Security of the RSA

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1(2022/23)

Content

Factorization, RSA problem
Problems with primes

Small plaintext space, small public/private exponent
Small public/private key
Homomorphism of RSA

Partial decryption oracles
Half and parity predicates
Bleichenbacher’s attack on PKCS#1 v 1.5
Manger’s attack

Other implementation attacks

Security of the RSA

2/25

RSA scheme

n=p- q(product of two distinct primes)

e-d=1 (mod ¢(n)), where p(n) =(p—1)(g—1)
public key: (e, n)

private key: d

vVvy VvV VYy

public/private transforms E,D : Z,, — Z,,
> E(m)=m°modn
> D(c) =c?mod n

Security of the RSA 3/25

Hybrid encryption

> encryption of message m for recipient A (his public key is pk,):
(E(m), ESA (k)

> notation:
> E - symmetric cipher (e.g. AES)
» k - random symmetric key for E
> E;(Sf — RSA encryption with A’s public key
> A can decrypt easily
> advantages: key management (asymmetric scheme), speed

> disadvantages: the security depends on both constructions

Security of the RSA 4725

Real world - key transport

» usually wrapping symmetric keys, providing confidentiality and
integrity
> key transport
> RFC 5990: Use of the RSA-KEM Key Transport Algorithm in the
Cryptographic Message Syntax (CMS)
> NIST SP 800-56B rev. 2: Recommendation for Pair-Wise
Key-Establishment Schemes Using Integer Factorization Cryptography;
various schemes, e.g. KTS-OAEP: Key-Transport Using RSA-OAEP

Security of the RSA 5/25

Factorization and RSA

v

factorization = compute the private key = decryption (trivial)

v

decryption (knowing only the public key) =?= factorization (open)

v

knowledge of ¢(n) is equivalent to factorization
& trivial
= solving 2 equations with 2 variables:

n=p-q
o(n)=(p-1)(qg-1)

v

knowledge of d is equivalent to factorization
& trivial
= more complicated procedure needed

v

corollary: do not share n among group of users

Security of the RSA 6/25

RSA problem

» RSA problem:
given (e, n) and ¢ € Z,; compute m such that m® = ¢ (mod n)

> RSA problem is not more difficult than factorization
> (open problem) Is the RSA problem as difficult as factorization or easier?

Security of the RSA 7/25

Problems with primes

» specific algorithms for factorization, when p, g satisfy some properties,
for example:

> small [p—q,

> p—1(or g— 1) without a large prime factor, etc.
> suspicious methods of generating primes, e.g.

> weak or poorly initialized PRNG

> primes with some internal structure (“optimization”)
> Lenstra et al. (2012)

> 11.4 million RSA moduli (X.509 certificates, PGP keys)
> 26965 (incl. 10 RSA-2048) vulnerable (shared a single common prime
factor)

Security of the RSA 8/25

Problems with primes (2)

> Bernstein et al. (2013)

>

>
>
>

v

Taiwan’s national "Citizen Digital Certificate" database

generated by government-issued smart cards (certified)

3.2 million unique RSA moduli

103 moduli factored by computing the gcd (sharing a non-trivial prime
divisor)

observing non-randomness in the primes ... 184 distinct 1024-bit RSA keys
factored

> Nemec et al. (2017)

»

>
>

problem with “FastPrime” method for primes generation implemented in
library for particular hardware chips

factor public modulus

ID cards - e.g. Estonia (750.000), Slovakia (300.000)

Security of the RSA 9/25

General factorization algorithms

> General number field sieve (GNFS)
> heuristic complexity: exp ((\3/64/9 +0o(1))(Inn)3(Inln n)2/3)

> equivalent key lengths:

symmetric RSA

80 1024
112 2048
128 3072
192 7680
256 15360

— NIST Recommendations (SP 800-57 part 1 rev. 5) (2020)
— various estimates are compared at www.keylength.com

Security of the RSA 10/ 25

Small message (plaintext) space

v

RSA scheme is deterministic (the textbook version)

v

small plaintext space:

&

> eg. {“yes”, “no”, “maybe”}
> attacker can compute E(m) for any m and compare the result with the
ciphertext

v

potential plaintexts can be tested regardless of plaintext space

v

randomization with padding

| random ‘ plaintext

> s it secure (can you prove it)?
> see OAEP for provable security

Security of the RSA 11/25

Small public exponent — broadcast

> small exponent — speed
> let e = 3 for three recipients A, B, C with moduli na, ng, nc
> broadcasting m:
ca = m°> mod ny
cg = m° mod ng
cc = m°> mod n¢
> an attacker solves the system of congruences (CRT):

x=c4 (mod ny)
x=cg (mod ng)

x =cc (mod nc)

Security of the RSA 12/25

Small public exponent — broadcast (2)

> solution x (obtained from CRT) and m? satisfy the system of

congruences, thus
x=m® (mod nangnc)

> x =m’, since m < ny, ng, nc
> m can be computed as a cube root of x

> padding as a prevention

Security of the RSA 13/25

Small public exponent — related messages
> my, m, linearly dependent messages; ¢; = E(my), ¢; = E(my)
» da, b € Z: my = amy + b, the attacker knows q, b

v

variable z (my is a root of the following polynomials):

z°-=¢c;=0 (mod n)
(az+b)*-c;=0 (mod n)

v

(z — my) divides both polynomials; (z° — ¢1)/(z — my) is irreducible
ged(z° — ¢, (az + b)® — ;) reveals my and m,
> Example: n=91,e=5. Let ¢; =45, ¢, =28, and mp =30 - my + 11.

v

ged(Z® - 45, (30z +11)° — 28) =
= gcd(2° + 46, 882° +402* + 902> + 3322 + 472+ 44) = z+ 37 = z — 54

Thus m; =54 and my = 30 - 54 + 11 = 84.

> easy to generalize for any known polynomial relation
prevention: suitable padding
> not every padding is secure (see Coppersmith’s attack)

\{

Security of the RSA 14/ 25

Small private exponent

> motivation: fast decryption

> implementation: choose d first, e computed afterward
> results — d can be computed from a public key:

> Wiener (1990): d < %no.zs (continued fraction)
> Boneh, Durfee (1999): d < n®*? (Coppersmith, LLL)
> some other improvements exist

» do not “optimize” d ()

Security of the RSA

15/ 25

Some applications of Coppersmith’s theorem

» Coppersmith’s theorem - finding all small solutions of modular
polynomial equation

> computing plaintext when using short/improper padding (and small e)
> computing primes given some fraction of their bits

> reconstructing d given some fraction of its bits

Security of the RSA 16/ 25

Using homomorphism of RSA

> E(mq-my) = E(my) - E(m;), computations are modn

> let’s assume, that [-bit symmetric key k is encrypted, i.e. k < 2!
> the attacker pre-computes E(1), E(2), E(3), ..., E(2/?), and stores the

values (E(i), i} in a hash table
if k= k1 . kz, for k,‘ < 2[/2:
> the attacker tries k; = 1,2, 3,..., 22, and searches ¢/E(k) = E(k/ky) in
the table
> a match yields kq, ky, i.e. k

> time complexity O(2!/?)

> increasing the number of pre-computed values = higher probability of

v

success

() for small e, e.g. e = 3, the attacker can compute v/c directly (if k> < n)

Security of the RSA 17/ 25

Half predicate

Knowing a ciphertext — can anything be computed about the plaintext?
(textbook) RSA is not semantically secure (e.g. testing any plaintext)

oracle half(¢) = 0if 0 < m < n/2, or 1 otherwise

vV v.v Yy

we decrypt any c using predicate half()
half(c) =0 & meA0,...,|n/2]}
half(c- E(2)) =0 < meA0,..,|n/4]} U{[2n/4],...,|3n/4]}
half(c- E(2%)) =0 & me{0,...,|[n/8]}U...

