Learning with Errors

Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Why Learning with Errors (LWE)

- introduced by Regev (2005)
- no efficient quantum algorithm is known for LWE
- variants for better efficiency: RLWE (Ring LWE), MLWE (Module LWE)
- versatile a basis for various schemes
 - public-key encryption
 - identity-based encryption
 - fully homomorphic encryption
 - signature schemes
- can be reduced to worst-case hardness of some problems on lattices

LWE: linear equations with some "noise"

- notation:
 - dimension $n \in \mathbb{N}$ (primary security parameter)
 - $q \in \mathbb{N}$, usually q = poly(n), sometimes q is a prime number
 - secret vector $\mathbf{s} \in_{\mathbb{R}} \mathbb{Z}_q^n$, column vectors will be used
 - matrix $A \in_R \mathbb{Z}_q^{m \times n}$, chosen uniformly random
 - error distribution χ on \mathbb{Z}_q
 - for odd $q: \mathbb{Z}_q = \{-(q-1)/2, ..., (q-1)/2\}$, for example $\mathbb{Z}_{29} = \{-14, ..., 14\}$
 - error vector $\mathbf{e} = (e_1, ..., e_m)^T \in \mathbb{Z}_q^m$, where $e_i \leftarrow \chi$ (independent) for all i
 - $b = A \cdot s + e$
- sometimes an oracle formulation for LWE:
 - access to oracle \mathcal{O}_s that produces $(\boldsymbol{a},b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$
 - $a \in_R \mathbb{Z}_q^n$ (uniform random), $e \leftarrow \chi$, $b = \langle a, s \rangle + e$
 - □ above: *m* number of samples

LWE problems

Search LWE (LWE)

Find **s** for given **A** and **b**.

Decisional LWE (DLWE)

Given (A, c), where c = b or $c \in_R \mathbb{Z}_q^m$, both with probability 1/2, distinguish these cases with probability non-negligible better than 1/2.

Assumption: Search/Decisional LWE is hard for suitable parameters and error distribution.

- without noise (e is zero) system of linear equations
 - easy (Gaussian elimination)
- too much noise (χ uniform on \mathbb{Z}_q)
 - any s is a plausible solution
 - DLWE with identical distributions
- Gaussian elimination increases noise (up to the point where equations have no information on s)

LWE – noise selection

- various error distributions are used
 - impact security proofs, reductions, efficiency
- discrete Gaussian distribution
 - derived from a (continuos) normal distribution
 - defined for $x \in \mathbb{Z}$ and scaled accordingly
 - used with mean 0 and small standard deviation
- centered binomial distribution (easier sampling)
 - "shifted" symmetrical binomial distribution with mean 0, small standard deviation
 - " defined on $\{-\beta, ..., \beta\}$, for a small bound β : $\Pr[X = k] = \binom{2\beta}{k+\beta} \cdot 2^{-2\beta}$
- centered uniform distribution
 - χ is uniform random on $\{-\beta, ..., \beta\}$, for a small bound β

LWE – small example

$$\begin{pmatrix}
11 & 19 & 3 & 14 & 0 \\
13 & 22 & 19 & 17 & 27 \\
15 & 9 & 18 & 19 & 28 \\
19 & 19 & 12 & 12 & 28 \\
24 & 26 & 9 & 28 & 3 \\
18 & 6 & 25 & 28 & 0 \\
23 & 18 & 21 & 17 & 11 \\
13 & 16 & 19 & 4 & 21
\end{pmatrix}
\cdot
\begin{pmatrix}
23 \\
0 \\
6 \\
6 \\
16
\end{pmatrix}
+
\begin{pmatrix}
-1 \\
0 \\
-1 \\
0 \\
-2 \\
2 \\
0 \\
1
\end{pmatrix}
=
\begin{pmatrix}
6 \\
19 \\
28 \\
14 \\
8 \\
9 \\
5 \\
20
\end{pmatrix}$$

$$mod 29$$

Naive algorithm for Search LWE

- maximum likelihood approach
- try all $\mathbf{s} \in \mathbb{Z}_q^n$ (q^n possibilities)
 - small error $e = b A \cdot s$ indicates a possible solution
 - the smallest error \Rightarrow the most probable solution
 - l_2 norm computed in \mathbb{R} : $||\boldsymbol{e}|| = \sqrt{e_1^2 + ... + e_n^2}$
- depending on χ , usually poly(n) equations are sufficient for a unique solution
- running time $O(q^n \cdot n \cdot \text{poly}(n)) \approx 2^{O(n \log n)}$ for typical q (polynomial in n)

