Hash functions

Martin Stanek

Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Hash function properties
preimage / second preimage / collision resistance

Birthday attack

Constructions
hard problems
block cipher based
Merkle-Damgård construction

Examples of real-world hash functions
SHA-256
SHA-3 (Keccak)

Introduction

- hash function computes a fixed-length fingerprint/digest/hash from a message/document of (almost) arbitrary length
- $h: X \rightarrow Y$ function (deterministic computation)
- efficient (fast) \& no key used
- usually $X=\{0,1\}^{*}, X=\{0,1\}^{\leq 2^{64}}, X=\{0,1\}^{\leq 2^{128}}, \ldots$ $Y=\{0,1\}^{160}$ for SHA-1, $\{0,1\}^{256}$ for SHA-256 and SHA3-256, \ldots
- various uses of h.f.:
- digital signature schemes (digest of the message is signed)
- padding in public-key encryption schemes
- verifying integrity of data
- instantiation of random oracles and pseudorandom functions
- MAC constructions
- password storing methods etc.

Basic requirements of hash functions (informally)

- preimage resistance (one-way)
- It is infeasible to compute $x \in X$ given $y \in h(X)$ such that $h(x)=y$.
- second preimage resistance
- It is infeasible to compute $x^{\prime} \in X$ given $x \in X$ such that $x \neq x^{\prime} \& h(x)=h\left(x^{\prime}\right)$.
- collision resistance
- It is infeasible to compute $x, x^{\prime} \in X$ such that $x \neq x^{\prime} \& h(x)=h\left(x^{\prime}\right)$.

Basic requirements of hash functions (informally)

- preimage resistance (one-way)
- It is infeasible to compute $x \in X$ given $y \in h(X)$ such that $h(x)=y$.
- second preimage resistance
- It is infeasible to compute $x^{\prime} \in X$ given $x \in X$ such that $x \neq x^{\prime} \& h(x)=h\left(x^{\prime}\right)$.
- collision resistance
- It is infeasible to compute $x, x^{\prime} \in X$ such that $x \neq x^{\prime} \& h(x)=h\left(x^{\prime}\right)$.
- remarks:
- $|X| \gg|Y|$, otherwise the h.f. is useless \Rightarrow large number of collisions
- Y is finite, h is deterministic \Rightarrow in theory, e.g. collisions can be found in $O(1)$ time ("hardcoded")
- formalizing the requirements is not straightforward (introduction of hash function families, multiple "flavors" of preimage and second preimage resistance) - however, above intuition satisfies our needs
- Pre, Sec, Coll, (aPre, ePre, aSec, eSec), MAC, Prf, Pro, TCR, CTFP, ...

Properties of h.f. - discussion

- collision resistance \Rightarrow second preimage resistance
- if you can find a second preimage, then you have a collision
- collision resistance \nRightarrow preimage resistance
- identity: $X=Y, \forall x \in X: h(x)=x \quad$ (Coll, \neg Pre)
- let g with range $\{0,1\}^{n}$ be collision and preimage resistant; then

$$
h(x)= \begin{cases}0 \| x & \text { if }|x|=n \\ 1 \| g(x) & \text { otherwise }\end{cases}
$$

is collision resistant but not preimage resistant

- second preimage resistance \nRightarrow preimage resistance
- identity again (Sec, \neg Pre)
- however, in a "normal" situation ...

Collision by inverting h.f.

- assumption: h can be inverted efficiently
- algorithm:

1. $x \stackrel{\$}{\leftarrow} X$
2. invert $h(x) \mapsto x^{\prime}$
3. if $x^{\prime} \neq x \ldots$ collision found

- let us estimate the probability of success
- notation: $[x]=\left\{x^{\prime} \in X ; h\left(x^{\prime}\right)=h(x)\right\}$ equivalence class
- C - set of all equivalence classes

$$
\begin{aligned}
\operatorname{Pr}_{\text {succ }} & =\frac{1}{|X|} \sum_{x \in X} \frac{|[x]|-1}{|[x]|}=\frac{1}{|X|} \sum_{c \in C} \sum_{x \in c} \frac{|c|-1}{|c|}=\frac{1}{|X|} \sum_{c \in C}(|c|-1) \\
& =\frac{1}{|X|}(\underbrace{\sum_{c \in C}|c|}_{|X|}-\underbrace{\sum_{c \in C} 1}_{\leq|Y|}) \geq 1-\frac{|Y|}{|X|} \quad \ldots \geq \underbrace{1-\left(\frac{|Y|}{|X|}\right)^{k}}_{\text {after } k \text { repetitions }}
\end{aligned}
$$

