)
▶ let d = gcd(s1 − s2, p − 1)
▶ if d = 1 then k = (H(m1) − H(m2)) (s1 − s2)−1 mod (p − 1)
▶ otherwise we divide the equation (★) by d , solve it mod (p − 1)/d , and

then test d candidates for k
▶ having k we can easily find the private key x

Digital signatures 17 / 28 ,

ElGamal – security (2)

▶ Bleichenbacher’s attack (1996)
▶ forging signatures if g has only small factors and g | (p − 1)
▶ e.g. g = 2 is a bad choice
▶ Remark: for discrete logarithm problem all generators are equivalent

▶ reusing k (for two distinct messages):
▶ m1, (r , s1) ⇒ H(m1) ≡ xr + ks1 (mod p − 1)

m2, (r , s2) ⇒ H(m2) ≡ xr + ks2 (mod p − 1)
▶ we have H(m1) − H(m2) ≡ k (s1 − s2) (mod p − 1) (★)
▶ let d = gcd(s1 − s2, p − 1)
▶ if d = 1 then k = (H(m1) − H(m2)) (s1 − s2)−1 mod (p − 1)
▶ otherwise we divide the equation (★) by d , solve it mod (p − 1)/d , and

then test d candidates for k
▶ having k we can easily find the private key x

Digital signatures 17 / 28 ,

ElGamal – security (3)

▶ random message forgery (when H is not used)

1. i, j
$←− Z∗p−1

2. r = gi · y j mod p

3. s = −r · j−1 mod (p − 1)

4. m = s · i mod (p − 1)

correctness:

yr · rs ≡ yr · gis · y js

≡ yr · gis · y−jrj−1

≡ gis ≡ gm (mod p)

Digital signatures 18 / 28 ,

Digital Signature Algorithm (DSA)

▶ part of FIPS 186-4 (DSA, RSA, ECDSA)
▶ sporadic use in practice
▶ other alternatives available, e.g. ECDSA is faster, with shorter keys
▶ removal proposed in FIPS 186-5 (still draft, October 2019)

▶ initialization:
1. generate primes p, q (e.g. |p| = 2048, |q | = 256) such that q | (p − 1)
2. generate h

$←− Zp−1 such that g = h(p−1)/q > 1
g is a subgroup generator (order q)
public domain parameters: (p, q, g)

3. private key: x
$←− Z∗q

4. public key: y = gx mod p

Digital signatures 19 / 28 ,

DSA – signing and verification
▶ Sigsk(m):

1. r = gk mod p mod q, where k
$←− Z∗q

2. s = k−1 (H(m) + xr) mod q
3. if r = 0 or s = 0 start again with step 1 (extremely unlikely)
4. 𝜎 = (r , s)

▶ Vrfpk(m, (r , s)):
1. verify that r , s ∈ Z∗q
2. u1 = H(m) · s−1 mod q

u2 = r · s−1 mod q
3. verify that (gu1 · yu2 mod p) mod q = r

▶ correctness:

(gu1 · yu2 mod p) mod q = gH (m)s
−1+xrs−1 mod p mod q

= gs
−1 (H (m)+xr) mod p mod q = gk mod p mod q = r

Digital signatures 20 / 28 ,

DSA – signing and verification
▶ Sigsk(m):

1. r = gk mod p mod q, where k
$←− Z∗q

2. s = k−1 (H(m) + xr) mod q
3. if r = 0 or s = 0 start again with step 1 (extremely unlikely)
4. 𝜎 = (r , s)

▶ Vrfpk(m, (r , s)):
1. verify that r , s ∈ Z∗q
2. u1 = H(m) · s−1 mod q

u2 = r · s−1 mod q
3. verify that (gu1 · yu2 mod p) mod q = r

▶ correctness:

(gu1 · yu2 mod p) mod q = gH (m)s
−1+xrs−1 mod p mod q

= gs
−1 (H (m)+xr) mod p mod q = gk mod p mod q = r

Digital signatures 20 / 28 ,

DSA – signing and verification
▶ Sigsk(m):

1. r = gk mod p mod q, where k
$←− Z∗q

2. s = k−1 (H(m) + xr) mod q
3. if r = 0 or s = 0 start again with step 1 (extremely unlikely)
4. 𝜎 = (r , s)

▶ Vrfpk(m, (r , s)):
1. verify that r , s ∈ Z∗q
2. u1 = H(m) · s−1 mod q

u2 = r · s−1 mod q
3. verify that (gu1 · yu2 mod p) mod q = r

▶ correctness:

(gu1 · yu2 mod p) mod q = gH (m)s
−1+xrs−1 mod p mod q

= gs
−1 (H (m)+xr) mod p mod q = gk mod p mod q = r

Digital signatures 20 / 28 ,

DSA – remarks

▶ if r = 0 then the signature does not depend on x
▶ if s = 0 then s−1 mod q does not exist
▶ efficiency: shorter signatures (comparing to ElGamal’s), faster than

ElGamal (shorter exponents), r can be precomputed
▶ H required to prevent random message forgery (try yourself)
▶ the parameters p, q and g can be shared

▶ rare for DSA; ensure that parameters are not maliciously prepared
▶ verifiable procedure for generating the parameters (part of the standard)
▶ ECDSA: fixed curves and parameters are used (approved)

