
Learning with Errors
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Why Learning with Errors (LWE)

– introduced by Regev (2005)

– no efficient quantum algorithm is known for LWE

– variants for better efficiency: RLWE (Ring LWE), MLWE (Module LWE)

– versatile – a basis for various schemes
▫ public-key encryption
▫ identity-based encryption
▫ fully homomorphic encryption
▫ signature schemes

– can be reduced to worst-case hardness of some problems on lattices

1 / 21

LWE: linear equations with some “noise”

– notation:
▫ dimension 𝑛 ∈ ℕ (primary security parameter)
▫ 𝑞 ∈ ℕ, usually 𝑞 = poly(𝑛), sometimes 𝑞 is a prime number
▫ secret vector 𝒔 ∈𝑅 ℤ𝑛

𝑞 , column vectors will be used
▫ matrix 𝑨 ∈𝑅 ℤ𝑚×𝑛

𝑞 , chosen uniformly random
▫ error distribution 𝜒 on ℤ𝑞
▫ for odd 𝑞: ℤ𝑞 = {−(𝑞 − 1)/2, …, (𝑞 − 1)/2}, for example ℤ29 = {−14, …, 14}
▫ error vector 𝒆 = (𝑒1, …, 𝑒𝑚)𝑇 ∈ ℤ𝑚

𝑞 , where 𝑒𝑖 ← 𝜒 (independent) for all 𝑖
▫ 𝒃 = 𝑨 ⋅ 𝒔 + 𝒆

– sometimes an oracle formulation for LWE:
▫ access to oracle 𝒪𝑠 that produces (𝒂, 𝑏) ∈ ℤ𝑛

𝑞 × ℤ𝑞
▫ 𝒂 ∈𝑅 ℤ𝑛

𝑞 (uniform random), 𝑒 ← 𝜒, 𝑏 = ⟨𝒂, 𝒔⟩ + 𝑒
▫ above: 𝑚 – number of samples

2 / 21

LWE problems

Search LWE (LWE)
Find 𝒔 for given 𝑨 and 𝒃.

Decisional LWE (DLWE)
Given (𝑨, 𝒄), where 𝒄 = 𝒃 or 𝒄 ∈𝑅 ℤ𝑚

𝑞 , both
with probability 1/2, distinguish these
cases with probability non-negligible
better than 1/2.

Assumption: Search/Decisional LWE is
hard for suitable parameters and error
distribution.

– without noise (𝒆 is zero) – system of
linear equations
▫ easy (Gaussian elimination)

– too much noise (𝜒 uniform on ℤ𝑞)
▫ any 𝒔 is a plausible solution
▫ DLWE with identical distributions

– Gaussian elimination increases noise (up
to the point where equations have no
information on 𝒔)

3 / 21

LWE – noise selection

– various error distributions are used
▫ impact security proofs, reductions, efficiency

– discrete Gaussian distribution
▫ derived from a (continuos) normal distribution
▫ defined for 𝑥 ∈ ℤ and scaled accordingly
▫ used with mean 0 and small standard deviation

– centered binomial distribution (easier sampling)
▫ “shifted” symmetrical binomial distribution with mean 0, small standard deviation
▫ defined on {−𝛽, …, 𝛽}, for a small bound 𝛽: Pr[𝑋 = 𝑘] = (2𝛽

𝑘+𝛽
) ⋅ 2−2𝛽

– centered uniform distribution
▫ 𝜒 is uniform random on {−𝛽, …, 𝛽}, for a small bound 𝛽

4 / 21

LWE – small example

(

(
(
(
(
(
(

11
13
15
19
24
18
23
13

19
22
9

19
26
6

18
16

3
19
18
12
9

25
21
19

14
17
19
12
28
28
17
4

0
27
28
28
3
0

11
21)

)
)
)
)
)
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑨

⋅

(

((
(

23
0
6
6

16)

))
)

⏟⏟⏟⏟⏟
𝒔

+

(

(
(
(
(
(
(

−1
0

−1
0

−2
2
0
1)

)
)
)
)
)
)

⏟⏟⏟⏟⏟
𝒆

=

(

(
(
(
(
(
(

6
19
28
14
8
9
5

20)

)
)
)
)
)
)

⏟⏟⏟⏟⏟
𝒃

mod 29

5 / 21

Naive algorithm for Search LWE

– maximum likelihood approach

– try all 𝒔 ∈ ℤ𝑛
𝑞 (𝑞𝑛 possibilities)

