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Trust – certificates (PKI)

▶ trusted CA certificates distributed by browsers/OS
▶ example: Firefox (december 2022):

▶ 56 unique CA owners (organizations/companies)
▶ 168 CA certificates

▶ Do you trust them all?
▶ Certificate validation – chain, expiration, server name, signatures, check

revocation, . . .bugs are common
▶ User – let’s ignore warnings/errors
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Trust – reality

▶ (2014-2015) Lenovo Superfish – self-signed CA pre-installed, automatic
MITM attack (inserting ads to web pages), private key shared among
installations

▶ (2011) DigiNotar (NL) – compromised since 2009, fake certificates
(MITM), removed from the list od trusted CA, bankruptcy

▶ (2011) Comodo – registration authority account compromised, 9 fake
certificates

▶ (2017-2018) distrust of Symantec CA (and its subordinates: Thawte,
GeoTrust, RapidSSL) – business sold to DigiCert

▶ (2018) Trustico (former reseller for Symantec) – sending 23.000 private
keys to DigiCert by e-mail . . . to revoke the certificates

▶ Serrano et al. A complete study of P.K.I. (PKI’s Known Incidents), 2019
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Checking certificates

▶ checking certificate status: OK or revoked?
▶ several standard options:

▶ CRL (Certificate revocation list) – a list signed by CA, issued frequently
(e.g. at least every 24 hours); can be large (e.g. GlobalSign’s CRL from 22
kB to 4.7 MB thanks to Heartbleed)

▶ OCSP (Online Certificate Status Protocol) – requesting info from CA;
response with timestamp; signed by CA

▶ non-standard approach:
▶ CRLSet (Chrome), OneCRL (Firefox) – list of selected revoked certificates

distributed as an update to the browser (Chrome – selected certificates;
FF – intermediate certificates)
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OCSP stapling

▶ problems with OCSP:
▶ What to do if there is no response from CA – block or allow?
▶ user privacy (CA learns what certificates client wants to check)
▶ CA flooded with requests related to sites with high traffic.
▶ slower user experience.

▶ TLS Certificate Status Extension
▶ idea: server requests OCSP response at regular intervals and adds it as

Certificate Status message in the Handshake
▶ the response cannot be forged (timestamp, signed by CA)

▶ Multiple Certificate Status Request Extension
▶ providing status for all certificates in a chain
▶ original extension: only for server’s own certificate

▶ OCSP Must-staple
▶ certificate extension – server must staple, otherwise the certificate is

invalid
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HTTP Public key pinning (HPKP)

▶ problem: compromised CA issues fake certificates
▶ bind host to known public-key (or keys)
▶ information in HTTP header
▶ “trust on first use” mechanism
▶ limitations

▶ cannot detect MITM attack in the first connection
▶ attacker can even insert own pinning info in this case

▶ now deprecated, replaced by Certificate Transparency
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Certificate Transparency

▶ goals:
▶ make hard for a CA to issue a certificate for domain that is not visible to

domain owner
▶ allow to monitor and audit issued certificates (e.g. by domain owners or

CA)
▶ protect users against certificates issued maliciously or mistakenly

▶ Certificate Transparency log
▶ Merkle tree of certificate chains (or precertificate chains)
▶ publicly verifiable
▶ signed root

▶ CA publishes certificates (precertificates) to public logs
▶ SCT – Signed Certificate Timestamp – log’s promise to incorporate the

certificate in the Merkle tree
▶ new certificates contains SCT(s)
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HSTS

▶ SSL Stripping
▶ attacker: MITM proxy replacing links https with http links
▶ user clicks on a link . . .
▶ victim communicates with attacker via http
▶ attacker communicates with the web server via https

▶ HSTS (HTTP Strict Transport Security, RFC 6797)
▶ HSTS headers over https – instructing browser to use only https for all

future requests
▶ browser transforms all http links into https links
▶ browser does not allow unsecured connections to the web server

▶ limitations
▶ HSTS header stripped in first visit (pre-loaded list of HSTS sites in

browsers – does not scale)

▶ supported: Firefox, Chrome, Safari
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STARTTLS

▶ Opportunistic TLS, switch from plaintext to TLS connection
▶ STARTTLS command

▶ supported: SMTP, POP3, IMAP, LDAP, etc.

