
Code-based encryption schemes

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2022/23)

Content

Coding Theory
Linear codes
Generator matrix, Parity-check matrix

Cryptosystems
McEliece
Niederreiter’s variant

Concluding remarks

Code-based encryption schemes 2 / 17 ,

Coding theory – basics

▶ motivation: detect and correct errors in data; compress data
▶ important classes of error-correcting codes

▶ linear codes
▶ convolution codes

▶ some problems in coding theory are hard
▶ possible use for cryptographic schemes

▶ some notation:
▶ Fq – finite field with q elements (GF(q))
▶ Hamming weight of a vector x = (x1, … , xn) ∈ Fnq :

wt(x) = |{i ; xi ≠ 0, 1 ≤ i ≤ n}|
▶ Hamming distance of two vectors x , y ∈ Fnq :

dist(x , y) = |{i ; xi ≠ yi , 1 ≤ i ≤ n}|

Code-based encryption schemes 3 / 17 ,

Linear codes

A q-ary linear [n, k] code C is a k-dimensional subspace of Fnq.
▶ codewords – set of all elements in C
▶ n (length), k (dimension)
▶ generator matrix G ∈ Fk×nq of the code C: C = {xG ; x ∈ Fkq}
▶ G describes an encoder for C: given x ∈ Fkq , codeword is xG
▶ systematic (standard) form of generator matrix G = (Ik | R)
▶ distance of a linear code: d = min{wt(c) ; c ∈ C ∖ {0}}

equivalently, d = min{dist(b, c) ; b, c ∈ C}
▶ [n, k, d] code

▶ error e ∈ Fkn: c ↦→ c + e
▶ can detect any error with wt(e) ≤ d − 1
▶ can correct any error with weight up to ⌊(d − 1)/2⌋

Code-based encryption schemes 4 / 17 ,

Hamming (7, 4) code

▶ codeword length 7: 4 data bits, 3 parity bits
▶ linear code with with distance 3, i.e. it corrects any single-bit errors
▶ generator matrix:

G =

©­­­«
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

ª®®®¬
▶ encoding examples:

▶ (0, 0, 0, 0) ↦→ (0, 0, 0, 0, 0, 0, 0)
▶ (1, 0, 0, 1) ↦→ (1, 0, 0, 1, 1, 0, 0)
▶ (0, 0, 1, 1) ↦→ (0, 0, 1, 1, 0, 0, 1)

Code-based encryption schemes 5 / 17 ,

Parity-check matrix

▶ q-ary linear [n, k] code C
▶ testing whether c ∈ Fnq is a codeword of C (what linear relations must

hold in the codeword)
▶ matrix H ∈ F(n−k)×n

q , for any c ∈ Fnq: cHT = 0 ⇔ c ∈ C
▶ H can be constructed easily from G given in a systematic form:

G = (Ik | R) ⇒ H = (−RT | In−k)

▶ we get: GHT = −R + R = 0
▶ syndrome for any x ∈ Fnq: s = xHT

▶ s = 0 ⇔ c ∈ C
▶ codeword c with an error e: s = (c + e)HT = eHT

▶ syndrome decoding by lookup table of syndromes for all (viable) errors

Code-based encryption schemes 6 / 17 ,

Hamming (7, 4) code

▶ parity-check matrix (one of many):

H =
©­«
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

ª®¬
▶ syndromes:

▶ (0, 0, 1, 1, 0, 0, 1)HT = (0, 0, 0)
▶ (1, 0, 1, 1, 0, 0, 1)HT = (1, 0, 0)
▶ (0, 0, 1, 0, 0, 0, 1)HT = (0, 0, 1)
▶ (0, 0, 1, 1, 0, 1, 1)HT = (0, 1, 1)
▶ (0, 0, 1, 1, 0, 0, 0)HT = (1, 1, 1)

Code-based encryption schemes 7 / 17 ,

Binary BCH (31, 11) code
▶ codeword length 31: 11 bits of data, 20 checksum bits
▶ corrects up to 5 errors
▶ generator matrix (a cyclic code):

G =

©­­­­­­­­­­­­­­­­­­«

■□■□■□■■□■■□□■□□□■■□■□□□□□□□□□□
□■□■□■□■■□■■□□■□□□■■□■□□□□□□□□□
□□■□■□■□■■□■■□□■□□□■■□■□□□□□□□□
□□□■□■□■□■■□■■□□■□□□■■□■□□□□□□□
□□□□■□■□■□■■□■■□□■□□□■■□■□□□□□□
□□□□□■□■□■□■■□■■□□■□□□■■□■□□□□□
□□□□□□■□■□■□■■□■■□□■□□□■■□■□□□□
□□□□□□□■□■□■□■■□■■□□■□□□■■□■□□□
□□□□□□□□■□■□■□■■□■■□□■□□□■■□■□□
□□□□□□□□□■□■□■□■■□■■□□■□□□■■□■□
□□□□□□□□□□■□■□■□■■□■■□□■□□□■■□■

ª®®®®®®®®®®®®®®®®®®¬
Code-based encryption schemes 8 / 17 ,

Some complexity problems

▶ random binary linear code
▶ defined by a random generator/parity-check matrix (chosen uniformly)
▶ optimal properties
▶ decoding is hard

▶ decoding, i.e. for given H and syndrome s compute a minimum weight e
such that eHT = s, is NP-hard

▶ computing distance of a code is NP-hard
▶ worst-case complexity

▶ codes used in practice must have an efficient decoding algorithm
▶ Reed-Solomon, Goppa, Reed-Muller, BCH, alternant, LDPC (Gallager), . . .

