Block Ciphers I

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs.fmph.uniba. sk

Cryptology 1(2022/23)

Block Ciphers

1/26

5

Content

Confidentiality modes - ECB, CBC, OFB, CFB, CTR

Padding
Padding oracle attack
Ciphertext stealing

Authenticated encryption - CCM, GCM
Other constructions
Format-preserving encryption

Encryption of block devices

Theoretical security of block ciphers

Block Ciphers 2/26

Modes of operation

> plaintext usually much longer than the block length

> modes of operation can provide:

>

vVVvYyYvYyYy

confidentiality (and not authenticity) ... “traditional” modes
authenticity (and not confidentiality)

confidentiality & authenticity (authenticated encryption)
confidentiality for block-oriented storage devices (e.g. disks)
key wrapping

format-preserving encryption, ...

> varying requirements (speed, security properties, ability to parallelize,
availability of RNG, etc.) = different modes

Block Ciphers 3/26

Confidentiality modes

> the most important confidentiality modes: ECB, CBC, OFB, CFB, CTR

> e.g. see NIST SP 800-38A: Recommendation for Block Cipher Modes of
Operation: Methods and Techniques

» None of these modes provide protection against accidental or
adversarial modifications of ciphertext!

> however, the effect of ciphertext modification on resulting plaintext
varies among modes

Block Ciphers 4/26

ECB (Electronic Codebook)

Py Py Py Py
C; G C; G
encrypt: C; = Ex(P;) decrypt: P; = Di(C;)

the simplest mode

dataleaks: C;=C; & P;=P;

easy to rearrange the ciphertexts blocks (permute, duplicate, ...)
encryption and decryption trivially parallelizable

easy to perform a seek (random access)

vV v v v VY

bit changes do not propagate (single block affected)

Block Ciphers 5/26

CBC (Cipher Block Chaining) 1

G G

encrypt: C; = Ex(P; & Ci—1) decrypt: P; = Di(C;) & Ci—q

» |V (initialization vector) — secrecy not required, usually appended as Cy
> popular mode (e.g. AES-128 CBC was mandatory in TLS 1.2, RFC 5246)
» parallelizable decryption but not encryption

» bit change in plaintext or IV propagates to the rest of the ciphertext

> bit change in the ciphertext affects only two plaintext blocks

Block Ciphers 6/26

Visual comparison of ECB and CBC (AES-128)

VAV T !,E'E:-:ﬂ.'.-.' &
UL Gt

\ [ux s

L e | | CE b
ECB CBC

Block Ciphers 7/26

CBC 2

> “self-synchronizing” after losing a ciphertext block

> similarly to ECB, plaintext should be a multiple of block length
> padding, ciphertext stealing

> IV should be unpredictable (e.g. IV = Ek(msgseq), random, ...)

> otherwise, in CPA scenario, an attacker gets an Ej(-) oracle
> since C; = Ex(IV @ Py), predictable [V allows him/her to adjust P
> the attacker with E;(-) access can test any plaintext block

Block Ciphers 8/26

CBC 3

> data leak (birthday & two-time pad):
Ci=C = E(PoCi)=E(PeCi.)
P;® R, =Ci_1® Cj_1

> Sweet32 attack (2016): ciphers with block length 64 bits and large
amount of data encrypted using the same key (TLS, OpenVPN)

> 64 bit block = collision expected after ~ 232 blocks (32 GiB)

» limit number of blocks encrypted with a single key

Block Ciphers 9/26

CFB (Cipher Feedback)

encrypt: C; = P; @ Ex(Ci—1) decrypt: P; = C; @ Ex(Ci—1)

parallelizable decryption but not encryption; Dy not needed
bit change in plaintext or IV propagates to the rest of the ciphertext

bit change in the ciphertext affects only two plaintext blocks

vVvyyVvyy

self-synchronizing after full ciphertext block is lost

> ciphertext block and its predecessor are needed to decrypt correctly
> there is a variant for more granular losses

Block Ciphers 10/ 26

CFB 2

> plaintext length does not need to be a multiple of block length

» |V should be unique for each plaintext
> repeated /V:
> two-time pad for the first blocks:

CioCi=E(V)®PidE(IV)® P =P &P

> for constant /V we have an encryption oracle in CPA scenario;
2nd block (G,):