Generic attack for finding preimage/2nd preimage

- generic attack, finding a preimage for given $y \in h(X)$:
- algorithm:

1. choose $x \in X$ (randomly or systematically)
2. if $h(x)=y$ then the preimage is found, otherwise repeat

- expected complexity $O\left(2^{n}\right)$ for $Y=\{0,1\}^{n}$
- similar generic attack for finding a second preimage

Birthday attack - introduction

- generic attack for finding collision(s)
- example: What is the probability that at least two people in a room share the same birthday?

$$
\operatorname{Pr}_{2}=1-\frac{365 \cdot 364}{365^{2}} \approx 0.0027 ; \quad \operatorname{Pr}_{3}=1-\frac{365 \cdot 364 \cdot 363}{365^{3}} \approx 0.0082
$$

- k people: $\operatorname{Pr}_{k}=1-365^{k} / 365^{k}$
- at least 23 people needed for probability $\geq 1 / 2$
- "hash function" maps people to dates; $|Y|=365$

Birthday attack - introduction (2)

Birthday attack on h.f.

1. choose (distinct) $x_{1}, \ldots, x_{k} \stackrel{\$}{\leftarrow} X$
2. compute $h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$
3. find collisions, for example by sorting $\left(h\left(x_{i}\right), x_{i}\right)$ and searching for collisions in adjacent elements, or by storing $\left(h\left(x_{i}\right), x_{i}\right)$ in a hash table using the hash value as a key

- linear time and memory complexity $O(k)$
- we treat n as a constant (for $Y=\{0,1\}^{n}$); also assuming constant time to evaluate h
- time: using Radixsort for sorting in $O(k)$ or using a hash table with $k \times O(1)$ operations
- memory complexity can be improved (see later)

What is the probability of success?

Birthday attack - analysis (1)

- trivial observations - the probability of success increases:
- for increasing k
- for unbalanced distribution of images
- assume the worst situation: h distributes the hash values uniformly, i.e.

$$
\operatorname{Pr}[h(x)=y]=1 /|Y| \quad \forall y \in Y
$$

- let y_{1}, \ldots, y_{k} be random, independent and uniform elements from Y
- notation: $|Y|=N$
- probability that all y_{i} 's are distinct:

$$
\operatorname{Pr}_{\text {dist }}=\frac{N(N-1) \ldots(N-k+1)}{N^{k}}=\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \ldots\left(1-\frac{k-1}{N}\right)
$$

Birthday attack - analysis (2)

- probability of at least one collision: $\operatorname{Pr}_{\text {col }}=1-\operatorname{Pr}_{\text {dist }}$
- estimate $\mathrm{Pr}_{\text {col }}$:

$$
\operatorname{Pr}_{\mathrm{col}}=1-\prod_{i=1}^{k-1}\left(1-\frac{i}{N}\right) \geq 1-e^{-\frac{1}{N}-\frac{2}{N}-\ldots-\frac{k-1}{N}}=1-e^{\frac{-k(k-1)}{2 N}}
$$

we use inequality $1-x \leq e^{-x}$ it follows from Taylor series:
$e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots$

Birthday attack - analysis (3)