Code-based encryption schemes 9 / 17 ,

McEliece cryptosystem

▶ Robert McEliece, 1978
▶ originally proposed with irreducible binary Goppa codes
▶ other codes can be used (be very careful – lots of broken proposals)
▶ initialization:

1. select random binary linear [n, k] code C that corrects up to t errors;
let G be a generator matrix for C
(C must have an efficient decoder D : Fn2 → Fk2)

2. select random n × n permutation matrix P
3. select random k × k non-singular binary matrix S
4. compute G′ = SGP

private key: (G, S, P ,D)
public key: (G′, t)

Code-based encryption schemes 10 / 17 ,

McEliece cryptosystem – encryption and decryption

▶ encryption of plaintext m ∈ Fk2 :
1. choose random e ∈ Fn2 such that wt(e) = t
2. ciphertext: c = mG′ + e

▶ decryption of ciphertext c: m = D(cP−1)S−1
▶ correctness:

▶ cP−1 = (mSGP + e)P−1 = mSG + eP−1

▶ wt(eP−1) = t (P is a permutation matrix)
▶ (mS)G is a codeword, and D can correct up to t errors, therefore

D(cP−1) = mS
▶ finally, (mS)S−1 = m

Code-based encryption schemes 11 / 17 ,

Niederreiter’s variant

▶ Harald Niederreiter, 1986
▶ variant of McEliece cryptosystem

▶ equivalent security
▶ faster decryption
▶ smaller public key

▶ syndrome decoder computes e for given syndrome eHT (wt(e) ≤ t)
▶ initialization:

1. select random binary linear [n, k] code C that corrects up to t errors;
let H be a parity-check matrix for C
(C has an efficient syndrome decoder D : Fn2 → Fn2)

2. select random n × n permutation matrix P
3. select random (n − k) × (n − k) non-singular binary matrix S
4. compute H′ = SHP

private key: (H, S, P ,D)
public key: (H′, t)

Code-based encryption schemes 12 / 17 ,

Niederreiter’s variant – encryption and decryption

▶ plaintexts: {e ∈ Fn2 ; wt(e) = t}
▶ encryption of plaintext e ∈ Fk2 : c = H′eT

▶ decryption of ciphertext c: e = D((S−1c)T) · (PT)−1
▶ correctness:

▶ (S−1c)T = (S−1H′eT)T = (H(PeT))T = (ePT)HT

▶ wt(ePT) = t (P is a permutation matrix)
▶ D computes ePT, and e can be recovered: ePT · (PT)−1

▶ symmetric key transfer:
▶ generate random e with wt(e) = t
▶ symmetric key for encryption/authentication computed by hashing e

Code-based encryption schemes 13 / 17 ,

McEliece/Niederreiter – remarks

▶ very fast encryption (vector-matrix multiplication)
▶ fast decryption possible (e.g. McBits, binary.cr.yp.to/mcbits.html)
▶ two types of attacks:

▶ generic attacks, e.g. information-set decoding
▶ structural attacks (specific structure of the code)

▶ the main problem of these systems: key size
▶ codes with shorter representation, e.g. Quasi-cyclic Moderate-Density

Parity-Check (QC-MDPC) code

Code-based encryption schemes 14 / 17 ,

PQC Competition
▶ round 4 (2022): extra round for Encryption/KEM category

▶ 4 algorithms, SIKE already broken!
▶ Classic McEliece – binary Goppa codes, Niederreiter variant
▶ merger of Classic McEliece and NTS-KEM

▶ Parameters for some of the proposed Classic McEliece instances:

security n m k = n −mt t
128 3488 12 2720 64 mceliece348864
192 4608 13 3360 96 mceliece460896
256 6688 13 5024 128 mceliece6688128

▶ Sizes of parameters for some of the proposed Classic McEliece instances
(bytes):

security public key private key ciphertext
128 261 120 6 452 128 mceliece348864
192 524 160 13 568 188 mceliece460896
256 1 044 992 13 892 240 mceliece6688128

Code-based encryption schemes 15 / 17 ,

Classic McEliece – remarks

▶ NIST Status Report on the 3nd Round:

Classic McEliece has a very large public key size and fairly slow key generation.

Confidence in the security of the 1978 scheme is mostly established based on the
scheme’s long history of surviving cryptanalysis with only minor changes in the
complexity of the best-known attack

NIST is confident in the security of Classic McEliece and would be comfortable
standardizing the submitted parameter sets (under a different claimed security
strength in some cases).

Code-based encryption schemes 16 / 17 ,

Key encapsulation in Classic McEliece

▶ . . . and OW-CPA ↦→ IND-CCA2 transformation
▶ H is a hash function
▶ Encapsulation and session key:

▶ e is random with wt(e) = t
▶ ciphertext C = (C0,C1),

where C0 is the public-key encryption of e, and C1 = H(2, e)
▶ session key K = H(1, e,C)

▶ Decapsulation for (C0,C1):
▶ set b = 1
▶ decrypt C0 to get e (if error: set b = 0 and e = s for some s)
▶ verify that H(2, e) = C1 (if not: set b = 0 and e = s)
▶ compute session key K = H(b, e,C)

Code-based encryption schemes 17 / 17 ,

	Coding Theory
	Linear codes
	Generator matrix, Parity-check matrix

	Cryptosystems
	McEliece
	Niederreiter's variant

	Concluding remarks

