Message authentication codes

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1(2022/23)

Content

Introduction
security of MAC

Constructions
block cipher based
HMAC
MAC from sponge construction

Secure channel

MAC

2/14

Introduction

MAC

message authentication code (MAC)
> data integrity and authenticity
> faster than digital signatures, suitable for per-packet use
> shared-key (symmetric) construction

m, Macy (m)

A—— B

MAC ~ “hash function with a key”

> key is necessary to compute the value of MAC
> verification by recomputation and comparison
> no non-repudiation property (!)

requirements: efficiency & security

remark: using MAC alone does not prevent replay attacks (!)

> sequential message number, timestamp, etc.

3/14

Security of MAC (informally)

v

formal definition of MAC uses three algorithms: Gen, Mac, Vrf

v

PPT attacker A, with oracle access to Macy (for random k)

v

existentially unforgeable under an adaptive chosen message attack:

> the probability that any attacker A produces a pair (m, h) such that
Macy(m) = h (and A did not query the oracle with m) is negligible

v

MAC uses a key, therefore the birthday attack is not applicable

> output of MAC can be shorter than output of a hash function
> for example IPSec: HMAC-SHA1-96 (truncated HMAC)

MAC 4/14

CBC-MAC

» MAC constructed from a block cipher

> initial attempt:

1V =0"

output

> secure for fixed length inputs (assuming PRP property of E)

MAC 5/14

CBC-MAC (2)

» insecure for variable length inputs:

1. A queries Macy oracle with 1-block messages m and n?’

2. Aobtains h = Macy(m) = Ex(m) and K = Mac,(m’) = Ex(m’)

3. A queries the oracle with two-block message m|| x and obtains
h* = Ex(Ex(m) & x)

4. Let us compute MAC for two-block message n’ || h & K & x:

Ex(Ex(m') ® Ex(m) & Ex(m') @ x) = Ex(Ex(m) & x) = h”*

i.e. A knows the valid MAC for this message without asking the oracle

MAC 6/14

CBC-MAC (3)

> how to fix CBC-MAC:

1V =0"

> two different keys k, k’

> derive k' from k,e.g. k' = k, k' = Ep(k) ...
> or derive two keys from a single key: ki = Ex(1), ko = E¢(2)

MAC 7/14

CMAC

> authentication mode of block ciphers, approved by NIST (SP 800-38B)
> simplified presentation

> assuming that the input length is divisible by block length (padding and

slightly different subkey used otherwise)

> m=m,...,m;

> [=E(0); ki =MSB()? (Il)@®R:Ix 1

> Ris a constant depending on block length, e.g. Ri5 = 0'2°10000111

> the last block is transformed: m}, = m; ® kq
» CBC processing (starting with Cy = 0):

1. Ci= Ex(Ci-i®m;),fori=1,..,t—1

2. Ct = Ex(Ci—1 ® m}) final round

3. output: C; (can be truncated)

MAC 8/ 14

MAC construction based on hash functions

» natural but (often) insecure approaches (let H be a hash function):

1. Macg(m) = H(k|| m)
using some iterated H (e.g. MD-based) allows the attacker to compute
MAC for an extended message

2. Macg(m) = H(m|| k)
using some iterated H (e.g. MD-based) means that finding collision
implies colliding MAC (security of MAC reduces/weakens to collision
resistance)

easy to propose other ideas, e.g. H(k || m|| k) ...security proof?
(btw. some weaknesses were identified even in this construction)

MAC 9/14

HMAC

MAC construction based on hash functions
the most popular / used MAC today (SSL/TLS, SSH, IPSec, ...)

provable security (if underlying compression function is PRF)

vV v.v Yy

construction:
HMAC,(m) = H(k ® opad || H(k @ ipad || m))

> opad/ipad - block-length outer/inner padding (0x5c5c.../ 0x3636...), i.e.
64 bytes for MD5, SHA-1 or SHA-256

> almost as fast as underlying hash function (just 3 additional blocks)

> truncation of output possible (e.g. used in [PSec)

MAC 10/ 14

Combined construction

» another approach: Macy(m) = Ex(H(m))

> provable security, if E is PRP and H is collision resistant
> problems:

> stronger assumptions than HMAC (thus no reason to use it)

> block ciphers usually with short block length n and because of collisions,
the bit-security is just n/2

> for example AES with 128-bit block (and truncated hash) leads to 64-bit
security

MAC 11/ 14

MAC from sponge construction

> KMAC - Keccak MAC (NIST SP 800-185, 2016)

> basic idea of MAC from sponge hash function:

input x MAC

L—{ padding

key k

MAC 12/ 14

Secure channel (1)

confidentiality & integrity/authenticity
usually both needed for a secure communication

authenticated encryption — specific modes of a block cipher

vVvyVvYyy

encryption (standard confidentiality modes) & MAC
> How to combine them properly?
> options (we use two independent keys kq, ky):
1. EtM (Encrypt then MAC, e.g. IPSec): ¢ = Ey, (m), {c, Macy, (c))
2. MtE (MAC then Encrypt, e.g. SSL/TLS): E, (m|| Macy,(m))
3. E&M (Encrypt and MAC, e.g. SSH): (E, (m), Macy,(m))
> recent situation:

> SSL: authenticated encryption (GCM); only AEAD ciphers for TLS 1.3
> SSH: authenticated encryption (GCM): e.g. aes128-gcm@openssh.com

MAC 13/ 14

Secure channel (2)

» theory: the correct approach is EtM
» the problem with MtE:

>
>

use any secure MAC

cipher: encoding n bit plaintext to 2n bits (each bit is replaced by two bits:
0 — 00; T+ 07 or 10 randomly) and then a secure synchronous stream
cipher is applied (even one-time pad can be used)

a pair 11 observed while decoding means “invalid ciphertext”

the cipher is IND-CPA if underlying cipher is (for symmetric ciphers)
flipping first two bits in the ciphertext is a correct ciphertext < the first
bit of the plaintext is 1

we assume that an attacker can distinguish correct/incorrect MAC
situation

remark: more practical scenario with SSL/TLS with MtE and oracle padding
attack (padding vs. MAC error — learning something about plaintext)

> E&M: MAC algorithm can leak information about the plaintext

MAC

14/ 14

	Introduction
	security of MAC

	Constructions
	block cipher based
	HMAC
	MAC from sponge construction

	Secure channel

