TLS Security, TLS 1.3

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1 (2022/23)

Content

Fixing issues in practice
Trust, Checking certificates, OCSP stapling
Certificate pinning, Certificate Transparency
Using TLS: HSTS, STARTTLS

Selected vulnerabilities and problems
Implementation bugs
Protocol/cryptography problems

TLS 1.3

TLS Security, TLS 1.3

2/33

Trust — certificates (PKI)

> trusted CA certificates distributed by browsers/OS
> example: Firefox (december 2022):

> 56 unique CA owners (organizations/companies)
> 168 CA certificates

» Do you trust them all?

Certificate validation — chain, expiration, server name, signatures, check
revocation, ... bugs are common

> User — let’s ignore warnings/errors

TLS Security, TLS 1.3 3/33

Trust — reality

v

(2014-2015) Lenovo Superfish — self-signed CA pre-installed, automatic
MITM attack (inserting ads to web pages), private key shared among
installations

(2011) DigiNotar (NL) - compromised since 2009, fake certificates
(MITM), removed from the list od trusted CA, bankruptcy

(2011) Comodo - registration authority account compromised, 9 fake
certificates

(2017-2018) distrust of Symantec CA (and its subordinates: Thawte,
GeoTrust, RapidSSL) — business sold to DigiCert

(2018) Trustico (former reseller for Symantec) — sending 23.000 private
keys to DigiCert by e-mail ...to revoke the certificates

Serrano et al. A complete study of P.K.I. (PKI’s Known Incidents), 2019

TLS Security, TLS 1.3 4/33

Checking certificates

» checking certificate status: OK or revoked?
> several standard options:
> CRL (Certificate revocation list) — a list signed by CA, issued frequently
(e.g. at least every 24 hours); can be large (e.g. GlobalSign’s CRL from 22
kB to 4.7 MB thanks to Heartbleed)
> OCSP (Online Certificate Status Protocol) — requesting info from CA,;
response with timestamp; signed by CA
> non-standard approach:
» CRLSet (Chrome), OneCRL (Firefox) — list of selected revoked certificates
distributed as an update to the browser (Chrome — selected certificates;
FF - intermediate certificates)

TLS Security, TLS 1.3 5/33

OCSP stapling

» problems with OCSP:

> What to do if there is no response from CA - block or allow?

> user privacy (CA learns what certificates client wants to check)
CA flooded with requests related to sites with high traffic.

> slower user experience.

» TLS Certificate Status Extension

> idea: server requests OCSP response at regular intervals and adds it as
Certificate Status message in the Handshake
> the response cannot be forged (timestamp, signed by CA)
> Multiple Certificate Status Request Extension
> providing status for all certificates in a chain
> original extension: only for server’s own certificate
» OCSP Must-staple

> certificate extension — server must staple, otherwise the certificate is
invalid

\4

TLS Security, TLS 1.3 6/33

HTTP Public key pinning (HPKP)

problem: compromised CA issues fake certificates
bind host to known public-key (or keys)
information in HTTP header

“trust on first use” mechanism

vVvy Vv VYy

limitations

> cannot detect MITM attack in the first connection
> attacker can even insert own pinning info in this case

v

now deprecated, replaced by Certificate Transparency

TLS Security, TLS 1.3 7/33

Certificate Transparency

> goals:
> make hard for a CA to issue a certificate for domain that is not visible to
domain owner
> allow to monitor and audit issued certificates (e.g. by domain owners or
CA)
> protect users against certificates issued maliciously or mistakenly
> Certificate Transparency log
> Merkle tree of certificate chains (or precertificate chains)
> publicly verifiable
> signed root
» CA publishes certificates (precertificates) to public logs
> SCT - Signed Certificate Timestamp — log’s promise to incorporate the
certificate in the Merkle tree

> new certificates contains SCT(s)