▫ small error 𝒆 = 𝒃 − 𝑨 ⋅ 𝒔 indicates a possible solution
▫ the smallest error ⇒ the most probable solution
▫ 𝑙2 norm computed in ℝ: ‖𝒆‖ = √𝑒2

1 + … + 𝑒2
𝑛

– depending on 𝜒, usually poly(𝑛) equations are sufficient for a unique solution

– running time 𝑂(𝑞𝑛 ⋅ 𝑛 ⋅ poly(𝑛)) ≈ 2𝑂(𝑛 log 𝑛) for typical 𝑞 (polynomial in 𝑛)

6 / 21

Decisional LWE and Search LWE are equivalent

– we can efficiently solve the problem if we have an algorithm that efficiently solves the
other problem
▫ efficiently ≈ PPT
▫ with non-negligible probabilities

– DLWE ↦ LWE reduction is trivial:
▫ input: (𝑨, 𝒄); we have to decide if 𝒄 is random or input is an LWE instance

1. run search LWE algorithm on (𝑨, 𝒄); let 𝒔 be its output
2. if 𝒆 = 𝒄 − 𝑨 ⋅ 𝒔 is small (from 𝜒) then return “LWE instance”
3. otherwise return “random”

7 / 21

LWE ↦ DLWE reduction (idea)

– input: (𝑨, 𝒃), an LWE instance, and access to a DLWE oracle

– idea: guess and test the value of a coordinate for 𝒔 = (𝑠1, …, 𝑠𝑛)𝑇

– testing if 𝑠1 = 𝜎 ∈ ℤ𝑞:
1. add 𝒓 ∈𝑅 ℤ𝑚

𝑞 to the first column of 𝑨, call it 𝑨′

2. test if (𝑨′, 𝒃 + 𝜎𝒓) is an LWE instance (𝑠1 = 𝜎) or random (𝑠1 ≠ 𝜎)

– why this works:
▫ if 𝑠1 = 𝜎: 𝒃 + 𝜎𝒓 = 𝑨𝒔 + 𝒆 + 𝜎𝒓 = 𝑨′𝒔 + 𝒆 (LWE instance)
▫ if 𝑠1 ≠ 𝜎: 𝒃 + 𝜎𝒓 = 𝑨𝒔 + 𝒆 + 𝜎𝒓 = 𝑨′𝒔 + 𝒆 + (𝜎 − 𝑠1)𝒓 (random, since 𝜎 − 𝑠1 ≠

0, and 𝒓 is random)

– similarly for other coordinates (𝑖-th column in 𝑨 is modified for 𝑠𝑖 testing)

– running time: 𝑂(𝑛𝑞) iterations

8 / 21

Encryption scheme

– Regev (2005)
– bit encryption

Initialization
– private key: 𝒔 ∈𝑅 ℤ𝑛

𝑞
– public key: LWE instance (𝑨, 𝒃)

▫ 𝒃 = 𝑨𝒔 + 𝒆, and 𝒆 ← 𝜒𝑚

Encryption
– plaintext 𝜇 ∈ {0, 1}:

1. 𝒓 ∈𝑅 {0, 1}𝑚

2. ciphertext:
(𝒂, 𝑏) = (𝒓𝑇𝑨, ⟨𝒃, 𝒓⟩ + 𝜇 ⋅ ⌊𝑞/2⌋)

Decryption (ciphertext (𝒂, 𝑏)):
– output 0 if |𝑏 − 𝒂𝒔| < 𝑞/4 (1 otherwise)
– correctness:

𝑏 − 𝒂𝒔 = ⟨𝒃, 𝒓⟩ + 𝜇 ⋅ ⌊𝑞/2⌋ − 𝒓𝑇𝑨𝒔

= ⟨𝑨𝒔 + 𝒆, 𝒓⟩ + 𝜇 ⋅ ⌊𝑞/2⌋ − 𝒓𝑇𝑨𝒔

= 𝒓𝑇(𝑨𝒔 + 𝒆) + 𝜇 ⋅ ⌊𝑞/2⌋ − 𝒓𝑇𝑨𝒔

= 𝒓𝑇𝒆 + 𝜇 ⋅ ⌊𝑞/2⌋

9 / 21

Remarks

– very simple encryption and decryption

– if 𝜒 is a distribution on {−𝛽, …, 𝛽}, then |𝒓𝑇𝒆| ≤ 𝑚𝛽, i.e., always correct decryption if
𝑚𝛽 < 𝑞/4
▫ for LWE schemes a negligible probability of incorrect decryption is often accepted

– IND-CPA secure but not IND-CCA secure (malleable)

