Weaknesses in real-world protocols

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1 (2022/23)

Content

KRACK

Dragonfly (SAE)

Bluetooth

Weaknesses in real-world protocols

2/19

KRACK

> Key Reinstallation Attacks (Vanhoef, Piessens, 2017)
> just an idea
> details and paper available at www.krackattacks.com
> WPA (Wi-Fi Protected Access)
> WPA - 802.11i (draft D3.0); WPA2 — 802.11i (final version D9.0)
> two data confidentiality and integrity protocols: (WPA-)TKIP and
(AES-)CCMP
> 802.11ad amendment: Galios/Counter Mode Protocol (GCMP)
» 4-way handshake protocol
> mutual authentication based on PMK (Pairwise Master Key)
> PMK derived from preshared secret (WPA-Personal) or negotiated in
802.1x (WPA-Enterprise)
> establish a session key PTK (Pairwise Transient Key)

> supplicant/station (client) and authenticator (AP)

Weaknesses in real-world protocols 3/19

4-way handshake

v

simplified presentation

> 4-way handshake:
1. AP — S: ANonce (now the supplicant can derive PTK)
2. S — AP: SNonce, MICck (now the authenticator can derive PTK)
3. AP — S: GTK, MICck (GTK encrypted with KEK)
4. S — AP: Ack, MICkck (ACk)

v

MIC (Message Integity Check)

GTK (Group Temporal Key ...broadcast/multicast)

PTK = PRF(PMK, APmac, Smac, ANonce, SNonce), divided into
KCK (EAPOL-Key Confirmation Key) — for MIC computation

KEK (EAPOL-Key Encryption Key) — for encryption of GTK

TK (Temporal Key) - for encryption of data frames

TMK1, TMK2 (Temporal AP MIC Key) - keys for MIC computation
(unicast), one for each direction

A2 /

>
>
>
>

Weaknesses in real-world protocols 4/19

KRACK - idea

> remark: offline dictionary attack (4th message), no forward secrecy
> the third (or the first) message can be retransmitted (multiple times)

> for example, if the authenticator does not receive message 4 (or 2)

> reinstall the PTK and reset initialization vector (nonce) for data
encryption and authentication

> according 802.11i “AP retransmits message 1 or 3 if it did not receive a

reply”
> behavior of clients differs (depends on NIC and supplicant
implementation)

> other variants: key reinstallation against group key handshake ...

Weaknesses in real-world protocols 5/19

5

KRACK - impact

v

CCMP - AES-CCM (CTR and CBC-MAC)

> key and IV are re-used, i.e. keystream is re-used
> attacker can decrypt

GCMP - AES-GCM

> keystream re-use
> authentication key can be recovered after nonce reuse (Joux, 2006)
> attacker can decrypt and inject own data

v

» special weakness in Android and Linux:
> retransmitted message 3 causes all-zero key

other variants of KRACK attack (2018)

v

Weaknesses in real-world protocols 6/19

Dragonfly (SAE)

> WPA3 (2018)

» mandatory: new protocol Simultaneous Authentication of Equals (SAE)
> original design — Harkins (2008)
> balanced PAKE protocol
> |EEE 802.11-2016
> RFC 7664 (Dragonfly Key Exchange)
» other variants: EAP-pwd (RFC 5931), IKEv2 Secure PSK Authentication
(RFC 6617)
» EAP-pwd: can be used in some enterpise WiFi networks
» SAE is used to derive new PMK for the 4-way handshake
> does not prevent KRACK per-se
> prevents offline dictionary attack
> ensures forward secrecy
> M. Vanhoef, E. Ronen: Dragonblood: Attacking the Dragonfly Handshake
of WPA3(2019) — weaknesses in SAE and EAP-pwd

Weaknesses in real-world protocols 7/19

Dragonfly (SAE) — introduction

v

simplified for presentation

v

main goals and properties

v

no fixed roles (e.g. initiator, client, server, ...)

> both parties can initiate the protocol (simultaneously)

> forward secrecy

> resistance to offline dictionary attack (and other attacks)
> based on DLOG problem

> proposed for modular and elliptic curves groups
> parameters: primes p, g,and g | (p— 1)
> modular group: subgroup of order g is used
> elliptic curve group over GF(p): group order g, curve
y?=x*+ax*+bmod p

v

H - hash function (random oracle); KDF — key derivation function

Weaknesses in real-world protocols 8/19

Dragonfly (SAE) — password element P

> map password pw to a group element P
> hash to group:
for counter in range(1, 256):
seed = H(addr4, addrg, pw, counter)
x = KDF(seed, p)
if x > p: continue
P = x(P~D/9 mod p
if P> 1: return P
> hash to curve:
base = pw, counter = 1
while counter++ < 40 or P not found:
seed = H(addrg4, addrg, base, counter)
x = KDF(seed, p)
if x > p: continue
ifx>+ax+be QR,, and P not found:
P = (x,sqrt(x> + ax + b) mod p)
base = random()
return P

Weaknesses in real-world protocols 9/19

SAE - protocol

1. Commit Exchange (presentation uses elliptic curves)
> Aselect random ra, my € Z’c‘,;
A computes sp = (ra+ ma) mod g, and E4 = —m4 - P
> Bselect random rg, mg € ZZ;
B computes sg = (rg + mg) mod q, and Eg = —mp - P
A= B: spEp
B— A: 5B, EB
> check validity of sx, check that Ex is on the curve
> shared secret element K is computed:

A:K=ra-(sg- P+ Eg)=ra-((rg+mp)-P—mg-P)=(rarp) - P
B: K=rg-(sa-P+Es) =rp-((ra+ma)-P—ma-P)=(rarp) - P

> shared key k = H(K)

Weaknesses in real-world protocols 10/19

SAE - protocol (2)

2. Confirmation Exchange
> verify k and transcript of the protocol:
A— B: (= HMACk(SA, EA, 5B, EB)
B— A: cg = HMACk(SB, EB,SA, EA)
> variants of Dragonfly differ in

> computation of password element
> computation of confirmation messages
> key derivation and usage (e.g. multiple keys are derived), ...

