Passwords

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs.fmph.uniba. sk

Cryptology 1(2022/23)

Content

Introduction
Worst passwords
Password entropy
Storing passwords

Hellman’s TMTO

How not to store passwords
LAN Manager, Adobe hack

Key derivation functions

PBKDF2
scrypt

Passwords

2/24

Passwords — introduction

> the most frequent authentication method

> alone or combined with other methods
(something you know/have/are)

» constructions for confidentiality / integrity, e.g.

> protocols for authentication and key agreement using shared secret
> protection of private keys stored in files

» some problems with passwords:

> default passwords (e.g. can be found on the Internet)

a global problem (DDoS attacks 2016, loT, Mirai etc.)?

low entropy of a password, easy to guess

strong passwords hard to remember

passwords stored insecurely, e.g. in cleartext

passwords sent via insecure channel, e.g. telnet

shared among systems (it worsens the impact of a successful attack)

vVVYyVYY

Passwords 3/24

5

Passwords — introduction (2)

> attacks:

> brute-force search
> dictionary attacks
> precomputation (e.g. rainbow tables)
» password policy, for example:
> password length, “diversity” of characters (groups) used in a password
> max./min. password age
> checking password history, login name or other public account data
> block account after x unsuccessful login attempts
> delays after unsuccessful login attempts etc.
» choosing a password
> randomly generated (hard to remember ...password managers (?))
> user chosen (predictability, similarity with other passwords etc.)
> phrase-derived passwords, ...

Passwords 4/24

Worst passwords (1)

> October 2013; Adobe (data of 38 million active users)

» overall more than 130 million accounts/passwords (incl. inactive)

> top 20 passwords (educated guess, helpful “hints”, ECB mode):

123456
123456789
password
adobe123
12345678
qwerty
1234567
111111
photoshop
123123

A A o o M

-
e

Passwords

(= 1.9 million)

(~ 446 thousand)
(=~ 345 thousand)
(=~ 211 thousand)

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

1234567890
000000
abc123

1234

adobe1
macromedia
azerty
iloveyou
aaaaaa
654321

5/24

5

The most frequent passwords

How not to choose passwords

source: NordPass, based on breached passwords in 2021
(https://nordpass.com/most-common-passwords-list/)

123456
123456789
12345
qwerty
password
12345678
111111
123123
1234567890
1234567

O 0 I N Ul WN =

—_
(e

Passwords

1
12
13
14
15
16
17
18
19
20

qwerty123
000000
1q2w3e
aa12345678
abc123
password1
1234
qwertyuiop
123321
password123

6/24

Entropy of passwords?

> estimates of entropy for user chosen password according to NIST SP
800-63-2 (94 character alphabet):

length no checks (bits) rules™® (bits)

6 14 23
8 18 30
10 21 32
20 36 42
40 56 62

(*) dictionary tests and composition rule (character groups)

> one can expect worse situation when humans select passwords (NIST
overestimated the security of passwords)

> entropy is not the best approach to measure password strength

Weir et al. (2010): Testing Metrics for Password Creation Policies by
Attacking Large Sets of Revealed Passwords

Passwords 7/24

Entropy of passwords — other estimates

> estimation of entropy is not easy
> substring from a dictionary, number sequences, personal information, ...
» various methods implemented
> providing feedback on password strength to users
> web sites, password managers, specialized applications, ...

> comparison of KeePass a zxcvbn library (bit security):

password KeePass zxcvbn
qwerty 12 2.32
passwordl 8 7.57
JE38bslkepsl 67 39.86
spidersarecoolandfun 72 50.66

Passwords 8/24

NIST SP 800-63-3 Digital Identity Guidelines

> NIST SP 800-63-2 is superseded by the SP 800-63 suite (2017)
> SP 800-63-3 Digital Identity Guidelines
> SP 800-63A Enrollment and Identity Proofing
> SP 800-63B Authentication and Lifecycle Management
> SP 800-63C Federation and Assertions
> no entropy estimates, only guidelines given (length preferred over
complexity rules)

> for example, see Appendix A in NIST SP 800-63B:
Users should be encouraged to make their passwords as lengthy as they want,

within reason. ...

Length and complexity requirements beyond those recommended here significantly
increase the difficulty of memorized secrets and increase user frustration. As a
result, users often work around these restrictions in a way that is
counterproductive. Furthermore, other mitigations such as blacklists, secure
hashed storage, and rate limiting are more effective at preventing modern
brute-force attacks. Therefore, no additional complexity requirements are imposed.

Passwords 9/24

How strong are real passwords?