– improving throughput and encrypting longer plaintexts
▫ divide ℤ𝑞 into 2𝑑 regions to encode 𝑑 bits
▫ use matrices for secret and error, instead of vectors

10 / 21

FrodoKEM (KEM based on a standard LWE)

– part of NIST Post-Quantum Cryptography Standardization Process
▫ not selected for standardization, round 3 “alternate” algorithm for KEM

– computation in ring mod 𝑞 = 215 for 128-bit security level, and 𝑞 = 216 for 192 and
256-bit security levels

– public-key matrix generated from a public-key seed (pseudoradom)

– sizes of various parameters (in bytes):

level private key public key ciphertext
128 19 888 9 616 9 720 FrodoKEM-640
192 31 296 15 632 15 744 FrodoKEM-976
256 43 088 21 520 21 632 FrodoKEM-1344

– more size-efficient schemes – algebraic lattices (structured), Ring-LWE, Module-LWE
11 / 21

Remarks on FrodoKEM

– NIST Status Report on the 2nd Round:
Plain LWE itself is among the most studied and analyzed cryptographic problems in
existence today.
The resulting potential security advantages of FrodoKEM are paid for with far worse
performance in all metrics than other lattice schemes. …
Use of FrodoKEM would have a noticeable performance impact on high traffic TLS
servers …
FrodoKEM may be suitable for use cases where the high confidence in the security of
unstructured lattice-based schemes is much more important than performance.

– selected algorithms for KEM:
▫ Crystals-Kyber: Module LWE (MLWE) problem
▫ HQC: Quasi-Cyclic Syndrome Decoding (QCSD) problem

12 / 21

Some performance numbers

Paquin et al.: Benchmarking Post-Quantum Cryptography in TLS, PQCrypto 2020

13 / 21

https://openquantumsafe.org/research/PQCrypto-PaqSteTam20

Encryption scheme (inspired by FrodoKEM)

– IND-CPA secure scheme

– 𝑞 = 2𝐷 for some 𝐷 ≤ 16 (𝐷 = 15 for
Frodo-640)

– 0 ≤ 𝐵 < 𝐷 (e.g. 𝐵 = 2), 𝑛 = 640, 𝑛′ = 8

– support of 𝜒 = {−12, …, 12}
▫ discrete Gaussian distribution with

standard deviation 𝜎 = 2.8
▫ sampling error matrices

Initialization
– pseudorandom matrix 𝑨 ∈ ℤ𝑛×𝑛

𝑞
generated from a random seed𝐴

– sample error matrices 𝑺, 𝑬 (𝑛 × 𝑛′)
– compute 𝑩 = 𝑨𝑺 + 𝑬 (𝑛 × 𝑛′)
– public key: seed𝐴, 𝑩
– private key: 𝑺

14 / 21

Encryption and encode function

Encryption (plaintext 𝜇 = {0, 1}𝐵⋅𝑛′⋅𝑛′ , 128-bit string for our parameters):
1. compute 𝑨 from seed𝐴
2. sample error matrices: 𝑺′ and 𝑬′ (𝑛′ × 𝑛), and 𝑬″ (𝑛′ × 𝑛′)
3. compute 𝑩′ = 𝑺′𝑨 + 𝑬′ (𝑛′ × 𝑛), 𝑽 = 𝑺′𝑩 + 𝑬″ (𝑛′ × 𝑛′)
4. ciphertext: (𝑪1, 𝑪2) = (𝑩′, 𝑽 + Encode(𝜇))

Encode (transform {0, 1}𝐵⋅𝑛′⋅𝑛′ into an 𝑛′ × 𝑛′ matrix):
1. each 𝐵-bit chunk 𝑘 is transformed into 𝑘 ⋅ 2𝐷−𝐵 ∈ ℤ𝑞 (set the most significant bits)
2. return 𝑛′ × 𝑛′ matrix comprised of these elements

15 / 21

Decryption

Decryption (two matrices (𝑪1, 𝑪2)):

1. compute 𝑴 = 𝑪2 − 𝑪1𝑺 (𝑛′ × 𝑛′)

2. decode: for each element 𝑐 of 𝑴 decode 𝐵 bits as follows:

⌊𝑐 ⋅ 2𝐵−𝐷⌉ mod 2𝐵 (divided by
𝑞

2𝐵 and rounded)

Correctness:

