
Discrete logarithm and related schemes

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2022/23)

Content

Discrete logarithm problem
examples, equivalent key lengths
choosing a base for DLOG

Encryption schemes
ElGamal, Cramer-Shoup

Elliptic curves

DLOG and related cryptosystems 2 / 25 ,

Discrete logarithm problem

▶ Given a finite group (G, ·) and elements g, y ∈ G.
Compute x ∈ Z such that gx = y .

▶ usually cyclic (sub)groups with generator g are used
▶ DLOG is easy/hard depending on the group G
▶ Easy:

▶ (Zn,+) – DLOG by solving congruence gx ≡ y (mod n)
▶ Hard:

▶ (Z∗p, ·) for prime p; usually with g generating a subgroup of large prime
order q

▶ Elliptic curve groups (various curve types over various finite fields)

DLOG and related cryptosystems 3 / 25 ,

Example of DLOG in (Z∗p, ·)

▶ let p = 11
▶ case 1: g = 5

x 0 1 2 3 4 5 6 7 8 9 10
5x mod 11 1 5 3 4 9 1 5 3 4 9 1

▶ log5 9 = 4; log5 7 does not exist

▶ case 2: g = 7

x 0 1 2 3 4 5 6 7 8 9 10
7x mod 11 1 7 5 2 3 10 4 6 9 8 1

▶ log7 2 = 3; log7 10 = 5

DLOG and related cryptosystems 4 / 25 ,

Solving “hard” instances of DLOG

▶ (Z∗p, ·)
▶ Specific algorithms, e.g. when p − 1 lacks large prime factor
▶ General algorithm: Number Field Sieve for DLOG – complexity as GNFS

for factorization (⇒ equal key length)
▶ Generic algorithms

▶ work for any cyclic group
▶ the best algorithms for some groups, e.g. elliptic curve groups
▶ complexity O(n1/2), for n = |G |
▶ algorithms: baby-step/giant-step, Pollard’s 𝜌 , Pohlig-Hellman

DLOG and related cryptosystems 5 / 25 ,

Equivalent key lengths

symmetric modular (subgroup) elliptic curves
80 1024 (160) 160
112 2048 (224) 224
128 3072 (256) 256
192 7680 (384) 384
256 15360 (512) 512

NIST Recommendations (SP 800-57 part 1 rev. 5) (2020)
various methods are compared at www.keylength.com

DLOG and related cryptosystems 6 / 25 ,

Selection of the base is irrelevant for DLOG

▶ g, h – generators of G, |G | = n
▶ y – input
▶ if DLOG w.r.t. the base h can be computed efficiently, then DLOG w.r.t

the base g can be computed:
1. compute a, b: ha = g, hb = y

2. gba
−1

= (ha)ba−1 = hb = y , where the inverse is computed mod n

▶ since g, h are generators, the inverse a−1 mod n must exist

▶ For some constructions, e.g. ElGamal digital signature scheme, it is
important to choose the generator carefully (there are strong and weak
ones)!

DLOG and related cryptosystems 7 / 25 ,

How to choose a generator of (Z∗p, ·)

▶ generator of (Z∗p, ·)
▶ assume p = 2q + 1 for a prime number q (p is called a “safe” prime)
▶ |Z∗p | = p − 1, thus any element has order in {1, 2, q, p − 1}
▶ there are 𝜑 (p − 1) = 𝜑 (2)𝜑 (q) = q − 1 generators
▶ the probability of a random element being a generator is

(q − 1)/(p − 1) = (q − 1)/(2q) ≈ 50%
▶ testing: g ∉ {1,−1} is a generator ⇔ gq mod p ≠ 1

▶ generator of a subgroup
▶ assume a prime q | (p − 1)
▶ choose random h and compute g = h(p−1)/q mod p; if g = 1 choose again
▶ trivially gq ≡ 1 (mod p) (FLT), so we have ord(g) | q
▶ since ord(g) > 1, it follows ord(g) = q
▶ useful for working in smaller subgroup (shorter exponents are used)