Decisional LWE and Search LWE are equivalent

- we can efficiently solve the problem if we have an algorithm that efficiently solves the other problem
 - efficiently ≈ PPT
 - with non-negligible probabilities
- DLWE \rightarrow LWE reduction is trivial:
 - input: (A, c); we have to decide if c is random or input is an LWE instance
 - 1. run search LWE algorithm on (A, c); let s be its output
 - 2. if $e = c A \cdot s$ is small (from χ) then return "LWE instance"
 - 3. otherwise return "random"

LWE → DLWE reduction (idea)

- input: (*A*, *b*), an LWE instance, and access to a DLWE oracle
- idea: guess and test the value of a coordinate for $\mathbf{s} = (s_1, ..., s_n)^T$
- testing if $s_1 = \sigma \in \mathbb{Z}_q$:
 - 1. add $r \in_R \mathbb{Z}_q^m$ to the first column of A, call it A'
 - 2. test if $(A', b + \sigma r)$ is an LWE instance $(s_1 = \sigma)$ or random $(s_1 \neq \sigma)$
- why this works:
 - if $s_1 = \sigma$: $b + \sigma r = As + e + \sigma r = A's + e$ (LWE instance)
 - if $s_1 \neq \sigma$: $b + \sigma r = As + e + \sigma r = A's + e + (\sigma s_1)r$ (random, since $\sigma s_1 \neq 0$, and r is random)
- similarly for other coordinates (*i*-th column in A is modified for s_i testing)
- running time: O(nq) iterations

Encryption scheme

- Regev (2005)
- bit encryption

Initialization

- private key: $\mathbf{s} \in_{R} \mathbb{Z}_{q}^{n}$
- public key: LWE instance (A, b)
 - b = As + e, and $e \leftarrow \chi^m$

Encryption

- plaintext $\mu \in \{0, 1\}$:
 - 1. $r \in_{\mathbb{R}} \{0,1\}^m$
 - 2. ciphertext:

$$(\boldsymbol{a},b) = (\boldsymbol{r}^T \boldsymbol{A}, \langle \boldsymbol{b}, \boldsymbol{r} \rangle + \mu \cdot \lfloor q/2 \rfloor)$$

Decryption (ciphertext (a, b)):

- output 0 if |b as| < q/4 (1 otherwise)
- correctness:

$$b - as = \langle b, r \rangle + \mu \cdot \lfloor q/2 \rfloor - r^{T} As$$

$$= \langle As + e, r \rangle + \mu \cdot \lfloor q/2 \rfloor - r^{T} As$$

$$= r^{T} (As + e) + \mu \cdot \lfloor q/2 \rfloor - r^{T} As$$

$$= r^{T} e + \mu \cdot \lfloor q/2 \rfloor$$

Remarks

- very simple encryption and decryption
- if χ is a distribution on $\{-\beta, ..., \beta\}$, then $|\mathbf{r}^T \mathbf{e}| \le m\beta$, i.e., always correct decryption if $m\beta < q/4$
 - for LWE schemes a negligible probability of incorrect decryption is often accepted
- IND-CPA secure but not IND-CCA secure (malleable)
- improving throughput and encrypting longer plaintexts
 - divide \mathbb{Z}_q into 2^d regions to encode d bits
 - use matrices for secret and error, instead of vectors

FrodoKEM (KEM based on a standard LWE)