» 2012 LinkedIn

>

>
>
>

Passwords

password hashes leaked — approx. 6,5 million users

SHA-1, no salt used

approx. 60% passwords broken

experiment (F. Pesce):
> dictionary attack, no GPU or specialized HW used, no rainbow table
> 4 hours — recovery of approx. 900 thousand users passwords
> continuing the attack ...approx. 2 million passwords compromised

May 2016 - story continues

> 167 million accounts, 62 million unique hashes

> Korelogic:
2 hours ...65% hashes cracked
1day ...78% hashes cracked (86% accounts)
2days ...80% hashes cracked

10/ 24

5

Storing passwords (informal discussion)

> cleartext
> database/file leak = all passwords compromised
> passwords readable by admin, from backups etc.

> password hash: H(p)

> equal passwords = equal hashes

> precomputed hashes “applicable” for various systems/installations
» hash of the password and a “salt” H(p|| s)

> salt - random string (for each password), not necessary secret
> hash function speed = fast brute-force (many passwords can be tested in

short time)
> “slow” hashing of password and salt H(p|| s)
> iteration count ¢ - to slow down the computation of the hash c-times, e.g.

c=1000
> password verification: for example 2 ms vs. 2 seconds (acceptable?)
> attack: for example 10 days vs. more than 27 years (sufficient?)

Passwords 11/24

Time and memory for password searching

> assumption: h = H(p), attacker knows h
» N —size of the password space
> trivial attacks:
> brute-force: time T = N, memory M = 1, no precomputation needed

example: SHA-1, random alphanumeric (62 characters) password of
length 8, 14.5 million hashes/s (i7-2600 @ 3.40 GHz) ~ 174 days
using GPU is much better, e.g. single Nvidia GTX 1080 runs about 8500
million SHA-1 hashes/s ~ 7 hours

> precomputation of all hashes (only once, time ~ N), subsequent search in
the table: T 1, M= N
example: SHA-1, alphanumeric passwords of length 8...6114 TB
(passwords and hashes, i.e. 628 - (8 + 20) bytes)

Passwords 12/24

Time and memory for password searching (2)

> time-memory trade-off (TMTO)

> applicable for inverting any function

> computing a preimage of a hash function

> finding a key in a block cipher f(x) = Ex(m) (K/CPA),
for MAC f(x) = Macy(m), for stream cipher f maps the key and IV into a
running key

Passwords 13/ 24

Hellman’s TMTO for passwords — idea

H
P11 h1,1
H
P21 h2,1
H
Pm1 — hml
Passwords

8
-

8
-

P1,2
P2,2

Pm,2

H
—

H
—

H
—

h1,t—1
h2,t—1

hm,t—1

8
- Pt
8
— Pat
8
— Pmt

l= |=

l=z

14/ 24

Hellman’s TMTO for passwords — idea

H g H 8 H

P11 h1,1 - P12 ... h1,t—1 - pir — h1,t
H g H g H

P21 h2,1 — P22 i hz,t—1 - Pt — hz,t
H g H g H

Pm1 — hml - Pm2 .. hm,t—1 - Pmt — hmt

> store (pj1, i), sorted/indexed by the second coordinate
> inverting H:
1. fori=0,1,...,t — 1: test for (Ho g)i(h) in the last column
2. after a match, say (H o g)'(h) = h,.;, we compute p = (g o H)!"""/(p,1)
(false “alarms” possible)

> memory M~ m;time T =~ t (on-line), precomputation ~ mt

Passwords 14 /24

Hellman’s TMTO for passwords — covering the space (1)

> the attack can find only those passwords that are in some chain

> if go His a single-cycle permutation on password space, then we have
the TMTO with TM = N (unrealistic)

» usually the mapping behaves like a random mapping

> collisions: prob. increases for increasing number of elements in the table
> chains can cycle or merge

> problem: it is hard to cover more than N/t elements in a single table

> let’s assume a covering of mt > N/t elements and we add another chain
> probability that no collision with already covered elements occurs:

N- N/t
Pr<(—/

N) =(1-1/t) = 1/e

...and the probability lowers further with increasing covering

v

single table can be used for approx. N/t elements

Passwords 15/ 24

Hellman’s TMTO for passwords — covering the space (2)

> solution: use t independent tables (for distinct choices of g)
> experimental results: if mt?2 ~ N, then each table covers approx. 0.8 - mt
elements, and the prob. of success for t tables is approx. 1— (1—0.8mt/N)*
2
~1-(1-(08mt2/N)/t)t ~ 1— e O8M/N ~ 1 — ¢708 ~ 055
> time (on-line) T ~ 2, memory M ~ mt
> we want to cover N elements, i.e. mt -t = N;
» TMTO curve: TM? = t*m? =~ N?
> interesting point on the curve: T = M = N?3 (t x m ~ N'/?)
> example: SHA-1, alphanumeric password of length 8 — approx. 4.2 minutes
(no time for lookups counted); 101.5 GB (a pair counted as 20+8 bytes)
> improvements:

> distinguished points — fixed part of values in the last column, e.g. first d
bits are zero, thus reducing table lookups (i.e. disk operations)

> rainbow tables — distinct g; for each column: reduction of collision
probability, more costly search, single table; overall constant-time speedup
example: ophcrack - cracking Windows LAN Manager passwords

Passwords 16 /24

How not to store passwords (1)

» LAN Manager hash (Windows, P is a fixed plaintext)

14 characters (max.)

