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Discrete logarithm problem

▶ Given a finite group (G, ·) and elements g, y ∈ G.
Compute x ∈ Z such that gx = y .

▶ usually cyclic (sub)groups with generator g are used
▶ DLOG is easy/hard depending on the group G
▶ Easy:

▶ (Zn,+) – DLOG by solving congruence gx ≡ y (mod n)
▶ Hard:

▶ (Z∗p, ·) for prime p; usually with g generating a subgroup of large prime
order q

▶ Elliptic curve groups (various curve types over various finite fields)
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Example of DLOG in (Z∗p, ·)

▶ let p = 11
▶ case 1: g = 5

x 0 1 2 3 4 5 6 7 8 9 10
5x mod 11 1 5 3 4 9 1 5 3 4 9 1

▶ log5 9 = 4; log5 7 does not exist

▶ case 2: g = 7

x 0 1 2 3 4 5 6 7 8 9 10
7x mod 11 1 7 5 2 3 10 4 6 9 8 1

▶ log7 2 = 3; log7 10 = 5
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Solving “hard” instances of DLOG

▶ (Z∗p, ·)
▶ Specific algorithms, e.g. when p − 1 lacks large prime factor
▶ General algorithm: Number Field Sieve for DLOG – complexity as GNFS

for factorization (⇒ equal key length)
▶ Generic algorithms

▶ work for any cyclic group
▶ the best algorithms for some groups, e.g. elliptic curve groups
▶ complexity O(n1/2), for n = |G |
▶ algorithms: baby-step/giant-step, Pollard’s 𝜌 , Pohlig-Hellman
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Equivalent key lengths

symmetric modular (subgroup) elliptic curves
80 1024 (160) 160
112 2048 (224) 224
128 3072 (256) 256
192 7680 (384) 384
256 15360 (512) 512

NIST Recommendations (SP 800-57 part 1 rev. 5) (2020)
various methods are compared at www.keylength.com
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Selection of the base is irrelevant for DLOG

▶ g, h – generators of G, |G | = n
▶ y – input
▶ if DLOG w.r.t. the base h can be computed efficiently, then DLOG w.r.t

the base g can be computed:
1. compute a, b: ha = g, hb = y

2. gba
−1

= (ha)ba−1 = hb = y , where the inverse is computed mod n

▶ since g, h are generators, the inverse a−1 mod n must exist

▶ For some constructions, e.g. ElGamal digital signature scheme, it is
important to choose the generator carefully (there are strong and weak
ones)!
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How to choose a generator of (Z∗p, ·)

▶ generator of (Z∗p, ·)
▶ assume p = 2q + 1 for a prime number q (p is called a “safe” prime)
▶ |Z∗p | = p − 1, thus any element has order in {1, 2, q, p − 1}
▶ there are 𝜑 (p − 1) = 𝜑 (2)𝜑 (q) = q − 1 generators
▶ the probability of a random element being a generator is

(q − 1)/(p − 1) = (q − 1)/(2q) ≈ 50%
▶ testing: g ∉ {1,−1} is a generator ⇔ gq mod p ≠ 1

▶ generator of a subgroup
▶ assume a prime q | (p − 1)
▶ choose random h and compute g = h(p−1)/q mod p; if g = 1 choose again
▶ trivially gq ≡ 1 (mod p) (FLT), so we have ord(g) | q
▶ since ord(g) > 1, it follows ord(g) = q
▶ useful for working in smaller subgroup (shorter exponents are used)
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Security of the last bit(s) of DLOG in (Z∗p, ·)

▶ let g be a generator of (Z∗p, ·)
▶ we can write p = 2st + 1 for s ≥ 1 and some odd t
▶ input: y ∈ Z∗p
▶ let x be the DLOG of y , i.e. gx mod p = y
▶ we use the binary representation of x = (xl … x1x0)2 = 2lxl +… + 2x1 + x0
▶ compute:

y (p−1)/2 ≡ gx (p−1)/2 ≡ gx0 (p−1)/2 ≡
{
1 if x0 = 0

−1 if x0 = 1
(mod p)

▶ x0 can be found
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. . . cont.