TLS Security, TLS 1.3 8/33

HSTS

> SSL Stripping
> attacker: MITM proxy replacing links https with http links
> user clicks on a link ...
> victim communicates with attacker via http
> attacker communicates with the web server via https
» HSTS (HTTP Strict Transport Security, RFC 6797)
» HSTS headers over https — instructing browser to use only https for all
future requests
> browser transforms all http links into https links
> browser does not allow unsecured connections to the web server
> limitations
» HSTS header stripped in first visit (pre-loaded list of HSTS sites in
browsers — does not scale)

> supported: Firefox, Chrome, Safari

TLS Security, TLS 1.3 9/33

STARTTLS

» Opportunistic TLS, switch from plaintext to TLS connection
» STARTTLS command
> supported: SMTP, POP3, IMAP, LDAP, etc.

» STRIPTLS attack — removing STARTTLS

TLS Security, TLS 1.3 10/33

Apple “goto” fail (2014)

SSLVerifySignedServerKeyExchange(...)

{

OSStatus err;

if ((err = SSLHashSHA1l.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1l.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1l.final (&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(...)

fail:

}

return err;

TLS Security, TLS 1.3 11/33 R

Heartbleed (2014)

v

bug in OpenSSL (2012 - 2014)
> heartbeat extension (RFC 6520):

1. A — B: please, reply with these 3 bytes: “abc”
2. B— A: “abc”

» the problem:

1. A — B: please, reply with these 10000 bytes: “abc”
2. B— A:“abc”00a330e2...7f

> possible leaks: private keys, master secret, passwords, ...
> huge impact on security — OpenSSL everywhere
> client software affected as well (server can issue a heartbeat request too)

Do you use some 3rd party code critical to the security of your system?
How well is it maintained, reviewed, audited?

TLS Security, TLS 1.3 12/33

Discussion on security of TLS (informal)

> TLS 1.2 (RFC 5246)

> Appendix F: Security Analysis
> F.1. Handshake Protocol
> F.1.1. Authentication and Key Exchange
F.1.1.1. Anonymous Key Exchange
F.1.1.2. RSA Key Exchange and Authentication
F.1.1.3. Diffie-Hellman Key Exchange with Authentication
> F.1.2. Version Rollback Attacks
> F.1.3. Detecting Attacks Against the Handshake Protocol
> F.1.4. Resuming Sessions

F.2. Protecting Application Data

F.3. Explicit IVs

F.4. Security of Composite Cipher Modes
F.5. Denial of Service

> F.6. Final Notes

vvyyy

> interesting part: D.4. Implementation Pitfalls

TLS Security, TLS 1.3

13/33

5

Problem with PKCS #1 v1.5 (RSA encryption)

(1998) Bleichenbacher
RSA key exchange

>
>
> plaintext (after padding) contains bytes 00 02 (ClientKeyExchange)
> server’s response for a ciphertext indicates correct/incorrect format
>

access to this oracle allows to decrypt arbitrary ciphertext (i.e.
pre-master secret)

» requires approx. 1 million queries for 1024 bit modulus

TLS Security, TLS 1.3 14/33

Problem with PKCS #1 v1.5 — solutions

> treat incorrect format as a correct one:

“In any case, a TLS server MUST NOT generate an alert if processing an
RSA-encrypted premaster secret message fails, or the version number is not
as expected. Instead, it MUST continue the handshake with a randomly
Zenerated premaster secret.”

> use RSA-OAEP (not used in TLS 1.2):

“The RSAES-OAEP encryption scheme defined in [PKCS1] is more secure
against the Bleichenbacher attack. However, for maximal compatibility
with earlier versions of TLS, this specification uses the RSAES-PKCS1-v1_5
scheme.”