DLOG and related cryptosystems 8 / 25 ,

Security of the last bit(s) of DLOG in (Z∗p, ·)

▶ let g be a generator of (Z∗p, ·)
▶ we can write p = 2st + 1 for s ≥ 1 and some odd t
▶ input: y ∈ Z∗p
▶ let x be the DLOG of y , i.e. gx mod p = y
▶ we use the binary representation of x = (xl … x1x0)2 = 2lxl +… + 2x1 + x0
▶ compute:

y (p−1)/2 ≡ gx (p−1)/2 ≡ gx0 (p−1)/2 ≡
{
1 if x0 = 0

−1 if x0 = 1
(mod p)

▶ x0 can be found

DLOG and related cryptosystems 9 / 25 ,

. . . cont.

▶ we can continue for s bits
▶ let us assume that x0, … , xi−1 are known (i < s)
▶ compute (mod p):(

y · g−(x0+…+2i−1xi−1)
) (p−1)/2i+1

≡ g (2
ixi+…+2lxl) (p−1)/2i+1

≡ gxi (p−1)/2 ≡
{
1 if xi = 0

−1 if xi = 1

▶ cannot be extended for more than s bits
▶ we can limit the “damage” to a single bit by choosing a safe prime

DLOG and related cryptosystems 10 / 25 ,

ElGamal encryption scheme

▶ ElGamal (1985)
▶ example: originally, a default algorithm in GPG (still an option for

public-key encryption in GPG)
▶ variants exists (what (sub)groups are used)

▶ Initialization:
1. choose a large random prime p, and a generator g of (Z∗p, ·)
2. choose a random x ∈ {1, … , p − 2}
3. y = gx mod p

▶ public key: y , p, g (the values p, g can be shared)
▶ private key: x

DLOG and related cryptosystems 11 / 25 ,

ElGamal – encryption and decryption

▶ Encryption (plaintext m ∈ Z∗p):

(r , s) = (gk mod p, yk · m mod p), for random k ∈ Zp−1
▶ Decryption (ciphertext (r , s), computation mod p):

s · r−x = yk · m · r−x = gxk · g−xk · m = m

▶ encryption: two exponentiations; decryption: single exponentiation
▶ r = gk and yk can be precomputed

▶ randomized encryption: 1 plaintext maps to approx. p ciphertexts
▶ security of the private key: DLOG problem
▶ knowledge of k allows to decrypt without x : s · y−k = m

▶ computing k from r : DLOG problem

DLOG and related cryptosystems 12 / 25 ,

Remarks

▶ Reusing k:
▶ m1 ↦→ (r , s1), m2 ↦→ (r , s2), we can compute s1/s2 = m1/m2

▶ Homomorphic property:
▶ encryptions of two plaintexts m1, m2:

m1 ↦→ (r1, s1) = (gk1 , yk1 · m1), m2 ↦→ (r2, s2) = (gk2 , yk2 · m2)
▶ multiplying the ciphertexts:

(r1 · r2, s1 · s2) = (gk1+k2 , yk1+k2 · (m1 · m2))
▶ Simple malleability:

▶ (r , s) ↦→ (r , s · m′) changes the plaintext from m to m · m′

▶ Blinding (CCA):
▶ access to a CCA oracle
▶ How to decrypt (r , s) if the oracle won’t decrypt this message?
▶ use (rgc , syc · m′) for a random value c and m′

▶ after decryption we get a message m · m′, so m can be recovered easily

DLOG and related cryptosystems 13 / 25 ,

ElGamal – security and CDH

▶ Computational Diffie-Hellman problem (CDH):
▶ compute gab given g, ga, gb for random generator g, and random a, b
▶ DLOG⇒ CDH (opposite direction is open in general)

▶ ElGamal decryption without the private key⇔ CDH
⇐ use CDH to compute gxk from r = gk and y = gx ; then the plaintext can

be computed: m = s · (gxk)−1
⇒ input: ga, gb

set y = (ga)−1, r = gb and s = gc for a random c
use the decryption oracle for y and (r , s) to get the value m = s · ra = gc+ab

finally, divide m by s: m · s−1 = gc+ab · g−c = gab

DLOG and related cryptosystems 14 / 25 ,

What is a quadratic residue?