▶ we can continue for s bits
▶ let us assume that x0, … , xi−1 are known (i < s)
▶ compute (mod p):(

y · g−(x0+…+2i−1xi−1 )
) (p−1)/2i+1

≡ g (2
ixi+…+2lxl ) (p−1)/2i+1

≡ gxi (p−1)/2 ≡
{
1 if xi = 0

−1 if xi = 1

▶ cannot be extended for more than s bits
▶ we can limit the “damage” to a single bit by choosing a safe prime
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ElGamal encryption scheme

▶ ElGamal (1985)
▶ example: originally, a default algorithm in GPG (still an option for

public-key encryption in GPG)
▶ variants exists (what (sub)groups are used)

▶ Initialization:
1. choose a large random prime p, and a generator g of (Z∗p, ·)
2. choose a random x ∈ {1, … , p − 2}
3. y = gx mod p

▶ public key: y , p, g (the values p, g can be shared)
▶ private key: x
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ElGamal – encryption and decryption

▶ Encryption (plaintext m ∈ Z∗p):

(r , s) = (gk mod p, yk · m mod p), for random k ∈ Zp−1
▶ Decryption (ciphertext (r , s), computation mod p):

s · r−x = yk · m · r−x = gxk · g−xk · m = m

▶ encryption: two exponentiations; decryption: single exponentiation
▶ r = gk and yk can be precomputed

▶ randomized encryption: 1 plaintext maps to approx. p ciphertexts
▶ security of the private key: DLOG problem
▶ knowledge of k allows to decrypt without x : s · y−k = m

▶ computing k from r : DLOG problem
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Remarks

▶ Reusing k:
▶ m1 ↦→ (r , s1), m2 ↦→ (r , s2), we can compute s1/s2 = m1/m2

▶ Homomorphic property:
▶ encryptions of two plaintexts m1, m2:

m1 ↦→ (r1, s1) = (gk1 , yk1 · m1), m2 ↦→ (r2, s2) = (gk2 , yk2 · m2)
▶ multiplying the ciphertexts:

(r1 · r2, s1 · s2) = (gk1+k2 , yk1+k2 · (m1 · m2))
▶ Simple malleability:

▶ (r , s) ↦→ (r , s · m′) changes the plaintext from m to m · m′

▶ Blinding (CCA):
▶ access to a CCA oracle
▶ How to decrypt (r , s) if the oracle won’t decrypt this message?
▶ use (rgc , syc · m′) for a random value c and m′

▶ after decryption we get a message m · m′, so m can be recovered easily
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ElGamal – security and CDH

▶ Computational Diffie-Hellman problem (CDH):
▶ compute gab given g, ga, gb for random generator g, and random a, b
▶ DLOG⇒ CDH (opposite direction is open in general)

▶ ElGamal decryption without the private key⇔ CDH
⇐ use CDH to compute gxk from r = gk and y = gx ; then the plaintext can

be computed: m = s · (gxk)−1
⇒ input: ga, gb

set y = (ga)−1, r = gb and s = gc for a random c
use the decryption oracle for y and (r , s) to get the value m = s · ra = gc+ab

finally, divide m by s: m · s−1 = gc+ab · g−c = gab
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What is a quadratic residue?

▶ a ∈ Z∗n is called a quadratic residue modulo n if there exists an integer b
such that b2 ≡ a (mod n)

▶ otherwise a is called a quadratic nonresidue modulo n
▶ QRn – the set of all quadratic residues modulo n
▶ QNRn – the set of all quadratic nonresidues modulo n
▶ trivially QRn ∪QNRn = Z

∗
n

▶ it is easy to test quadratic residuity modulo prime:

[Euler’s criterion] Let p > 2 be a prime and a ∈ Z∗p. Then
a ∈ QRp ⇔ a(p−1)/2 ≡ 1 (mod p).
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Semantic “insecurity” of ElGamal

▶ we can test the parity of k (it is the last bit of discrete logarithm of r)
▶ another view: for a generator g we have r ∈ QRp ⇔ k is even
▶ for even k: s ∈ QRp ⇔ m ∈ QRp

▶ for odd k:
▶ if y ∈ QRp: s ∈ QRp ⇔ m ∈ QRp
▶ if y ∈ QNRp: s ∈ QRp ⇔ m ∈ QNRp

▶ we can compute “something” about m from the ciphertext and y
▶ how to achieve semantic security:

▶ use a subgroup QRp for a safe prime p = 2q + 1 (or a general cyclic group
of some prime order) and assume the hardness of a DDH problem in this
group

▶ DDH (Decisional Diffie-Hellman) problem: efficiently distinguish triplets
(ga, gb, gab) and (ga, gb, gc) where c is random

▶ there are groups where CDH seems to be hard and DDH is easy
(e.g. (Z∗p, ·), elliptic-curve groups with pairing)
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Some variants of ElGamal scheme

▶ ElGamal in a general cyclic group:
▶ |G | = q (for prime q) with generator g
▶ private key: x ∈ Z∗q ; public key y = gx

▶ encryption of m ∈ G: (r , s) = (gk ,m · yk) for random k ∈ Z∗q
▶ decryption of (r , s): s · r−x = m · yk · g−kx = m