> avoid RSA key exchange altogether (TLS 1.3)

TLS Security, TLS 1.3 15/33

ROBOT (2017)

Bock, Somorovsky, Young (2017)

ROBOT (Return Of Bleichenbacher’s Oracle Threat)

affected vendors: F5, Cisco ACE, Citrix, Radware, ...

affected web sites: Facebook, PayPal, etc.

countermeasures specified in TLS 1.2 not implemented correctly

expected: TLS alert 20 (bad_record_mac) after Finished for all RSA
decryption failures

vV v v v VY

> examples of problems:
> immediate reset of TCP connection for prefix/padding errors
> ChangeCipherSpec/Finished withheld — waiting for these messages iff the
ciphertext in ClientKeyExchange was valid
> specific alert (not 20) vs. timeout allowed for valid ciphertext
> different error messages for valid and invalid ciphertexts

TLS Security, TLS 1.3 16/ 33

Timing attack, PRNG

> Timing attack

>
>
>

>
>

(2003) Boneh, Brumley

timing RSA decryptions (processing ClientKeyExchange by server)
analyzing correlations between time and private key allows to reconstruct
the private key

improvements for RSA with CRT and Montgomery multiplication exist
solution: RSA blinding

> PRNG

>

| 4
| 4
>

client and server nonces, pre-master secret for RSA key exchange, DH
private parameters for (EC)DHE key exchange, IV for AEAD
unpredictability, initialization

(2006-2008) Debian OpenSSL PRNG initialization bug

(2017) DUHK - Don’t Use Hardcoded Keys — some (usually older) FIPS
140-2 certified implementations of ANSI X9.31 PRNG (seed key hardcoded
in firmware)

TLS Security, TLS 1.3 17/ 33

“Renegotiation” problem (2009)

> renegotiation — a new handshake can be initialized anytime by client or
server (inside an existing TLS connection)

> attacker creates his own TLS connection with the server and inserts
victim’s handshake as a renegotiation ...inserting arbitrary data as a
prefix to the victim’s data

> root cause: missing binding between renegotiation handshake and TLS
parameters in use

» RFC 5746 (TLS Renegotiation Extension):

> basically, Hello messages must contain verification data from previous
Finished messages

TLS Security, TLS 1.3 18 /33

BEAST (2011)

> BEAST (Browser Exploit Against SSL/TLS)

> known vulnerability of CBC mode implementation made practical

> CBC mode (TLS 1.0 and older) - 1V for a packet is the last block from
previous packet

> assumptions: plaintext (request) manipulation (e.g. Javascript), access to
the ciphertext (eavesdropping)

TLS Security, TLS 1.3 19/33

BEAST (2)

> attack idea:

»

vyVVyVYyVYYY

>

let Co, ..., C; be a ciphertext (a packet)

attacker wants to decrypt P;

attacker chooses plaintext with the first block P{ = C;_1 ® C; ® x

then C} = Ex(P; ® C)) = Ex(Cj—1 ® x)

therefore C; = C; & x=P;

guessing an entire block is hard

attacker moves the boundaries of plaintext (e.g. a cookie) so he will guess
just 1 byte (other bytes can be known “any_session_id=?")

different shift allows “ny_session_id=7?") etc.

> fix in TLS 1.1 — explicit IV

> other mitigation strategy in browsers: 1/n-1 record splitting

> remark:

| 4
| 4
>

weakness in CBC known since 2002; TLS 1.1 standardized in 2006
practical attack: BEAST in 2011
default support for TLS 1.1 in browsers in 2011: none

TLS Security, TLS 1.3 20/ 33

CRIME (2012)

» CRIME (Compression Ratio Info-leak Made Easy)
» using compression in SSL/TLS for leaking plaintext information

> assumptions: compression, plaintext (request) manipulation, access to
the ciphertext (eavesdropping)
> attack idea:

> attacker adds data to plaintext, e.g. “Cookie: company_session_id=7?"