C = Ek(Ek(IV) (] P1) @ P,
— ——
Cy

choosing P; = C; @ P; @ X and arbitrary P; yields
C=EE(V)eCioPdaX)dP,=E(X)®P,

thus Ex(X) = C, @ P,

Block Ciphers

11/26

CFB8 variant of CFB mode and Zerologon

> Zerologon (CVE-2020-1472, Tom Tervoort)
compromising domain admin in AD

> problems with cryptography in Netlogon protocol
> AES-CFBS8
» CFB8 mode (P; and C; denote bytes):

Cz = Ek(IV“ 15]C1)[0] &b P2
C3 = Ek(IV[Z 15]C1C2)[0] &b P3

Cip1 = Ek(C[i_ 15,~~,i])[0] ® Piyq

Block Ciphers 12/ 26

CFB8 variant of CFB mode and Zerologon 2

» function in Netlogon implementation used all-zero 1V (always)
» consider all-zero plaintext
> 1/256 of all keys lead to all-zero ciphertext
> client authenticates by encrypting his own challenge with a session key

> the attacker chooses all-zero challenge

> session-key is unknown

> the attacker succeeds with probability 1/256

> if unsuccessful try again (session-key will change since it depends on
server challenge as well)

> the attack requires more than this, but this is the core problem

Block Ciphers 13/26

OFB (Output Feedback)

v v
R R
k) Y k) Y
e e
P; 4’@5—’ C; C; 4’@5—’ P;
Ri = Ex(Ri—+)
encrypt: C; = P; & R; decrypt: P;= C; ® R;

synchronous stream cipher; Dy not needed
1V should be unique for each plaintext

neither encryption nor decryption can be parallelized

vV v. vy

single bit change in plaintext/ciphertext causes single bit change in
ciphertext/plaintext (easy to flip plaintext bits)

Block Ciphers 14/ 26

CTR (Counter)

ctr++

encrypt: C; = P; ® E,(IV | ctr) decrypt: P; = C; @ Ex(1V | ctr)

inputs to £y should not overlap (otherwise ...two-time pad)
similar to OFB (synchronous stream cipher)
similar properties of changing ciphertext bits

easy to perform a seek (random access)

vV v v.v Yy

easy to encrypt and decrypt in parallel

Block Ciphers 15/26

Padding

> ECB and CBC assume: n | |plaintext|
(i.e. ndivides the length of plaintext)

v

padding required (various paddings used):

> bit padding — append 1 (always) and necessary number of 0’s:

msg || 1000...0
> byte padding (PKCS #7, CMS (RFC 5652)):

msg || 01 if n| |msg|+1

msg || 030303 if n| |msg|+3

msg || 1010...10 if n| |msg| (for n = 128)
> similarly for TLS 1.2 (RFC 5246): 00; 02 02 02; OF OF ...0OF

v

padding = |ciphertext| > |plaintext|

v

padding should be verified after decryption
“stream” modes like OFB, CTR or CFB do not need padding
> |ciphertext| = |plaintext|

v

Block Ciphers

16/ 26

Padding oracle attack 1

> implementation issue
> our assumptions:
> CBC mode
> we can recognize correct/incorrect padding, e.g. a server behaves
differently (observable error, timing differences, ...)
> goal: decrypt ciphertext block C, i.e. compute Y = Dy(C)
> the attack:

> try ciphertexts (assume 16-byte block, X is a random 15-byte value):
X100 | €, (X [[01) | C, oo, (X | TA) [C ..o (X | F) || C,
until we find a ciphertext with valid padding

> the highest probability: the corresponding plaintext ends with byte 01
(and not with bytes 02 02 or even longer padding)

> there is always a candidate with 01 padding, we can also alter the
penultimate byte of X to distinguish it

> finally, we can compute Y35, e.g. (7TA®Y15) =01= Y15 =7B

Block Ciphers 17 /26

Padding oracle attack 2

> the attack (cont.):

> set the last byte of the first block to get 02 as the final byte of the
plaintext: b® Yi5 =02, i.e. b=79

> try ciphertexts (X is a random 14-byte value):
(X[100 | 79) | C, (X [|01]|79) | C; ..,
(X B2][79) | C, ..., (X || FF || 79) || C.
until we find a ciphertext with valid padding (this time: 02 02)

> we can compute Yy, e.g. (B2 ®Y14) =02 = Yy4 = BO

...similarly for other bytes

> avariant used against SSL/TLS implementations (Lucky Thirteen, 2013)