▶ STRIPTLS attack – removing STARTTLS
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Apple “goto” fail (2014)

SSLVerifySignedServerKeyExchange(...)
{

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...
err = sslRawVerify(...)

fail:
...
return err;

}
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Heartbleed (2014)

▶ bug in OpenSSL (2012 – 2014)
▶ heartbeat extension (RFC 6520):

1. A → B: please, reply with these 3 bytes: “abc”
2. B → A: “abc”

▶ the problem:
1. A → B: please, reply with these 10000 bytes: “abc”
2. B → A: “abc” 00 a3 30 e2 . . . 7f

▶ possible leaks: private keys, master secret, passwords, . . .
▶ huge impact on security – OpenSSL everywhere
▶ client software affected as well (server can issue a heartbeat request too)

Do you use some 3rd party code critical to the security of your system?
How well is it maintained, reviewed, audited?
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Discussion on security of TLS (informal)

▶ TLS 1.2 (RFC 5246)
▶ Appendix F: Security Analysis

▶ F.1. Handshake Protocol
▶ F.1.1. Authentication and Key Exchange

F.1.1.1. Anonymous Key Exchange
F.1.1.2. RSA Key Exchange and Authentication
F.1.1.3. Diffie-Hellman Key Exchange with Authentication

▶ F.1.2. Version Rollback Attacks
▶ F.1.3. Detecting Attacks Against the Handshake Protocol
▶ F.1.4. Resuming Sessions

▶ F.2. Protecting Application Data
▶ F.3. Explicit IVs
▶ F.4. Security of Composite Cipher Modes
▶ F.5. Denial of Service
▶ F.6. Final Notes

▶ interesting part: D.4. Implementation Pitfalls
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Problem with PKCS #1 v1.5 (RSA encryption)

▶ (1998) Bleichenbacher
▶ RSA key exchange
▶ plaintext (after padding) contains bytes 00 02 (ClientKeyExchange)
▶ server’s response for a ciphertext indicates correct/incorrect format
▶ access to this oracle allows to decrypt arbitrary ciphertext (i.e.

pre-master secret)
▶ requires approx. 1 million queries for 1024 bit modulus

TLS Security, TLS 1.3 14 / 33 ,



Problem with PKCS #1 v1.5 – solutions

▶ treat incorrect format as a correct one:

“In any case, a TLS server MUST NOT generate an alert if processing an
RSA-encrypted premaster secret message fails, or the version number is not
as expected. Instead, it MUST continue the handshake with a randomly
generated premaster secret.”

▶ use RSA-OAEP (not used in TLS 1.2):

“The RSAES-OAEP encryption scheme defined in [PKCS1] is more secure
against the Bleichenbacher attack. However, for maximal compatibility
with earlier versions of TLS, this specification uses the RSAES-PKCS1-v1_5
scheme.”

▶ avoid RSA key exchange altogether (TLS 1.3)
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ROBOT (2017)

▶ Böck, Somorovsky, Young (2017)
▶ ROBOT (Return Of Bleichenbacher’s Oracle Threat)
▶ affected vendors: F5, Cisco ACE, Citrix, Radware, . . .
▶ affected web sites: Facebook, PayPal, etc.
▶ countermeasures specified in TLS 1.2 not implemented correctly
▶ expected: TLS alert 20 (bad_record_mac) after Finished for all RSA

decryption failures
▶ examples of problems:

▶ immediate reset of TCP connection for prefix/padding errors
▶ ChangeCipherSpec/Finished withheld – waiting for these messages iff the

ciphertext in ClientKeyExchange was valid
▶ specific alert (not 20) vs. timeout allowed for valid ciphertext
▶ different error messages for valid and invalid ciphertexts
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Timing attack, PRNG

▶ Timing attack
▶ (2003) Boneh, Brumley
▶ timing RSA decryptions (processing ClientKeyExchange by server)
▶ analyzing correlations between time and private key allows to reconstruct

the private key
▶ improvements for RSA with CRT and Montgomery multiplication exist
▶ solution: RSA blinding

▶ PRNG
▶ client and server nonces, pre-master secret for RSA key exchange, DH

private parameters for (EC)DHE key exchange, IV for AEAD
▶ unpredictability, initialization
▶ (2006-2008) Debian OpenSSL PRNG initialization bug
▶ (2017) DUHK – Don’t Use Hardcoded Keys – some (usually older) FIPS

140-2 certified implementations of ANSI X9.31 PRNG (seed key hardcoded
in firmware)
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“Renegotiation” problem (2009)

▶ renegotiation – a new handshake can be initialized anytime by client or
server (inside an existing TLS connection)

▶ attacker creates his own TLS connection with the server and inserts
victim’s handshake as a renegotiation . . . inserting arbitrary data as a
prefix to the victim’s data

▶ root cause: missing binding between renegotiation handshake and TLS
parameters in use

▶ RFC 5746 (TLS Renegotiation Extension):
▶ basically, Hello messages must contain verification data from previous

Finished messages
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BEAST (2011)