> ciphertext will be probably shorter if “??” is guessed correctly

> subsequent bytes can be tested after correct guess

> “playing” with the plaintext to see differences when padding is used

> divide et impera approach: add strings for half of all guessed values =
less requests, faster attack

> fix: disable compression in TLS

TLS Security, TLS 1.3 21/33

POODLE (2014)

» POODLE (Padding Oracle On Downgraded Legacy Encryption)
» attacking CBC mode padding in SSL 3.0

> SSL 3.0 prescribes only the value of the last byte in padding (e.g. 07 for a
complete padding block and 3DES algorithm)

> padding is not an input to MAC (SSL: MAC-then-Encrypt)

» client and server might be willing to use SSL 3.0 in case of problems with
the handshake (even though they both support TLS)

> assumptions: attacker can create requests (e.g. Javascript), manipulate
the ciphertext, and observe server’s responses

TLS Security, TLS 1.3 22/33

POODLE (2)

> padding oracle attack, and shifting unknown plaintext (e.g. cookie)

> request || MAC fits to block boundary (i.e. padding fills an entire block)
GET /path Cookie: secret=xx || xxxxxxYX || ... || MAC || padding 07

> attacker replaces last ciphertext block with the CT block for the red block
server continues = final byte 07, compute X (prob. 1/256)
server rejects = new handshake; new test

> attacker shifts the plaintext to decrypt other bytes of cookie:
GET /path2 Cookie: secret=x || xxxxxxY || X.. || MAC || padding 07
etc.

> fix — remove SSL 3.0 from browsers (at least disable)

TLS Security, TLS 1.3 23/33

POODLE (3)

> TLS padding is a special case of SSL 3.0 padding

msg || 00
msg || 0101
msg || 03 03 03 03

> What if padding verification is performed as in SSL 3.0 case?
> no need for fallback to SSL 3.0

» POODLE for TLS (SSL Pulse, https://www.ssllabs.com/ssl-pulse/)
vulnerable severs:
> 10.1% (X11/2014)
> 1.9% (XI1/2016)
> 0.4% (X11/2018)
> 0.0% (XI11/2020) ...end of story?

TLS Security, TLS 1.3 24/ 33

POODLE continues

» various methods of detecting padding oracles
> in the handshake (Finished message) or in application data
> in/valid/missing MAC combined with in/valid padding
> different ciphersuites behave differently, ...

» GOLDENDOODLE, Zombie POODLE, Sleeping POODLE, ...

> Merget et al. (2019): Scalable Scanning and Automatic Classification of
TLS Padding Oracle Vulnerabilities

> systematic analysis of servers’ behavior
> conservative estimate: 1.83% of TLS servers vulnerable

TLS Security, TLS 1.3 25/ 33

FREAK (2015)

> “export-grade” algorithms — RSA 512 bits

» clients (usually) did not request such algorithms ...but they accepted
such short RSA public key

> note: TLS 1.1 and older allow temporary RSA key in key exchange

» supported by web servers (March 2015, approx. 36%)

> MITM attack:
1. attacker replaces cipher suites with export RSA in ClientHello
2. attacker decrypts pre-master secret and computes keys
3. knowing master secret allows “fixing” Finished messages

> no need to factorize 512 bit RSA often:

> apache: generated when server starts and reused when needed
> March 2015: 1 factorization ~ 7.5 hours in EC2 for 104 USD

TLS Security, TLS 1.3 26/ 33

Logjam (2015)

v

“export-grade” algorithms again — DHE (short group, e.g. 512-bit)
> clients (usually) did not request ...but they accepted
> MITM attack (similar to FREAK):

1. attacker replaces cipher suites with export DHE in ClientHello
2. attacker computes dlog, obtains pre-master secret and computes keys
3. knowing master secret allows “fixing” Finished messages

> computing dlog (even with export-grade parameters) is not possible in
real-time

> 2 phases: pre-computation (slow, but depends on group and g only) and
on-line (for given input, fast)
> DHE_EXPORT: 99% hosts choose one of three 512-bit primes

> remark: fixed groups are used everywhere (IPSec, TLS, SSH); 1024-bit
primes within reach of a state-sponsored agency

> passive eavesdropping on VPN, SSH?