▶ a ∈ Z∗n is called a quadratic residue modulo n if there exists an integer b
such that b2 ≡ a (mod n)

▶ otherwise a is called a quadratic nonresidue modulo n
▶ QRn – the set of all quadratic residues modulo n
▶ QNRn – the set of all quadratic nonresidues modulo n
▶ trivially QRn ∪QNRn = Z

∗
n

▶ it is easy to test quadratic residuity modulo prime:

[Euler’s criterion] Let p > 2 be a prime and a ∈ Z∗p. Then
a ∈ QRp ⇔ a(p−1)/2 ≡ 1 (mod p).

DLOG and related cryptosystems 15 / 25 ,

Semantic “insecurity” of ElGamal

▶ we can test the parity of k (it is the last bit of discrete logarithm of r)
▶ another view: for a generator g we have r ∈ QRp ⇔ k is even
▶ for even k: s ∈ QRp ⇔ m ∈ QRp

▶ for odd k:
▶ if y ∈ QRp: s ∈ QRp ⇔ m ∈ QRp
▶ if y ∈ QNRp: s ∈ QRp ⇔ m ∈ QNRp

▶ we can compute “something” about m from the ciphertext and y
▶ how to achieve semantic security:

▶ use a subgroup QRp for a safe prime p = 2q + 1 (or a general cyclic group
of some prime order) and assume the hardness of a DDH problem in this
group

▶ DDH (Decisional Diffie-Hellman) problem: efficiently distinguish triplets
(ga, gb, gab) and (ga, gb, gc) where c is random

▶ there are groups where CDH seems to be hard and DDH is easy
(e.g. (Z∗p, ·), elliptic-curve groups with pairing)

DLOG and related cryptosystems 16 / 25 ,

Some variants of ElGamal scheme

▶ ElGamal in a general cyclic group:
▶ |G | = q (for prime q) with generator g
▶ private key: x ∈ Z∗q ; public key y = gx

▶ encryption of m ∈ G: (r , s) = (gk ,m · yk) for random k ∈ Z∗q
▶ decryption of (r , s): s · r−x = m · yk · g−kx = m

▶ ElGamal with a hash function:
▶ overcoming the group encoding problem (m ∈ G)
▶ encryption m ∈ {0, 1}l : (r , s) = (gk ,m ⊕ H(yk)) for random k ∈ Z∗q and

suitable H and l
▶ security depends on CDH and properties of H
▶ still malleable

DLOG and related cryptosystems 17 / 25 ,

Elliptic curves – introduction

▶ we start with elliptic curves over real numbers
▶ Weierstrass equation (a, b ∈ R):

y2 = x3 + ax + b

▶ we are interested in non-singular curves, i.e. 4a3 + 27b2 ≠ 0
▶ non-singular ∼ x3 + ax + b has no repeated roots
▶ points: E = {(x , y) | y2 = x3 + ax + b} ∪ {0}, where 0 is an identity

element (point at infinity)
▶ group (E ,+) uses a commutative “addition”:

▶ notation: P = (xP , yP), P = (xP ,−yP)
▶ P + P = 0
▶ P + P = R = (xR, yR) such that the line PR is a tangent in P
▶ P + Q = R = (xR, yR) such that R, P and Q are collinear