Weaknesses in real-world protocols 11/19

SAE - some earlier results

» D. Clarke, F. Hao: Cryptanalysis of the Dragonfly Key Exchange
Protocol (2013)
> offline dictionary attack for small subgroups

> important to perform checks in “Commit Exchange” step (validity of Ex
and sx)

> J. Lancrenon, M. Skrobot: On the Provable Security of the Dragonfly
Protocol (2015)

> security proof in model by Bellare, Pointcheval and Rogaway (other
models exist)

» assumptions: random oracle model (H), CDH, DIDH (Decisional
Inverted-Additive Diffie-Hellman)

> DIDH: hard to distinguish g"/**) and a random g'/? when given g'/*
and g'/”.

Weaknesses in real-world protocols 12/19

Timing attacks — MODP groups

» hash to group — number of iterations depends on password

> KDF returns bit string of length |p|

> probability that x > p is not negligible for some groups

> RFC 5114 — group 22 (30.84%), group 23 (32.40%), group 24 (47.01%)
> Is the difference between r and r + 1 iterations measurable?

Yes (see the experiments in Dragonblood paper)

e.g. for group 22 = 75 measurements were enough to identify r
number of iteration depends on MAC addresses as well

> spoofing MAC, measuring iterations ...building a password “profile
> offline dictionary/brute-force attack

v

i

Weaknesses in real-world protocols 13/19

Timing attacks — elliptic curves

> hash to curve for EAP-pwd

> iterate until P is on the curve
> similar timing leak as for hash to group
> hash to curve for SAE - timing attacks countermeasures already present
> x > pis not negligible for Brainpool curves (RFC 6932)
> multiple measurements for a MAC:
more iteration with real password yield lower variance
average time depends on real iterations and number of x > p results
(see the experiments in Dragonblood paper)
> cache attacks (Flush and Reload)
> blinding the y value in the QR test
> detection of QR test result in the first iteration
> assumption: attacker runs a process on victim host (e.g. Android app)

Weaknesses in real-world protocols 14/19

5

Other issues and observations

» AP must store the password in plaintext
» WPA3 Transition Mode — AP accepts WPA3-SAE and WPA2 with the
same password

> compatibility with old clients

> downgrade attack are detected, thanks to properties of 4-way handshake

> attack has enough data for offline dictionary attacks

> countermeasure: remember if the network supports WPA3-SAE
(“pinning”)

> high overhead of hash to curve

> timing attacks defense (40 iterations) is costly for lightweight devices

> existing DoS countermeasures can be defeated
e.g. experiment with 8 connections/s — AP’s CPU saturated

> fatal impact of bad PRNG

> attacker reconstructs P and K
> impact worse than bad PRNG in WPA2

> update to WPA3?

Weaknesses in real-world protocols 15/19

Bluetooth

> widely deployed protocol
> mobile phones, laptops, fitness/smart watches, headphones, ...
> two protocols (similar):

> Bluetooth BR/EDR - Secure Simple Pairing (SSP)
> Bluetooth Low Energy — Low Energy Secure Connection (LE SC)

goals for both protocols: confidentiality and MITM protection
authenticated ECDH key exchange

both protocols are vulnerable

vV v.v Yy

E.Biham, L. Neumann: Breaking the Bluetooth Pairing — Fixed Coordinate
Invalid Curve Attack (2018)

> other attacks for older versions exist (e.g. crackle)

Weaknesses in real-world protocols 16/ 19

Invalid Curve Attack on ECDH

» ECDH (elliptic curve E, generator P):
. A->BU=u-P
2. B—>AV=v-P
= shared key: K = (uv) - P
> attacker uses invalid points (not on the curve) to find shared key
> group operation does not depend on b (y? = x3 + ax? + b), see the “dlog”
lecture
> attacker can choose a curve E’ (different b’) with subgroup of small order
> let P’ be a generator, and ¢’ is the order

Weaknesses in real-world protocols 17/19

Invalid Curve Attack on ECDH (2)

> attack:
LASMU=u-P
2 M—> AP ... Acomputes K=u- P’
. Ao M:c=Ex(m)
> assumption: M knows m
> Mfindsu' € Zg: Ey.p(m)=c = wu=u (modq’)
> recovering u:
> iterate attack for multiple times for different (co-prime) ¢’
> use CRT to compute u
> assumptions:
> the protocol can be executed multiple times and u does not change
> attacker can choose arbitrary P’
> Bluetooth specification: to prevent this attack, refresh your parameters
for every pairing

Weaknesses in real-world protocols 18/19

Fixed Coordinate Invalid Curve Attack (idea)

> let’s ignore all other SSP / LE SC details

> main problem:
y-coordinate is not authenticated (only x-coordinate of “public key”)

> semi-passive attack:
> set y-coordinate of both public keys to 0 (a curve with different b”)
the order of these points is 2
> if both “private keys” are even (prob. 25%), then K = 0 (point at infinity)
> attacker knows the shared key (shared by both parties)

v

> fully-active attack:
> improved attack with 50% probability of success

> large majority of the Bluetooth devices are vulnerable (CVE-2018-5383)
> chips/implementations: Broadcom, Qualcomm, Intel / Apple, Google, ...

Weaknesses in real-world protocols 19/19

	KRACK
	Dragonfly (SAE)
	Bluetooth