AN

first 7 chars next 7 chars

uppercase & DES key conversion

|
1 DES41(P) DES(P) | LAN Manager hash
|

» each half can be attacked independently

Passwords 17 /24

How not to store passwords (2)

> Adobe hack (2013)
encrypted passwords

> 3DES in ECB mode (single key) = equal passwords map into equal
ciphertexts

» block length 8 bytes (passwords divided into blocks), i.e. equal blocks
mapped into equal ciphertext blocks

password hints leaked as well — easy to guess some passwords

Passwords 18 /24

How not to store passwords (3)

> 000Webhost (2015)

>

webhosting service, 13 million plaintext passwords

> Ashley Madison (2015)

>

>
>
>

Passwords

data leak (10 GB compressed)

36 million accounts

bcrypt used to store passwords (iteration count 2'2, salt)

15.26 million accounts additional plain MD5 hash stored = more than 11
million passwords cracked in 10 days

19/24

How not to store passwords (4)

random examples of storing plaintext passwords (2019)
> Facebook (03/2019)

> Facebook Lite (primary), Facebook, Instagram
> “hundreds of millions” of user passwords (since 2012)
> searchable by employees

> Google (05/2019)
> “some portion” of G Suite users (since 2005)
> Twitter (05/2019)

> more than 330 million users (entire user base)
> bug (found internally) - storing plaintext passwords in an internal log

> Robinhood (07/2019)

> commission-free stock trading platform
> 3 »
some users” affected

Passwords 20/ 24

Password used for cryptographic constructions

v

PKCS #5 v 2.1 (RFC 8018) Password-Based Cryptography Specification
> various use of passwords:

> derivation of symmetric keys from passwords (encryption, MAC)

> password checking (non-standardized, just a note in RFC)

> PBKDF2 (Password based key derivation function)

> input: password P, salt S, iteration count c, output length d (in bytes)
> salt
> random bit string of sufficient length (e.g. 64), secrecy not required
> potentially many different keys for a single password
> makes precomputation of keys for dictionary passwords useless = the
attacker must wait for the salt value
> deterministic alternative for random generation of the salt: KDF(P, M),
where M is the message to be processed (not if message space is small)
> iteration count (makes the brute-force attack harder)

> increase the work factor for function computation, min. 1000
recommended in the RFC 8018 (based on NIST SP 800-132)

Passwords 21/ 24

PBKDF2

> output: T1|| T2 || ... (as needed)
> max. output length (232 — 1) - H;, where H is the length of underlying
h.f’s output

> e.g. 80 GB for SHA-1
> computation: T; = F(P, S, c, i), where

F(P,S,c,i)= Ui ® Up ®...® U,
Uy = PRF(P,S||INT(})) INT returns 4-byte value
U, = PRF(P, Uy)

Ue = PRF(P, Ue_1)

> standard PRF is HMAC-SHA-1: PRF(a, b) = HMAC,(b)
> HMAC-SHA-256 and similar constructions are commonly used as well
> alternatives to PBKDF2: bcrypt (based on Blowfish block cipher,
frequently used), scrypt (increasing memory requirements)

Passwords 22/ 24

scrypt

v

C. Persival (2009)
idea: make the brute-force even harder

v

> password cracking easy to parallelize

> GPU, custom ASIC (Application Specific Integrated Circuit)

> PBKDF2 - small memory

> large memory requirements increase the circuit area (and its price)

v

the attacker can choose:

> moderate time and (relatively) large memory requirements
> small memory and large time requirements

v

another memory-hard alternative: Argon2
» Biryukov, Dinu, Khovratovich (2015)

Passwords 23/24

5

scrypt — theory: ROMix
> ROMix(B, N) (sequential memory-hard function)
parameters: h.f. H with k bit output,
Integerify function (bijection {0, 1}¥ — {0,...,2%k - 1})
input: B - bit string of k bits
N - work factor (N < 2k/8)

computation: V; = H'(B) for0 <i< N
X = HY(B)
iterate for i =0,...,N—1:
J = Integerify (X)
X=HX®oV)
return X

> pseudorandom order of accessing V; values
» real scrypt specification - RFC 7914

> scryptROMix and scryptBlockMix functions, scryptROMix is a variation
of ROMix, parameters (work factor N, block size, parallelization)

» instantiation: PBKDF2-HMAC-SHA256, Salsa20/8 core
Passwords 24 /24

	Introduction
	Worst passwords
	Password entropy
	Storing passwords

	Hellman's TMTO
	How not to store passwords
	LAN Manager, Adobe hack

	Key derivation functions
	PBKDF2
	scrypt