Block Ciphers 18/26

Ciphertext stealing 1

> method of avoiding padding for CBC or ECB modes
> ciphertext stealing for CBC mode encryption
> example: Kerberos, AES256-CTS

Poov Pu]|0...0

plaintext: ... Pp_, Pp_1, Py
ciphertext: ... C,—5,C/_., C,

n—=1"n

Block Ciphers 19/26

Ciphertext stealing 2

» decrypting CBC ciphertext stealing;:

Pov P,]]0...0

Block Ciphers 20/ 26

Ciphertext stealing 2

» decrypting CBC ciphertext stealing;:

Pov P,]]0...0

Block Ciphers 20/ 26

Authenticated encryption

» modes providing confidentiality & authenticity of data
> e.g. CCM (Counter with CBC-MAC), GCM (Galois/Counter Mode)
> CCM (idea):
> plaintext encrypted using CTR mode
authentication tag computed as CBC-MAC

>
> authenticate-then-encrypt (single key is used)
> two-pass scheme (two E transforms for each input block)

Block Ciphers 21/26

Authenticated encryption - GCM

» faster than CCM
> simplified GCM:

>
>

single key is used
plaintext encrypted using CTR mode (starting with inc(Jy), an
incremented “pre-counter block”, derived from IV, e.g. Jo = IV || 03" || 1)
authentication tag computed as follows:
CTRK(GHASHy(A, C)) = Ex(Jo) ® GHASH (A, C)
A — additional authenticated data, C — ciphertext
H = Ex(0)
AllC — Xi,..., Xp—1,len(A) || len(C)

—_—

Xn

Yo=0,Yi=(Yi.1® X))o H
GHASHK(A,C) « Y,

e is multiplication in GF(2'%) (generated by x'® + x” + x* + x + 1)

IV must be unique for a given key (otherwise “forbidden attack”)

Block Ciphers 22/26

Format-preserving encryption

> goal: encrypt fixed-length string over some alphabet while preserving
the length and the format of data

> examples: credit card numbers, social security numbers, ...
various proposals; the most important are FFX schemes
based on Feistel structure
see NIST SP 800-38G for recommended modes (and details)

we present a very simplified (illustration) variant of FFX

vVvy Vv VYy

notation:

> r — radix, the size of input alphabet

> input plaintext X (string in base r) of length n (even)
> AES-128 - underlying block cipher; no tweak

> PRF - pseudorandom function (based on AES)

Block Ciphers 23/ 26

Simplified FFX variant

1. A|| B < X (left and right halves)

2. P=constants||r||n

3. for i from 0 to 9: (10 rounds of Feistel structure)
3.1 R=PRF4(P||i|| B)

3.2 S=R||AESk(R® 1) || AES,(R@® 2) ... (sufficiently long)
33 C=(A+S) mod r"?

34 A=B
35 B=C
4. return A|| B

> omitted — all conversions from strings to bytes (and back)

Block Ciphers 24 /26

XTS - encryption of block devices

> XEX-based Tweaked CodeBook mode (TCB) with CipherText Stealing
(CTS)

> encryption of disks (block storage devices), e.g. File Vault 2, VeraCrypt,
Bitlocker, etc.

» IEEE standard; approved by NIST

C,‘ = E[ﬂ(Pj (&) Tn) ® Tn, Tn = Ekz(n) b ai

where

> ki, ky are two independent keys

> n - data unit number (e.g. 512B in VeraCrypt)

» j—block number in particular data unit

> o — multiplication in GF(2'?) (defined by x' + x7 + x> + x + 1)
> a- aprimitive element in GF(2'?®) (corresponds to polynomial x)

Block Ciphers 25/ 26

Theoretical security of block ciphers

just an idea is presented
E is an n-bit cipher
attacker A (distinguisher)

two different scenarios — A with oracle access to

> Ei(+) and E/:](') for fixed, randomly chosen k
» 7z and z~" for randomly chosen permutation on {0, 1}"

> block cipher is strong pseudorandom permutation if for any (efficient)
attacker A the probability of distinguishing these scenarios is negligible

> “standard model” (other models of security exist, e.g. “ideal cipher”
model — random independent permutation for every key)

Block Ciphers 26/ 26

	Confidentiality modes – ECB, CBC, OFB, CFB, CTR
	Padding
	Padding oracle attack
	Ciphertext stealing

	Authenticated encryption – CCM, GCM
	Other constructions
	Format-preserving encryption
	Encryption of block devices

	Theoretical security of block ciphers