- find k such that $\operatorname{Pr}_{\text {col }} \geq \varepsilon$, for some constant $\varepsilon \in(0,1)$

$$
\begin{aligned}
\operatorname{Pr}_{\text {col }} \geq 1-e^{-k(k-1) /(2 N)} & \geq \varepsilon \\
1-\varepsilon & \geq e^{-k(k-1) /(2 N)} \\
2 N \ln (1-\varepsilon) & \geq-k^{2}+k \\
k^{2}-k+2 N \ln (1-\varepsilon) & \geq 0
\end{aligned}
$$

$$
k \geq \frac{1}{2}+\sqrt{\frac{1}{4}+2 N \ln \frac{1}{1-\varepsilon}}
$$

$$
k \geq \sqrt{N} \cdot \sqrt{2 \ln \frac{1}{1-\varepsilon}}
$$

Birthday attack - results

- the complexity of b.a. for "reasonable" ε, e.g. $1 / 2,2 / 3$, is $O\left(N^{1 / 2}\right)$
- for $Y=\{0,1\}^{n}$ we get $\approx 2^{n / 2}$ (e.g. for SHA- $1 \approx 2^{80}$)
- expected k for given success probability:

50%	$k \approx 1.177 \cdot 2^{n / 2}$
90%	$k \approx 2.146 \cdot 2^{n / 2}$
99%	$k \approx 3.035 \cdot 2^{n / 2}$

Implications of birthday attack

- generic attack, i.e. any h.f. can be attacked this way
- recall: generic attack for symmetric encryption is brute-force, $O\left(2^{k}\right)$ for key length k
- the length of hash value (digest) should be twice the length of symmetric key used for encryption
- standardized parameters of AES and SHA-2 family:

AES key length	128	192	256	
SHA-2 output length	$224^{(*)}$	256	384	512

${ }^{(*)}$ this corresponds to the effective key length of 3DES (112 bits)

"Meaningful" collisions

- prepare documents m, m^{\prime} with t places that can be changed without changing the meaning of the document
- one space vs. two spaces, synonyms etc.
- 2^{t} variants of each document
- hash and find a collision between these two sets
- the same asymptotic time and memory complexity of b.a.

Improving memory complexity of birthday attack (1)

- assumption: h as a random function on $h(X)$
- sequence: $x_{0}, x_{1}, x_{2} \ldots$, where $x_{i}=h\left(x_{i-1}\right)$ for $i \geq 1$

- expected (as $N \rightarrow \infty$): $\rho=\lambda+\mu=\sqrt{\pi N / 2}$
- finding collision in constant memory:

1. $x_{0} \stackrel{\$}{\leftarrow} X$ (using $X \backslash Y$ guarantees the existence of a collision, $\lambda \geq 1$)
2. compute $\left(x_{i}, x_{2 i}\right)$ for $i \geq 1: x_{i}=h\left(x_{i-1}\right), x_{2 i}=h\left(h\left(x_{2(i-1)}\right)\right)$
3. if $x_{i}=x_{2 i}$ then $h^{i}\left(x_{0}\right)=h^{2 i}\left(x_{0}\right)$, we found a point on the cycle, $\lambda \leq i$, and the collision can be computed as follows:
3.1 compute (x_{j}, x_{i+j}) for $j=0,1, \ldots, i$ starting with (x_{0}, x_{i})
3.2 check for situation when $x_{j} \neq x_{i+j}$ and $x_{j+1}=x_{i+j+1}$
3.3 collision $h\left(x_{j}\right)=h\left(x_{i+j}\right)$; remark: $\mu \mid(2 i-i) \Rightarrow x_{\lambda}=x_{i+\lambda}$

Improving memory complexity of birthday attack (2)

- only a constant number of values (e.g. x_{0}, and the recent pair of values $\left(x_{i}, x_{2 i}\right)$ or $\left.\left(x_{j}, x_{i+j}\right)\right)$ should be stored
- complexity:
- cycle is detected (point is found) if $i \geq \lambda$ and $\mu \mid i$
- the difference $2 i-i$ increases by 1 in each iteration, i.e. the cycle is detected with $\lambda+\mu$ iterations maximum
- complexity $O(\lambda+\mu)=O(\sqrt{N})$
- this method does not change the asymptotic time complexity of b.a.
- no control over the colliding messages/inputs

Collision resistance in practice

- collision resistance is not easy
- MD5
- designed by Ron Rivest (1991)
- collision published in 2005
- SHA-1
- designed by NSA, published as a standard in 1995
- deprecated in major web browsers in 2017
- first collision published in 2017; two pdf files, see https://shattered.io/
- attack complexity: $2^{63.1}$ SHA-1 compressions