𝑴 = 𝑪2 − 𝑪1𝑺 = 𝑽 + Encode(𝜇) − 𝑩′𝑺
= 𝑺′𝑩 + 𝑬″ + Encode(𝜇) − (𝑺′𝑨 + 𝑬′)𝑺
= Encode(𝜇) + 𝑺′(𝑨𝑺 + 𝑬) + 𝑬″ − (𝑺′𝑨 + 𝑬′)𝑺
= Encode(𝜇) + 𝑺′𝑬 + 𝑬″ − 𝑬′𝑺
= Encode(𝜇) + 𝑬∗ where 𝑬∗ should be small

16 / 21

Remarks

– failure rate (wrong decryption) for presented parameters: 2−138.7

– LWE security (in bits): classical 145, quantum 104

– the scheme can be transformed into IND-CCA KEM scheme
▫ various transforms exist

17 / 21

PKE and KEM

PKE
– Gen → (pk, sk)

▫ public key and private key
– Encpk(𝑚) → 𝑐
– Decsk(𝑐) → 𝑚

KEM
– Gen → (pk, sk)
– Encapspk → (𝑐, 𝑘)

▫ ciphertext and key
– Decapssk(𝑐) → 𝑘

– both schemes use public key and private key
– PKE encrypts arbitrary message from a plaintext space

▫ plaintext space determined by the scheme’s instance
▫ anything else: padding, mapping into/from plaintext space
▫ PKE often used just for symmetric key transport

– KEM is a dedicated scheme for symmetric key agreement

18 / 21

IND-CCA security of KEM

𝐈𝐧𝐝-𝐊𝐄𝐌𝐜𝐜𝐚
𝑨,𝚷(𝒕)

(pk, sk) ← Gen(1𝑡)
(𝑐, 𝑘0) ← Encapspk

𝑏 ∈𝑅 {0, 1}, 𝑘1 ∈𝑅 𝒦

𝑏𝐴 ← 𝐴Decapssk(⋅)(pk, 𝑘𝑏, 𝑐)

return 𝑏𝐴 =? 𝑏

– PPT attacker 𝐴

– 𝐴 has access to pk and Decaps oracle, but cannot
ask to decapsulate 𝑐

– 𝒦 – set of keys generated by the KEM scheme

– 𝐴 has to distinguish if the 𝑐 contains given key (𝑘𝑏),
or this key is a random one

– Pr[Ind-KEMcca
𝐴,Π(𝑘) = 1] ≤ 1

2
+ negl(𝑘)

19 / 21

Fujisaki-Okamoto transform (PKE ↦ KEM)

𝐄𝐧𝐜𝐚𝐩𝐬𝐩𝐤 :

𝑚 ∈𝑅 {0, 1}256

(𝑘, rnd) = 𝐺(𝐻(pk), 𝑚)
𝑐 = (𝑢, 𝑣) ← Encpk(𝑚, rnd)

return (𝑐, 𝑘)

𝐃𝐞𝐜𝐚𝐩𝐬𝐬𝐤(𝒄) :
𝑚′ ← Decsk(𝑐)
(𝑘′, rnd′) = 𝐺(𝐻(pk), 𝑚′)
𝑐′ = (𝑢′, 𝑣′) ← Encpk(𝑚′, rnd′)

if 𝑐 ≠ 𝑐′ return 𝐻(𝑧, 𝑐)
return 𝑘′

– Gen is the same in both schemes
– 𝐺, 𝐻 are hash functions (random oracles) with suitable range
– rnd – pseudorandom string, seed for all randomness in encryption;

Encpk(⋅, rnd) is deterministic
– implicit rejection for incorrect 𝑐 (𝑧 is a secret value)

20 / 21

Exercises

1. Show that a centered binomial distribution is a probability distribution. Generate a
histogram for 𝛽 = 8.

2. Show that Regev’s scheme is malleable. Is the PKE scheme inspired by FrodoKEM also
malleable?

3. Give a lower bound for 𝑞 in the PKE scheme inspired by FrodoKEM, such that the
probability of wrong decryption is 0 (all other parameters remain intact).

21 / 21

	Why Learning with Errors (LWE)
	LWE: linear equations with some "noise"
	LWE problems
	LWE – noise selection
	LWE – small example
	Naive algorithm for Search LWE
	Decisional LWE and Search LWE are equivalent
	LWE ↦ DLWE reduction (idea)
	Encryption scheme
	Remarks
	FrodoKEM (KEM based on a standard LWE)
	Remarks on FrodoKEM
	Some performance numbers
	Encryption scheme (inspired by FrodoKEM)
	Encryption and encode function
	Decryption
	Remarks
	PKE and KEM
	IND-CCA security of KEM
	Fujisaki-Okamoto transform (PKE ↦ KEM)
	Exercises