DLOG and related cryptosystems 18 / 25 ,

Elliptic curves – addition formulas

▶ P = (xP , yP), Q = (xQ , yQ)
▶ case 1: P + (−P) = (xP , yP) + (xP ,−yP) = 0
▶ case 2 and case 3: P + Q = (xR, yR)

xR = 𝜆2 − xP − xQ
yR = 𝜆(xP − xR) − yP

𝜆 =

{
(3x2P + a) (2yP)−1 P = Q

(yQ − yP) (xQ − xP)−1 xP ≠ xQ

DLOG and related cryptosystems 19 / 25 ,

Elliptic curves over finite field

▶ GF(p) = (Zp,+, ·), for prime p > 3
▶ other finite fields can be used, e.g. GF(2n), with different forms,

conditions and addition formulas

▶ E = {(x , y) | y2 = x3 + ax + b mod p} ∪ {0},
for a, b ∈ Zp satisfying 4a3 + 27b2 . 0 (mod p)

▶ addition of points still “works” (mod p), i.e. (E ,+) is an abelian group
▶ no geometric interpretation anymore
▶ Hasse’s theorem: | |E | − p − 1| ≤ 2

√
p

▶ counting the exact number of points: Schoof’s algorithm with O(log5 p)
operations in Zp or improved version Schoof-Elkies-Atkin algorithm with
O(log4 p) operations in Zp

▶ remark: a point P = (xP , yP) can be uniquely represented by xP and the
sign of yP

DLOG and related cryptosystems 20 / 25 ,

Real world examples (1): NIST P-256 curve

▶ prime: p = 2256 − 2224 + 2192 + 296 − 1
▶ the curve:

y2 = x3 − 3x+
41058363725152142129326129780047268409
114441015993725554835256314039467401291

▶ number of points (prime):

11579208921035624876269744694940757352999
6955224135760342422259061068512044369

DLOG and related cryptosystems 21 / 25 ,

Real world examples (2): NIST P-384 curve

▶ prime: p = 2384 − 2128 − 296 + 232 − 1
▶ the curve:

y2 = x3 − 3x+
275801935599597058778490118403890480930
569058563615685214287073019886892413098
60865136260764883745107765439761230575

▶ number of points (prime):

3940200619639447921227904010014361380507973927046544666794
6905279627659399113263569398956308152294913554433653942643

▶ required for TOP SECRET classification (NSA – Commercial National
Security Algorithm Suite, 2015)

▶ critique: Failures in NIST’s ECC standards (Bernstein, Lange, 2016)

DLOG and related cryptosystems 22 / 25 ,

Real world examples (3): Curve25519

▶ prime: p = 2255 − 19
▶ the curve:

y2 = x3 + 486662x2 + x

▶ number of points 8 · p1 for a prime

p1 = 2252 + 27742317777372353535851937790883648493

▶ Montgomery form (different addition formulas, it can be translated into
Weierstrass form)

▶ non-standard curve
▶ used (along other curves) in various applications (OpenSSH, Signal,

Threema, etc.)

DLOG and related cryptosystems 23 / 25 ,

DLOG in elliptic curve groups

▶ (E ,+) – elliptic curve group
▶ point P ∈ E
▶ kP = P + P +… + P︸ ︷︷ ︸

k

, for an integer k ≥ 0

▶ DLOG: given a point kP , compute k
▶ CDH: given aP and bP , compute (ab)P

DLOG and related cryptosystems 24 / 25 ,

EC version of ElGamal scheme

▶ (E ,+) – elliptic curve group
▶ G ∈ E – generator of some subgroup of E , ord(G) = q (prime)
▶ private key: random x ∈ Zq
▶ public key: Y = xG
▶ Encryption (M ∈ E): (R, S) = (kG, kY +M) for random k ∈ Zq
▶ Decryption ((R, S) ∈ E × E):

S − xR = (kY +M) − xR = (kx)G +M − (kx)G = M

▶ group encoding

DLOG and related cryptosystems 25 / 25 ,

	Discrete logarithm problem
	examples, equivalent key lengths
	choosing a base for DLOG

	Encryption schemes
	ElGamal, Cramer-Shoup

	Elliptic curves