Hash functions in web server's certificates

- how SHA-1 was replaced (use of hash function in signature schemes):

	$01 / 2015$	$01 / 2016$	$01 / 2017$	$01 / 2018$	$01 / 2019$
SHA-1	66.7%	13.2%	1.5%	0.0%	0.0%
SHA-256	33.3%	86.8%	98.4%	99.8%	99.8%
source: SSL Pulse, https://www.ssllabs.com/ssl-pulse/					

- current statistics (09/2023):

SHA-256 (95.5\%), SHA-384 (1.7\%), SHA-512 (0.1\%)

Hash functions based on hard problems

- provable properties (assuming the hardness of underlying problem)
- slow, impractical \Rightarrow not used in practice
- example based on discrete logarithm problem:
- (G, \cdot) - group of prime order p; let g be a generator of (G, \cdot)
- $f \in G$, such that $\alpha=\log _{g} f$ is unknown
- $h: \mathbb{Z}_{p} \times \mathbb{Z}_{p} \rightarrow G$ is defined as follows: $h(a, b)=g^{a} \cdot f^{b}$
- h is collision resistant, otherwise we can find α :

$$
\begin{aligned}
h(a, b) & =h\left(a^{\prime}, b^{\prime}\right) \quad \text { where }(a, b) \neq\left(a^{\prime}, b^{\prime}\right) \\
g^{a} \cdot f^{b} & =g^{a^{\prime}} \cdot f^{b^{\prime}} \\
g^{a+\alpha b} & =g^{a^{\prime}+\alpha b^{\prime}} \quad \Rightarrow \quad \alpha=\frac{a-a^{\prime}}{b^{\prime}-b} \bmod p
\end{aligned}
$$

Hash functions based on block ciphers

- $m=m_{1}, m_{2}, \ldots, m_{k}$ input divided into blocks
- h_{0} - initialization vector; h_{i} - intermediate hash value ($1 \leq i \leq k$)
- iteration - sequential processing of input blocks
- examples:
- Matyas, Meyer, Oseas: $h_{i}=E_{g\left(h_{i-1}\right)}\left(m_{i}\right) \oplus m_{i}$
- Davies, Meyer: $h_{i}=E_{m_{i}}\left(h_{i-1}\right) \oplus h_{i-1}$
- Miyaguchi, Preneel: $h_{i}=E_{g\left(h_{i-1}\right)}\left(m_{i}\right) \oplus h_{i-1} \oplus m_{i}$
- $H(m)=h_{k}$ (the hash value is the output of the last iteration)
- problem: standard block ciphers have small block length
- specific block ciphers (SHACAL for SHA-1, W cipher for Whirlpool etc.)
- double block length constructions (MDC-4, Hirose, Tandem-DM etc.)

Dedicated constructions

- no proofs of security based on some "hard underlying problem"
- fast (usually one of the design goals)
- iterated construction (informally):
- message padding and "slicing"
- start with IV and sequentially process the slices
- result is the output of the final iteration (sometimes after some additional processing)
- most common approaches
- Merkle-Damgård: SHA-1, SHA-2 family
- sponge: SHA-3 (Keccak)

Merkle-Damgård construction (1)

- collision resistance of compression function implies collision resistance of hash function
- fixed input length compression function $f:\{0,1\}^{n+r} \rightarrow\{0,1\}^{n}$
- hash function $H:\{0,1\}^{\leq l} \rightarrow\{0,1\}^{n}$
- input $x=x_{1}, x_{2}, \ldots, x_{t}$ (block length r)
- last block padded by $10 \ldots 0$ (if needed)
- additional block $x_{t+1}=|x|$; in binary, thus $l<2^{r}$
- other variants of padding used in practice or proposed in the literature
- using the length in padding ~ MD strengthening
- ensures suffix-free property of the padding: for any $x \neq x^{\prime}, \operatorname{pad}(x)$ is not a suffix of $\operatorname{pad}\left(x^{\prime}\right)$
- suffix-free \sim necessary and sufficient condition for collision-preserving padding

Merkle-Damgård construction (2)

computation:

1. $h_{0}=0^{n}$ (initialization vector)
2. $h_{i}=f\left(h_{i-1} \| x_{i}\right)$, for $i=1, \ldots, t+1$
3. $H(x)=h_{t+1}$

Collision resistance of MD construction

let $x \neq x^{\prime}$ be a collision in $H: H(x)=H\left(x^{\prime}\right)$, i.e. $h_{t+1}=h_{t^{\prime}+1}^{\prime}$
a. if $t \neq t^{\prime}$ then $x_{t+1} \neq x_{t^{\prime}+1}^{\prime}$ and $f\left(h_{t}, x_{t+1}\right)=f\left(h_{t^{\prime}}^{\prime}, x_{t^{\prime}+1}^{\prime}\right) \ldots$ collision in f

Collision resistance of MD construction

let $x \neq x^{\prime}$ be a collision in $H: H(x)=H\left(x^{\prime}\right)$, i.e. $h_{t+1}=h_{t^{\prime}+1}^{\prime}$
a. if $t \neq t^{\prime}$ then $x_{t+1} \neq x_{t^{\prime}+1}^{\prime}$ and $f\left(h_{t}, x_{t+1}\right)=f\left(h_{t^{\prime}}^{\prime}, x_{t^{\prime}+1}^{\prime}\right) \ldots$ collision in f
b. $t=t^{\prime}: x=x_{1}, \ldots, x_{t+1}, x^{\prime}=x_{1}^{\prime}, \ldots, x_{t+1}^{\prime}$ $f\left(h_{t}, x_{t+1}\right)=f\left(h_{t}^{\prime}, x_{t+1}^{\prime}\right) \ldots$ either collision in f or

Collision resistance of MD construction

let $x \neq x^{\prime}$ be a collision in $H: H(x)=H\left(x^{\prime}\right)$, i.e. $h_{t+1}=h_{t^{\prime}+1}^{\prime}$
a. if $t \neq t^{\prime}$ then $x_{t+1} \neq x_{t^{\prime}+1}^{\prime}$ and $f\left(h_{t}, x_{t+1}\right)=f\left(h_{t^{\prime}}^{\prime}, x_{t^{\prime}+1}^{\prime}\right) \ldots$ collision in f
b. $t=t^{\prime}: x=x_{1}, \ldots, x_{t+1}, x^{\prime}=x_{1}^{\prime}, \ldots, x_{t+1}^{\prime}$

$$
f\left(h_{t}, x_{t+1}\right)=f\left(h_{t}^{\prime}, x_{t+1}^{\prime}\right) \ldots \text { either collision in } f \text { or }
$$

- $h_{t}=h_{t}^{\prime} \& x_{t+1}=x_{t+1}^{\prime}$
$f\left(h_{t-1}, x_{t}\right)=f\left(h_{t-1}^{\prime}, x_{t}^{\prime}\right)$...either collision in f or

Collision resistance of MD construction

let $x \neq x^{\prime}$ be a collision in $H: H(x)=H\left(x^{\prime}\right)$, i.e. $h_{t+1}=h_{t^{\prime}+1}^{\prime}$
a. if $t \neq t^{\prime}$ then $x_{t+1} \neq x_{t^{\prime}+1}^{\prime}$ and $f\left(h_{t}, x_{t+1}\right)=f\left(h_{t^{\prime}}^{\prime}, x_{t^{\prime}+1}^{\prime}\right) \ldots$ collision in f
b. $t=t^{\prime}: x=x_{1}, \ldots, x_{t+1}, x^{\prime}=x_{1}^{\prime}, \ldots, x_{t+1}^{\prime}$

$$
f\left(h_{t}, x_{t+1}\right)=f\left(h_{t}^{\prime}, x_{t+1}^{\prime}\right) \ldots \text { either collision in } f \text { or }
$$

- $h_{t}=h_{t}^{\prime} \& x_{t+1}=x_{t+1}^{\prime}$
$f\left(h_{t-1}, x_{t}\right)=f\left(h_{t-1}^{\prime}, x_{t}^{\prime}\right) \ldots$ either collision in f or
- $h_{t-1}=h_{t-1}^{\prime} \& x_{t}=x_{t}^{\prime}$