TLS Security, TLS 1.3 27 /33

DROWN (2016)

DROWN (Decrypting RSA using Obsolete and Weakened eNcryption)
TLS and SSL 2.0 enabled on server (or servers), sharing the same RSA key
RSA key exchange

cross-protocol attack

vVvy Vv VYy

decrypting pre-master secret from TLS 1.x RSA key exchange

> using SSL 2.0 to mount Bleichenbacher’s attack
> exploiting export-grade cipher suite, and other SSL 2.0 weaknesses

v

fix: disable SSL 2.0 everywhere

TLS Security, TLS 1.3 28 /33

TLS 1.3 = major changes from TLS 1.2

> RFC 8446 (2018)

> AEAD ciphers only (support for non-AEAD ciphers removed)

> public-key key exchange with forward secrecy (static RSA and
Diffie-Hellman removed)

> redesigned key derivation function: HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)

> reworked handshake: 1-RTT (1 round trip time) mode

> new zero round-trip time (0-RTT) mode

> other things removed: custom DHE groups, support for compression,
DSA

> RSA-PSS is used instead of PKCS#1 v1.5 for handshake signatures

» TLS supports three basic key exchange modes:

> Diffie-Hellman (over the finite fields and or elliptic curves)
> pre-shared symmetric key (PSK)
> combination of PSK and Diffie-Hellman

TLS Security, TLS 1.3 29/33

TLS 1.3 — mandatory cipher suites

> symmetric cipher suite (AEAD + hash function HKDF):
> MUST: TLS_AES_128 GCM_SHA256
> SHOULD: TLS_AES 256 _GCM_SHA384,
TLS_ CHACHA20_POLY1305_SHA256
> digital signatures:
> MUST: rsa_pkcs1_sha256 (for certificates), rsa_pss_rsae_sha256 (for
CertificateVerify and certificates), and ecdsa_secp256r1_sha256
> key exchange:
> MUST: secp256r1 (NIST P-256)
> SHOULD: X25519

TLS Security, TLS 1.3 30/33

TLS 1.3 — Handshake protocol

ClientHello
+ key_share
+ signature_algorithms

+ pre_shared_key

+ psk_key_exchange_modes™

A
A

N

N (opt)

D (enc.)
D (enc.)

| Certificate

| CertificateVerify

| Finished

| Application Data

A
h
|
|

TLS Security, TLS 1.3

ServerHello
+ key_share
+ pre_shared_key

4 4

| EncryptedExtensions

| CertificateRequest

| Certificate

| CertificateVerify

| Finished

| Application Data

LAl [l 4] 4] 4] |

—

<> | Application Data

31/33

5

Discussion on security of TLS 1.3 (informal)

> TLS 1.3 (RFC 8446)
> Appendix E. Overview of Security Properties
> E.1. Handshake
E.1.1. Key Derivation and HKDF
E.1.2. Client Authentication
E.1.3. 0-RTT
E.1.4. Exporter Independence
E.1.5. Post-Compromise Security
E.1.6. External References
> E.2 Record Layer
> E.2.1. External References
> E.3. Traffic Analysis
> E.4. Side-Channel Attacks
> E.5. Replay Attacks on 0-RTT
> E.5.1. Replay and Exporters
> E.6. PSK Identity Exposure
» E.7. Sharing PSKs
> E.8. Attacks on Static RSA

> interesting part: C.3. Implementation Pitfalls
TLS Security, TLS 1.3 32/33

VVvyYVYyvVvYyYvYyy

TLS 1.3 — Selfie

> Selfie (2019) - first protocol attack on TLS 1.3

»

>
>
>
>

rarely used case of (external) PSK authentication

scenario: client can also be a server

simple reflection: attacker resend all messages back to client
client establishes connection with itself

limited impact in practice

TLS Security, TLS 1.3

33/33

5

	Fixing issues in practice
	Trust, Checking certificates, OCSP stapling
	Certificate pinning, Certificate Transparency
	Using TLS: HSTS, STARTTLS

	Selected vulnerabilities and problems
	Implementation bugs
	Protocol/cryptography problems

	TLS 1.3