- part of NIST Post-Quantum Cryptography Standardization Process
 - not selected for standardization, round 3 "alternate" algorithm for KEM
- computation in ring mod $q=2^{15}$ for 128-bit security level, and $q=2^{16}$ for 192 and 256-bit security levels
- public-key matrix generated from a public-key seed (pseudoradom)
- sizes of various parameters (in bytes):

level	private key	public key	ciphertext	
128	19 888	9 616	9 720	FrodoKEM-640
192	31 296	15 632	15 744	FrodoKEM-976
256	43 088	21 520	21 632	FrodoKEM-1344

more size-efficient schemes – algebraic lattices (structured), Ring-LWE, Module-LWE

Remarks on FrodoKEM

NIST Status Report on the 2nd Round:

Plain LWE itself is among the most studied and analyzed cryptographic problems in existence today.

The resulting potential security advantages of FrodoKEM are paid for with far worse performance in all metrics than other lattice schemes. ...

Use of FrodoKEM would have a noticeable performance impact on high traffic TLS servers ...

FrodoKEM may be suitable for use cases where the high confidence in the security of unstructured lattice-based schemes is much more important than performance.

- selected algorithms for KEM:
 - Crystals-Kyber: Module LWE (MLWE) problem
 - HQC: Quasi-Cyclic Syndrome Decoding (QCSD) problem

Some performance numbers

Algorithm	Public key (bytes)	$\begin{array}{c} \textbf{Ciphertext} \\ \text{(bytes)} \end{array}$	Key gen. (ms)	Encaps. (ms)	Decaps. (ms)
ECDH NIST P-256	64	64	0.072	0.072	0.072
SIKE p434	330	346	13.763	22.120	23.734
Kyber 512-90s	800	736	0.007	0.009	0.006
FrodoKEM-640-AES	9,616	9,720	1.929	1.048	1.064

Paquin et al.: Benchmarking Post-Quantum Cryptography in TLS, PQCrypto 2020

Encryption scheme (inspired by FrodoKEM)

- IND-CPA secure scheme
- $q = 2^{D}$ for some $D \le 16$ (D = 15 for Frodo-640)
- $-0 \le B < D$ (e.g. B = 2), n = 640, n' = 8
- support of $\chi = \{-12, ..., 12\}$
 - discrete Gaussian distribution with standard deviation $\sigma = 2.8$
 - sampling error matrices

Initialization

- pseudorandom matrix $A \in \mathbb{Z}_q^{n \times n}$ generated from a random seed_A
- sample error matrices S, E $(n \times n')$
- compute $\mathbf{B} = \mathbf{AS} + \mathbf{E}$ $(n \times n')$
- public key: seed_A, B
- private key: S

Encryption and encode function

Encryption (plaintext $\mu = \{0, 1\}^{B \cdot n' \cdot n'}$, 128-bit string for our parameters):

- 1. compute A from seed_A
- 2. sample error matrices: S' and E' $(n' \times n)$, and E'' $(n' \times n')$
- 3. compute $\mathbf{B}' = \mathbf{S}'\mathbf{A} + \mathbf{E}' (n' \times n), \mathbf{V} = \mathbf{S}'\mathbf{B} + \mathbf{E}'' (n' \times n')$
- 4. ciphertext: $(\boldsymbol{C}_1, \boldsymbol{C}_2) = (\boldsymbol{B}', \boldsymbol{V} + \text{Encode}(\mu))$

Encode (transform $\{0,1\}^{B \cdot n' \cdot n'}$ into an $n' \times n'$ matrix):

- 1. each *B*-bit chunk *k* is transformed into $k \cdot 2^{D-B} \in \mathbb{Z}_q$ (set the most significant bits)
- 2. return $n' \times n'$ matrix comprised of these elements

Decryption

Decryption (two matrices $(\boldsymbol{C}_1, \boldsymbol{C}_2)$):

- 1. compute $\mathbf{M} = \mathbf{C}_2 \mathbf{C}_1 \mathbf{S}$ $(n' \times n')$
- 2. decode: for each element *c* of *M* decode *B* bits as follows:

$$[c \cdot 2^{B-D}] \mod 2^B$$
 (divided by $\frac{q}{2^B}$ and rounded)