Collision resistance of MD construction

let $x \neq x^{\prime}$ be a collision in $H: H(x)=H\left(x^{\prime}\right)$, i.e. $h_{t+1}=h_{t^{\prime}+1}^{\prime}$
a. if $t \neq t^{\prime}$ then $x_{t+1} \neq x_{t^{\prime}+1}^{\prime}$ and $f\left(h_{t}, x_{t+1}\right)=f\left(h_{t^{\prime}}^{\prime}, x_{t^{\prime}+1}^{\prime}\right) \ldots$ collision in f
b. $t=t^{\prime}: x=x_{1}, \ldots, x_{t+1}, x^{\prime}=x_{1}^{\prime}, \ldots, x_{t+1}^{\prime}$

$$
f\left(h_{t}, x_{t+1}\right)=f\left(h_{t}^{\prime}, x_{t+1}^{\prime}\right) \ldots \text { either collision in } f \text { or }
$$

- $h_{t}=h_{t}^{\prime} \& x_{t+1}=x_{t+1}^{\prime}$
$f\left(h_{t-1}, x_{t}\right)=f\left(h_{t-1}^{\prime}, x_{t}^{\prime}\right) \ldots$ either collision in f or
- $h_{t-1}=h_{t-1}^{\prime} \& x_{t}=x_{t}^{\prime}$
- either we get a collision in f or $x=x^{\prime}$

Parameters of real-world hash function

family	function	length [bits]		
		max. input	output	block
	MD-5	$2^{64}-1$	128	512
	SHA-1	$2^{64}-1$	160	512
	Whirlpool	$2^{256}-1$	512	512
SHA-2	SHA-256	$2^{64}-1$	256	512
	SHA-384	$2^{128}-1$	384	1024
	SHA-512	$2^{128}-1$	512	1024
SHA-3	SHA3-256	∞	256	1088
	SHA3-384	∞	384	832
	SHA3-512	∞	512	576

SHA-2

- SHA-2 family of hash function (SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256)
- standard: FIPS PUB 180-4
- 2023: NIST decided to revise it and remove SHA-1
- similar design of SHA-256 (32-bit words, block size 512 bits) and SHA-512 (64-bit words, block size 1024 bits)
- other variants are truncated versions with different initialization vectors
- Merkle-Damgård construction

Example: SHA-256

- input message M; $l=|M|\left(0 \leq l<2^{64}\right.$ bits $)$
- padding and parsing:
- padding: $\mathcal{M} 1 \underbrace{00 \ldots 0}\left(I_{2}\right.$, where k is the smallest value such that the overall length is a multiple of 512
- parsing into 512 -bit blocks: $M^{(1)}, \mathcal{M}^{(2)}, \ldots, M^{(N)}$
- each block consists of 16 32-bit words: $M^{(i)}=M_{0}^{(i)}, M_{1}^{(i)}, \ldots, M_{15}^{(i)}$
- initialization vector (8 32-bit words): $H_{0}^{(0)}, H_{1}^{(0)}, \ldots, H_{7}^{(0)}$
- intermediate hash values: $H_{0}^{(i)}, H_{1}^{(i)}, \ldots, H_{7}^{(i)}$
- SHA-256 digest: $H_{0}^{(N)}, H_{1}^{(N)}, \ldots, H_{7}^{(N)}$

SHA-256 compression function

compression function (for $i=1, \ldots, N$):

1. expanding a message block $\left(\mapsto W_{0}, \ldots, W_{63}\right)$

$$
W_{i}= \begin{cases}M_{t}^{(i)} & \text { for } 0 \leq t \leq 15 \\ \sigma_{1}\left(W_{t-2}\right)+W_{t-7}+\sigma_{0}\left(W_{t-15}\right)+W_{t-16} & \text { for } 16 \leq t \leq 63\end{cases}
$$