Digital signatures 21 / 28 ,

ECDSA
▶ point G – generator of subgroup of prime order n

▶ private key: d
$←− Z∗n; public key: Q = dG and domain parameters

▶ simplifying some details (e.g. conversions bitstring↔ integer)
▶ Sigsk(m):

1. (x , y) = kG, where k
$←− Z∗n

2. r = x mod n
3. s = k−1 (H(m) + dr) mod n
4. if r = 0 or s = 0 start again with step 1 (extremely unlikely)
5. 𝜎 = (r , s)

▶ Vrfpk(m, (r , s)):
1. verify that r , s ∈ Z∗n
2. u1 = H(m) · s−1 mod n

u2 = r · s−1 mod n
3. (x , y) = X = u1G + u2Q (if X = 0 reject)
4. accept iff x mod n = r

▶ correctness – obvious
Digital signatures 22 / 28 ,

ECDSA – remarks

▶ shorted keys and faster
(comparing to DSA)

▶ somewhat popular on web
(usually with P-256 curve)

▶ part of FIPS 186-5 draft
▶ used with Bitcoin (curve

Secp256k1)

Digital signatures 23 / 28 ,

DSA/ECDSA – problems with k

▶ predictable/repeating k results in private key compromise
▶ sometimes it hurts: (2010) Sony PS3 ECDSA with constant k,

(2013) Android’s Java SecureRandom with low entropy
▶ variant with deterministic (EC)DSA proposed in RFC 6979

▶ various attacks when some additional information about k is known, for
example (Faugère et al., 2012):
▶ assumption: known messages and signatures, such that k-values share

some common bits (the bits themselves are unknown to the attacker)
▶ works for both DSA and ECDSA
▶ concrete results for 160-bit q:

100 signed messages with shared 4 LSBs . . . 100% probability of success
200 signed messages with shared 3 LSBs . . . 100% probability of success
400 signed messages with shared 1 LSBs . . . 90% probability of success

Digital signatures 24 / 28 ,

Schnorr signature scheme

▶ simple construction, base for other schemes
▶ let us use the DSA’s parameters (any underlying group can be used):

▶ public domain parameters: (p, q, g)
▶ g is a generator of some subgroup (order q)

▶ private key: x
$←− Z∗q

▶ public key: y = gx mod p

▶ hash function H with image Zq
▶ Sigsk(m):

1. r = H(m | | gk mod p), where k $←− Z∗q
2. s = k + xr mod q
3. 𝜎 = (r , s)

▶ Vrfpk(m, (r , s)) = true ⇔ H(m | | gs · y−r mod p) = r
▶ correctness: gs · y−r ≡ gk+xr · g−xr ≡ gk (mod p)

Digital signatures 25 / 28 ,

Schnorr signature scheme

▶ simple construction, base for other schemes
▶ let us use the DSA’s parameters (any underlying group can be used):

▶ public domain parameters: (p, q, g)
▶ g is a generator of some subgroup (order q)

▶ private key: x
$←− Z∗q

▶ public key: y = gx mod p

▶ hash function H with image Zq
▶ Sigsk(m):

1. r = H(m | | gk mod p), where k $←− Z∗q
2. s = k + xr mod q
3. 𝜎 = (r , s)

▶ Vrfpk(m, (r , s)) = true ⇔ H(m | | gs · y−r mod p) = r
▶ correctness: gs · y−r ≡ gk+xr · g−xr ≡ gk (mod p)

Digital signatures 25 / 28 ,

Schnorr signature scheme – security

▶ EUF-CMA in ROM under the discrete logarithm assumption
▶ again: k must be unpredictable

Digital signatures 26 / 28 ,

EdDSA

▶ EdDSA (Edwards Curve Digital Signature Algorithm, RFC 8032)
▶ deterministic variant of Schnorr signature scheme
▶ included in the draft of FIPS 186-5 (Ed448 and Ed25519)

▶ Ed25519 ∼ EdDSA with Curve25519 (in a different form) and SHA-512
▶ optimized for speed and security

▶ Simplified EdDSA – parameters:
▶ H – hash function with 2b-bit output
▶ B – point on elliptic curve, that generates a subgroup of prime order l

▶ Keys:
▶ b-bit string k
▶ compute H(k) = h = (h0, … , h2b−1)
▶ remark: for Ed25519 set h0 = h1 = h2 = 0, hb−2 = 1, and hb−1 = 0
▶ left half of h is a scalar a = h[0… b − 1]
▶ A = aB
▶ private key: k (sometimes with A) or a with the right half h[b…2b − 1]
▶ public key: A

Digital signatures 27 / 28 ,

EdDSA – signing and verification

▶ Signing a message m:
1. r = H(h[b…2b − 1],m)
2. R = rB
3. s = r + H(R,A,m) · a mod l
4. signature: (R, s)

▶ Verification of (R, s) for m:
▶ check if sB = R + H(R,A,m) · A
▶ correctness:

sB = (r + H(R,A,m) · a)B = rB + H(R,A,m) · (aB) = R + H(R,A,m) · A

Digital signatures 28 / 28 ,

	Introduction
	digital signature scheme
	security of digital signatures

	RSA
	textbook version
	padding: PKCS #1, PSS

	ElGamal
	Digital Signature Algorithm – DSA and ECDSA
	Schnorr
	EdDSA