▶ BEAST (Browser Exploit Against SSL/TLS)
▶ known vulnerability of CBC mode implementation made practical
▶ CBC mode (TLS 1.0 and older) – IV for a packet is the last block from

previous packet
▶ assumptions: plaintext (request) manipulation (e.g. Javascript), access to

the ciphertext (eavesdropping)
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BEAST (2)

▶ attack idea:
▶ let C0, … ,Cl be a ciphertext (a packet)
▶ attacker wants to decrypt Pj
▶ attacker chooses plaintext with the first block P ′

1 = Cj−1 ⊕ Cl ⊕ x
▶ then C′

1 = Ek (P ′
1 ⊕ Cl) = Ek (Cj−1 ⊕ x)

▶ therefore C′
1 = Cj ⇔ x = Pj

▶ guessing an entire block is hard
▶ attacker moves the boundaries of plaintext (e.g. a cookie) so he will guess

just 1 byte (other bytes can be known “any_session_id=?”)
▶ different shift allows “ny_session_id=7?”) etc.

▶ fix in TLS 1.1 – explicit IV
▶ other mitigation strategy in browsers: 1/n-1 record splitting
▶ remark:

▶ weakness in CBC known since 2002; TLS 1.1 standardized in 2006
▶ practical attack: BEAST in 2011
▶ default support for TLS 1.1 in browsers in 2011: none
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CRIME (2012)

▶ CRIME (Compression Ratio Info-leak Made Easy)
▶ using compression in SSL/TLS for leaking plaintext information
▶ assumptions: compression, plaintext (request) manipulation, access to

the ciphertext (eavesdropping)
▶ attack idea:

▶ attacker adds data to plaintext, e.g. “Cookie: company_session_id=??”
▶ ciphertext will be probably shorter if “??” is guessed correctly
▶ subsequent bytes can be tested after correct guess
▶ “playing” with the plaintext to see differences when padding is used
▶ divide et impera approach: add strings for half of all guessed values⇒

less requests, faster attack

▶ fix: disable compression in TLS
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POODLE (2014)

▶ POODLE (Padding Oracle On Downgraded Legacy Encryption)
▶ attacking CBC mode padding in SSL 3.0
▶ SSL 3.0 prescribes only the value of the last byte in padding (e.g. 07 for a

complete padding block and 3DES algorithm)
▶ padding is not an input to MAC (SSL: MAC-then-Encrypt)
▶ client and server might be willing to use SSL 3.0 in case of problems with

the handshake (even though they both support TLS)
▶ assumptions: attacker can create requests (e.g. Javascript), manipulate

the ciphertext, and observe server’s responses
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POODLE (2)

▶ padding oracle attack, and shifting unknown plaintext (e.g. cookie)
▶ request || MAC fits to block boundary (i.e. padding fills an entire block)

GET /path Cookie: secret=xx || xxxxxxYX || ... || MAC || padding 07
▶ attacker replaces last ciphertext block with the CT block for the red block

server continues⇒ final byte 07, compute X (prob. 1/256)
server rejects ⇒ new handshake; new test

▶ attacker shifts the plaintext to decrypt other bytes of cookie:
GET /path2 Cookie: secret=x || xxxxxxY || X.. || MAC || padding 07
etc.

▶ fix – remove SSL 3.0 from browsers (at least disable)
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POODLE (3)

▶ TLS padding is a special case of SSL 3.0 padding

msg || 00
msg || 01 01
msg || 03 03 03 03

▶ What if padding verification is performed as in SSL 3.0 case?
▶ no need for fallback to SSL 3.0
▶ POODLE for TLS (SSL Pulse, https://www.ssllabs.com/ssl-pulse/)

vulnerable severs:
▶ 10.1% (XII/2014)
▶ 1.9% (XII/2016)
▶ 0.4% (XII/2018)
▶ 0.0% (XII/2020) . . . end of story?

TLS Security, TLS 1.3 24 / 33 ,



POODLE continues

▶ various methods of detecting padding oracles
▶ in the handshake (Finished message) or in application data
▶ in/valid/missing MAC combined with in/valid padding
▶ different ciphersuites behave differently, . . .

▶ GOLDENDOODLE, Zombie POODLE, Sleeping POODLE, . . .
▶ Merget et al. (2019): Scalable Scanning and Automatic Classification of

TLS Padding Oracle Vulnerabilities
▶ systematic analysis of servers’ behavior
▶ conservative estimate: 1.83% of TLS servers vulnerable
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FREAK (2015)

▶ “export-grade” algorithms – RSA 512 bits
▶ clients (usually) did not request such algorithms . . . but they accepted

such short RSA public key
▶ note: TLS 1.1 and older allow temporary RSA key in key exchange

▶ supported by web servers (March 2015, approx. 36%)
▶ MITM attack:

1. attacker replaces cipher suites with export RSA in ClientHello
2. attacker decrypts pre-master secret and computes keys
3. knowing master secret allows “fixing” Finished messages

