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Quadratic residues

▶ an integer a ∈ Z∗n is called a quadratic residue modulo n if there exists an
integer b such that b2 ≡ a (mod n)

▶ otherwise a is called a quadratic nonresidue modulo n
▶ QRn – the set of all quadratic residues modulo n
▶ QNRn – the set of all quadratic nonresidues modulo n
▶ trivially QRn ∪QNRn = Z

∗
n
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Quadratic residues modulo prime

example for p = 11:

x 1 2 3 4 5 6 7 8 9 10
x2 mod 11 1 4 9 5 3 3 5 9 4 1

Lemma 1
Let p > 2 be a prime. Then |QRp | = |QNRp |.

Proof.
Let x2 ≡ y2 (mod p) for any x , y ∈ Z ∗

p . Then

p | (x2 − y2) ⇒ p | (x − y) (x + y).

We have x = y or x = p − y , i.e. each quadratic residue has exactly two square
roots. Therefore |QRp | = |Z∗p |/2 = (p − 1)/2 ⇒ |QNRp | = (p − 1)/2 □
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Computing square roots modulo prime

▶ solve equation x2 ≡ a (mod p)
▶ solution exists iff a ∈ QRp

▶ if x is the solution then −x = p − x is the solution as well:
(p − x)2 ≡ p2 − 2px + x2 ≡ x2 ≡ a (mod p)

▶ easy to solve for p ≡ 3 (mod 4); the solution is x = a(p+1)/4 mod p:

x2 ≡ a(p+1)/2 ≡ a · a(p−1)/2 (mod p)
≡ a · bp−1 (mod p) (assuming a ∈ QRp, i.e. ∃b: b2 ≡ a)

≡ a (mod p) (FLT)

▶ probabilistic polynomial time (PPT) algorithm exists for p ≡ 1 (mod 4)

Rabin 5 / 11 ,



Euler’s criterion: testing a ∈ QRp?

Lemma 2 (Euler’s criterion)
Let p > 2 be a prime and a ∈ Z∗p. Then a ∈ QRp ⇔ a(p−1)/2 ≡ 1 (mod p).

Proof.
⇒ a ∈ QRp ⇒ ∃b : b2 ≡ a (mod p)

we have a(p−1)/2 ≡ bp−1 ≡ 1 (mod p) (using FLT)
⇐ (Z∗p, ·) is a cyclic group; let g be its generator

then gr ≡ a (mod p) for some odd r (assuming a ∈ QNRp);
if a(p−1)/2 ≡ 1 (mod p) then gr (p−1)/2 ≡ 1 (mod p)
hence ord(g) = (p − 1) | r (p − 1)/2 ⇒ r/2 is an integer,
i.e. r is even (a contradiction)

□
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Computing square roots modulo n = p · q (1)

There is a PPT algorithm for factoring n ⇔ there is a PPT algorithm for
computing square roots modulo n.

⇒ let’s solve x2 ≡ a (mod n) for a ∈ QRn

trivially, if a ∈ QRn then a ∈ QRp and a ∈ QRq

compute u, v such that u2 ≡ a (mod p), v2 ≡ a (mod q)
use CRT to solve:

x ≡ u (mod p)
x ≡ v (mod q)

trivially, x2 ≡ a (mod p) and x2 ≡ a (mod q)
therefore (again by CRT) x2 ≡ a (mod n)
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Computing square roots modulo n = p · q (2)

⇐ let a = m2 mod n for randomly chosen m ∈ Z∗n
solve x2 ≡ a (mod n); since pq | (x −m) (x +m) there are four possible
solutions:

x ≡ m (mod p) & x ≡ m (mod q)
x ≡ m (mod p) & x ≡ −m (mod q)
x ≡ −m (mod p) & x ≡ m (mod q)
x ≡ −m (mod p) & x ≡ −m (mod q)

▶ computing gcd(x −m, n) reveals p and q in 2nd and 3rd case, respectively
▶ we factor n with probability 1/2 for each choice of m
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Rabin cryptosystem

▶ Initialization: choose p, q large, distinct primes; n = p · q
▶ usually choose p ≡ q ≡ 3 (mod 4) (★)
▶ easy computation of square roots
▶ encryption is permutation on QRn

▶ public key: n
▶ private key: (p, q)
▶ encryption E : Zn → Zn: E (m) = m2 mod n

▶ fast, just single modular squaring
▶ decryption D(c):

▶ compute 4 square roots (knowing the factorization, assuming (★)):

±(c (p+1)/4 mod p)·q·(q−1 mod p)±(c (q+1)/4 mod q)·p·(p−1 mod q) mod n

▶ recognize the valid plaintext (context, structure, redundancy etc.)
▶ alternatively, restrict plain/cipher-text space to QRn

Rabin 9 / 11 ,



Rabin cryptosystem – security (1)

▶ CPA scenario: ability to decrypt is provably equivalent to factoring n
▶ looks better than RSA

▶ insecurity in CCA scenario:
▶ choose random m and compute c = m2 mod n
▶ use c as a chosen ciphertext . . . let m′ be its decryption
▶ then gcd(m −m′, n) yields a non-trivial factor of n with probability 1/2
▶ repeat to increase the probability of success

▶ padding (for uniqueness of decryption) “destroys” both properties:
▶ equivalence to factoring: because decryption works only on subset of

ciphertexts and only the “correct” plaintext is returned
▶ CCA insecurity: small probability of producing a valid ciphertext without

knowing the plaintext
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Rabin cryptosystem – security (2)
▶ OAEP is a good padding for Rabin
▶ some attacks can be “translated” from RSA:

▶ meet in the middle attack on short plaintexts, k = k1 · k2:

k2 ≡ k21 · k22 (mod n)
▶ linearly (polynomially) dependent plaintexts, e.g. m2 = am1 + b:

(z −m1) | z2 − c1

(z −m1) | (az + b)2 − c2
⇒ gcd(z2 − c1, (az + b)2 − c2)

the computation yields z −m1 (probably)
▶ Example 1:

Let n = 77, c1 = 53, c2 = 37, and m2 = 2m4
1 +m2

1 + 3.

gcd(z2 − 53, (2z4 + z2 + 3)2 − 37) =
= gcd(z2 + 24, 4z8 + 4z6 + 13z4 + 6z2 + 49) = z2 + 24 = z2 − 53,
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the computation yields z −m1 (probably)
▶ Example 2:

Let n = 77, c1 = 23, c2 = 58, and m2 = 2m3
1 +m2

1 + 3.

gcd(z2 − 23, (2z3 + z2 + 3)2 − 58) =
= gcd(z2 + 54, 4z6 + 4z5 + 12z3 + z4 + 6z2 + 28) = z + 32 = z − 45,

Thus m1 = 45 (or m1 = −45 = 32) and m2 = 2 · 453 + 452 + 3 = 17 (or
m2 = −17 = 60).
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▶ other variants and generalizations . . . none of them used in practice
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