2. $(a, b, c, d, e, f, g, h) \leftarrow\left(H_{0}^{(i-1)}, H_{1}^{(i-1)}, \ldots, H_{7}^{(i-1)}\right)$
3. for $t=0, \ldots, 63$:

$$
\begin{array}{ll}
3.1 & T_{1}=h+\sum_{1}(e)+\operatorname{Ch}(e, f, g)+K_{t}+W_{t} \\
3.2 & T_{2}=\sum_{0}(a)+\operatorname{Maj}(a, b, c) \\
3.3 & (a, b, c, d, e, f, g, h) \leftarrow\left(T_{1}+T_{2}, a, b, c, d+T_{1}, e, f, g\right)
\end{array}
$$

$$
\text { 4. }\left(H_{0}^{(i)}, H_{1}^{(i)}, \ldots, H_{7}^{(i)}\right) \leftarrow\left(a+H_{0}^{(i-1)}, b+H_{1}^{(i-1)}, \ldots, h+H_{7}^{(i-1)}\right)
$$

SHACAL-2 block cipher in Davies-Meyer mode

Functions used in SHA-256

- functions operate on 32-bit words
- addition is computed $\bmod 2^{32}$
- $\operatorname{Ch}(x, y, z)=(x \wedge y) \oplus(\neg x \wedge z)$
- $\operatorname{Maj}(x, y, z)=(x \wedge y) \oplus(x \wedge z) \oplus(y \wedge z)$
- $\sum_{0}(x)=\operatorname{ROTR}^{2}(x) \oplus \operatorname{ROTR}^{13}(x) \oplus \operatorname{ROTR}^{22}(x)$
- $\sum_{1}(x)=\operatorname{ROTR}^{6}(x) \oplus \operatorname{ROTR}^{11}(x) \oplus \operatorname{ROTR}^{25}(x)$
- $\sigma_{0}(x)=\operatorname{ROTR}^{7}(x) \oplus \operatorname{ROTR}^{18}(x) \oplus \operatorname{SHR}^{3}(x)$
$-\sigma_{1}(x)=\operatorname{ROTR}^{17}(x) \oplus \operatorname{ROTR}^{19}(x) \oplus \operatorname{SHR}^{10}(x)$
- ROTR - circular shift rotation to the right
- SHR - shift to the right

Some performance numbers

	MB/s
MD5	687
SHA-1	738
SHA-256	323
SHA-512	417
SHA3-256	287
SHA2-512	154

block size: 8192 bytes, 1 thread platform: i7-2600 @ 3.40 GHz (4 cores/8 threads) implementation: openssl 1.1.1c

Remark: Intel SHA Extensions - instructions for improving performance of SHA-1 and SHA-256 hash functions (not used in above table); AMD Ryzen and some Intel processors.

SHA-3 overview

- Keccak - winner of SHA-3 competition (2012)
- standard: NIST FIPS 202 (2015)
- 4 hash functions with fixed-length output: SHA3-224, SHA3-256, SHA3-384, SHA3-512
- 2 functions with variable-length output (XOF - extendable-output functions): SHAKE128, SHAKE256
- different approach than SHA-1 or SHA-2 hash functions
- Keccak is not an MD-construction
- sponge construction
- other functions/variants/constructions proposed:
- SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash (NIST SP 800-185, 2016)

SHA-3 structure

- sponge construction - absorbing \& squeezing
- arbitrary output length
- f - permutation on $\{0,1\}^{r+c}$
- r - bitrate (e.g. 1088 for SHA3-256)
- c - capacity (e.g. 512 for SHA3-256)
- padding for SHA3-256: x || $01\left|\mid 10^{*} 1\right.$

SHA-3 inside permutation $f(1)$

- state: $5 \times 5 \times 2^{l}$ bits ($2^{l}=64$ for SHA3-256)

- $12+2 l$ rounds (24 rounds for SHA3-256)
- round function: $R=\iota \circ \chi \circ \pi \circ \rho \circ \theta$,
(θ is applied first)

SHA-3 inside permutation $f(2)$

- θ (theta) - xor each bit of a column with parities of two neighboring columns
- ρ (rho) - rotate each lane by a constant value
- $\pi(\mathrm{pi})$ - permute the positions of the lanes
- χ (chi) - flip bit if neighbors to the right are 0,1
- χ operates on rows (independently, in parallel)
- l (iota) - xor a round specific constant to lane[0,0]

θ
- destroying symmetry