> we can compute m by binary search (c - E(2) = E(m - 21))

> remark: d is not used nor computed in this attack

Security of the RSA 18 /25

Parity predicate

> similarly to half(), we can use the predicate parity()
> parity(c) = m & 0x1

> relation between predicates: half(c) = parity(c- E(2))
> if0 <m<n/2:
then 0 < 2m < n and the plaintext corresponding to ¢ - E(2) is even

> ifnf2<m<n:
thenn<2m<2n = 2mmodn=2m-n,
i.e. the plaintext corresponding to ¢ - E£(2) is odd

Security of the RSA 19/25

Bleichenbacher’s attack on PKCS#1 v1.5 (1)

» chosen ciphertext attack (1998)

» PKCS#1 v1.5 oracle (error message, timing, etc.) = decryption of
arbitrary ciphertext

> PKCS#1 v1.5 padding;:

’ 00 \ 02 \ > 8 random non-zero bytes \ 00 \ message

> k - byte length of n; 28(k=1) < < 28k
» PKCS conforming block:

1. starts with bytes 00 02
2. bytes 3...10 are non-zero
3. there is some 00 byte later (bytes 11... k)

> let’s denote B = 28(k=2) je. PKCS conforming block: 2B < m < 3B
» ciphertext is called PKCS conforming if its decryption is PKCS conf.

Security of the RSA 20/ 25

Bleichenbacher’s attack on PKCS#1 v1.5 (2)

4 mod n

given c € Z, the attacker wants to compute m = ¢
modifying c and testing PKCS conformity

sequence of gradually narrower intervals for m

vV v.v Yy

single element m at the end

Security of the RSA 21/25

Bleichenbacher’s attack on PKCS#1 v1.5 (3)

> Impact:
> SSL/TLS RSA key exchange method: client sends pre-master secret
encrypted with server’s public key (PKCS#1 v1.5)
» decryption of the pre-master secret yields the session keys
» careful implementation needed, see TLS 1.2 (RFC 5246)
> when relevant, the attack allows to create a PKCS#1 v1.5 signature of
arbitrary message (using server’s private key)

> ROBOT (Return Of Bleichenbacher’s Oracle Threat)

> attack on TLS after 19 years (2018)

> advice: disable all TLS_RSA ciphersuits

> non-standard message flow (shortened)

> different responses: different alert codes, TCP FIN, TCP timeout, TCP
reset, two alerts ...

Security of the RSA 22/25

Manger’s attack

» Does OAEP help (it is almost impossible to generate a valid ciphertext)?

> Manger’s attack (2001): compute m = ¢¢ mod n for any ¢
> assumption: access to the following oracle:

> Given ¢, is the first byte of (¢/)¥ mod n zero?
> let k be the byte length of n, and B = 28k~ 1)
> oracle: (¢/)¥ mod n < B

> recognizing bad first byte vs. bad internal integrity of decrypted block

> gradually reduce an interval of possible m values

» can be adapted to PKCS#1 v1.5

> there are also improvements to Bleichenbacher’s attack

Security of the RSA 23/25

Combining various attack ideas

> The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS
Implementations (2018)

» cache-based attack techniques for side channel

> ...leading to Manger’s oracle, Bleichenbacher’s oracle and several other
types of oracles

> optimizations to speed up the attacks

> most TLS implementations were vulnerable

Security of the RSA 24/ 25

Other implementation attacks — examples

> Timing attacks

>
>
>
>

>

straightforward implementation of modular exponentiation
computation time of D(¢) depends on ¢, d, and n

statistical correlation analysis to recover d from many samples (¢;, time;)
variant used to attack SSL implementation (2003) with approx. million
queries for extracting private key and factoring 1024 bit modulus n
prevention: blinding

» Fault attacks

>
| 4
| 4

induce faults while executing sensitive operations

heat, power spikes, clock glitches, etc.

example: fault in a single value/computation in RSA CRT (signature
computation) — correct and fault signatures yield the factorization of n

Security of the RSA 25/25

	Factorization, RSA problem
	Problems with primes

	Small plaintext space, small public/private exponent
	Small public/private key
	Homomorphism of RSA
	Partial decryption oracles
	Half and parity predicates
	Bleichenbacher's attack on PKCS#1 v 1.5
	Manger's attack

	Other implementation attacks