▶ no need to factorize 512 bit RSA often:
▶ apache: generated when server starts and reused when needed
▶ March 2015: 1 factorization ∼ 7.5 hours in EC2 for 104 USD
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Logjam (2015)

▶ “export-grade” algorithms again – DHE (short group, e.g. 512-bit)
▶ clients (usually) did not request . . . but they accepted
▶ MITM attack (similar to FREAK):

1. attacker replaces cipher suites with export DHE in ClientHello
2. attacker computes dlog, obtains pre-master secret and computes keys
3. knowing master secret allows “fixing” Finished messages

▶ computing dlog (even with export-grade parameters) is not possible in
real-time
▶ 2 phases: pre-computation (slow, but depends on group and g only) and

on-line (for given input, fast)
▶ DHE_EXPORT: 99% hosts choose one of three 512-bit primes

▶ remark: fixed groups are used everywhere (IPSec, TLS, SSH); 1024-bit
primes within reach of a state-sponsored agency
▶ passive eavesdropping on VPN, SSH?
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DROWN (2016)

▶ DROWN (Decrypting RSA using Obsolete and Weakened eNcryption)
▶ TLS and SSL 2.0 enabled on server (or servers), sharing the same RSA key
▶ RSA key exchange
▶ cross-protocol attack
▶ decrypting pre-master secret from TLS 1.x RSA key exchange

▶ using SSL 2.0 to mount Bleichenbacher’s attack
▶ exploiting export-grade cipher suite, and other SSL 2.0 weaknesses

▶ fix: disable SSL 2.0 everywhere
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TLS 1.3 – major changes from TLS 1.2
▶ RFC 8446 (2018)
▶ AEAD ciphers only (support for non-AEAD ciphers removed)
▶ public-key key exchange with forward secrecy (static RSA and

Diffie-Hellman removed)
▶ redesigned key derivation function: HMAC-based Extract-and-Expand

Key Derivation Function (HKDF)
▶ reworked handshake: 1-RTT (1 round trip time) mode
▶ new zero round-trip time (0-RTT) mode
▶ other things removed: custom DHE groups, support for compression,

DSA
▶ RSA-PSS is used instead of PKCS#1 v1.5 for handshake signatures
▶ TLS supports three basic key exchange modes:

▶ Diffie-Hellman (over the finite fields and or elliptic curves)
▶ pre-shared symmetric key (PSK)
▶ combination of PSK and Diffie-Hellman
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TLS 1.3 – mandatory cipher suites

▶ symmetric cipher suite (AEAD + hash function HKDF):
▶ MUST: TLS_AES_128_GCM_SHA256
▶ SHOULD: TLS_AES_256_GCM_SHA384,

TLS_CHACHA20_POLY1305_SHA256
▶ digital signatures:

▶ MUST: rsa_pkcs1_sha256 (for certificates), rsa_pss_rsae_sha256 (for
CertificateVerify and certificates), and ecdsa_secp256r1_sha256

▶ key exchange:
▶ MUST: secp256r1 (NIST P-256)
▶ SHOULD: X25519
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TLS 1.3 – Handshake protocol
ClientHello

Finished

(opt.)

(enc.)

+ key_share
+ signature_algorithms
+ psk_key_exchange_modes
+ pre_shared_key

ServerHello
+ key_share
+ pre_shared_key

EncryptedExtensions

CertificateRequest

Certificate

CertificateVerify

Application Data

(enc.)

Finished

Certificate

CertificateVerify

Application Data Application Data
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Discussion on security of TLS 1.3 (informal)
▶ TLS 1.3 (RFC 8446)
▶ Appendix E. Overview of Security Properties

▶ E.1. Handshake
▶ E.1.1. Key Derivation and HKDF
▶ E.1.2. Client Authentication
▶ E.1.3. 0-RTT
▶ E.1.4. Exporter Independence
▶ E.1.5. Post-Compromise Security
▶ E.1.6. External References

▶ E.2 Record Layer
▶ E.2.1. External References

▶ E.3. Traffic Analysis
▶ E.4. Side-Channel Attacks
▶ E.5. Replay Attacks on 0-RTT

▶ E.5.1. Replay and Exporters
▶ E.6. PSK Identity Exposure
▶ E.7. Sharing PSKs
▶ E.8. Attacks on Static RSA

▶ interesting part: C.3. Implementation Pitfalls
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TLS 1.3 – Selfie

▶ Selfie (2019) – first protocol attack on TLS 1.3
▶ rarely used case of (external) PSK authentication
▶ scenario: client can also be a server
▶ simple reflection: attacker resend all messages back to client
▶ client establishes connection with itself
▶ limited impact in practice
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