Correctness:

$$egin{aligned} m{M} &= m{C}_2 - m{C}_1 m{S} = m{V} + \operatorname{Encode}(\mu) - m{B}' m{S} \ &= m{S}' m{B} + m{E}'' + \operatorname{Encode}(\mu) - (m{S}' m{A} + m{E}') m{S} \ &= \operatorname{Encode}(\mu) + m{S}' (m{A} m{S} + m{E}) + m{E}'' - (m{S}' m{A} + m{E}') m{S} \ &= \operatorname{Encode}(\mu) + m{S}' m{E} + m{E}'' - m{E}' m{S} \ &= \operatorname{Encode}(\mu) + m{E}^* \quad \text{where } m{E}^* \text{ should be small} \end{aligned}$$

Remarks

- failure rate (wrong decryption) for presented parameters: $2^{-138.7}$
- LWE security (in bits): classical 145, quantum 104
- the scheme can be transformed into IND-CCA KEM scheme
 - various transforms exist

PKE and KEM

PKE

- Gen → (pk, sk)
 - public key and private key
- $\operatorname{Enc}_{\operatorname{pk}}(m) \to c$
- $Dec_{sk}(c) \rightarrow m$

KEM

- Gen \rightarrow (pk, sk)
- Encaps_{pk} \rightarrow (c, k)
 - ciphertext and key
- Decaps_{sk} $(c) \rightarrow k$
- both schemes use public key and private key
- PKE encrypts arbitrary message from a plaintext space
 - plaintext space determined by the scheme's instance
 - anything else: padding, mapping into/from plaintext space
 - PKE often used just for symmetric key transport
- KEM is a dedicated scheme for symmetric key agreement

IND-CCA security of KEM

Ind-KEM $_{A,\Pi}^{\rm cca}(t)$

$$(pk, sk) \leftarrow Gen(1^t)$$

 $(c, k_0) \leftarrow Encaps_{pk}$
 $b \in_R \{0, 1\}, k_1 \in_R \mathcal{K}$
 $b_A \leftarrow A^{Decaps_{sk}(\cdot)}(pk, k_b, c)$

return
$$b_A \stackrel{?}{=} b$$

- PPT attacker A
- A has access to pk and Decaps oracle, but cannot ask to decapsulate c
- \mathcal{K} set of keys generated by the KEM scheme
- A has to distinguish if the c contains given key (k_b) , or this key is a random one
- $\Pr[\operatorname{Ind-KEM}_{A,\Pi}^{\operatorname{cca}}(k) = 1] \le \frac{1}{2} + \operatorname{negl}(k)$

Fujisaki-Okamoto transform (PKE → KEM)

Encaps_{pk}: $m \in_R \{0,1\}^{256}$ (k, rnd) = G(H(pk), m) $c = (u, v) \leftarrow \text{Enc}_{\text{pk}}(m, \text{rnd})$ return (c, k)

```
\begin{aligned} \mathbf{Decaps_{sk}}(c): \\ m' &\leftarrow \mathrm{Dec_{sk}}(c) \\ (k', \mathrm{rnd'}) &= G(H(\mathrm{pk}), m') \\ c' &= (u', v') \leftarrow \mathrm{Enc_{pk}}(m', \mathrm{rnd'}) \\ \mathrm{if} \ c \neq c' \ \mathrm{return} \ H(z, c) \\ \mathrm{return} \ k' \end{aligned}
```

- Gen is the same in both schemes
- *G*, *H* are hash functions (random oracles) with suitable range
- rnd pseudorandom string, seed for all randomness in encryption; $Enc_{pk}(\cdot, rnd)$ is deterministic
- implicit rejection for incorrect c (z is a secret value)

Exercises

- 1. Show that a centered binomial distribution is a probability distribution. Generate a histogram for $\beta = 8$.
- 2. Show that Regev's scheme is malleable. Is the PKE scheme inspired by FrodoKEM also malleable?
- 3. Give a lower bound for q in the PKE scheme inspired by FrodoKEM, such that the probability of wrong decryption is 0 (all other parameters remain intact).