▶ ElGamal with a hash function:
▶ overcoming the group encoding problem (m ∈ G)
▶ encryption m ∈ {0, 1}l : (r , s) = (gk ,m ⊕ H(yk)) for random k ∈ Z∗q and

suitable H and l
▶ security depends on CDH and properties of H
▶ still malleable
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Elliptic curves – introduction

▶ we start with elliptic curves over real numbers
▶ Weierstrass equation (a, b ∈ R):

y2 = x3 + ax + b

▶ we are interested in non-singular curves, i.e. 4a3 + 27b2 ≠ 0
▶ non-singular ∼ x3 + ax + b has no repeated roots
▶ points: E = {(x , y) | y2 = x3 + ax + b} ∪ {0}, where 0 is an identity

element (point at infinity)
▶ group (E ,+) uses a commutative “addition”:

▶ notation: P = (xP , yP ), P = (xP ,−yP )
▶ P + P = 0
▶ P + P = R = (xR, yR) such that the line PR is a tangent in P
▶ P + Q = R = (xR, yR) such that R, P and Q are collinear
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Elliptic curves – addition formulas

▶ P = (xP , yP ), Q = (xQ , yQ)
▶ case 1: P + (−P) = (xP , yP ) + (xP ,−yP ) = 0
▶ case 2 and case 3: P + Q = (xR, yR)

xR = 𝜆2 − xP − xQ
yR = 𝜆(xP − xR) − yP

𝜆 =

{
(3x2P + a) (2yP )−1 P = Q

(yQ − yP ) (xQ − xP )−1 xP ≠ xQ
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Elliptic curves over finite field

▶ GF(p) = (Zp,+, ·), for prime p > 3
▶ other finite fields can be used, e.g. GF(2n), with different forms,

conditions and addition formulas

▶ E = {(x , y) | y2 = x3 + ax + b mod p} ∪ {0},
for a, b ∈ Zp satisfying 4a3 + 27b2 . 0 (mod p)

▶ addition of points still “works” (mod p), i.e. (E ,+) is an abelian group
▶ no geometric interpretation anymore
▶ Hasse’s theorem: | |E | − p − 1| ≤ 2

√
p

▶ counting the exact number of points: Schoof’s algorithm with O(log5 p)
operations in Zp or improved version Schoof-Elkies-Atkin algorithm with
O(log4 p) operations in Zp

▶ remark: a point P = (xP , yP ) can be uniquely represented by xP and the
sign of yP
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Real world examples (1): NIST P-256 curve

▶ prime: p = 2256 − 2224 + 2192 + 296 − 1
▶ the curve:

y2 = x3 − 3x+
41058363725152142129326129780047268409
114441015993725554835256314039467401291

▶ number of points (prime):

11579208921035624876269744694940757352999
6955224135760342422259061068512044369
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Real world examples (2): NIST P-384 curve

▶ prime: p = 2384 − 2128 − 296 + 232 − 1
▶ the curve:

y2 = x3 − 3x+
275801935599597058778490118403890480930
569058563615685214287073019886892413098
60865136260764883745107765439761230575

▶ number of points (prime):

3940200619639447921227904010014361380507973927046544666794
6905279627659399113263569398956308152294913554433653942643

▶ required for TOP SECRET classification (NSA – Commercial National
Security Algorithm Suite, 2015)

▶ critique: Failures in NIST’s ECC standards (Bernstein, Lange, 2016)
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Real world examples (3): Curve25519

▶ prime: p = 2255 − 19
▶ the curve:

y2 = x3 + 486662x2 + x

▶ number of points 8 · p1 for a prime

p1 = 2252 + 27742317777372353535851937790883648493

▶ Montgomery form (different addition formulas, it can be translated into
Weierstrass form)

▶ non-standard curve
▶ used (along other curves) in various applications (OpenSSH, Signal,

Threema, etc.)
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DLOG in elliptic curve groups

▶ (E ,+) – elliptic curve group
▶ point P ∈ E
▶ kP = P + P +… + P︸           ︷︷           ︸

k

, for an integer k ≥ 0

▶ DLOG: given a point kP , compute k
▶ CDH: given aP and bP , compute (ab)P
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EC version of ElGamal scheme

▶ (E ,+) – elliptic curve group
▶ G ∈ E – generator of some subgroup of E , ord(G) = q (prime)
▶ private key: random x ∈ Zq
▶ public key: Y = xG
▶ Encryption (M ∈ E): (R, S) = (kG, kY +M) for random k ∈ Zq
▶ Decryption ((R, S) ∈ E × E):

S − xR = (kY +M) − xR = (kx)G +M − (kx)G = M

▶ group encoding
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