Message authentication codes

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1 (2023/24)

Content

Introduction
security of MAC

Constructions
block cipher based
HMAC
MAC from sponge construction

Secure channel

MAC

2/13

Introduction

MAC

message authentication code (MAC)

> data integrity and authenticity
> faster than digital signatures, suitable for network protocols
> shared-key (symmetric) construction

m, Macy (m)

A—— B

MAC ~ “hash function with a key”

> key is necessary to compute the value of MAC
> verification by recomputation and comparison
> no non-repudiation property (!)

requirements: efficiency & security

remark: using MAC alone does not prevent replay attacks (!)
> sequential message number, timestamp, etc.

3/13

Security of MAC (informally)

v

formal definition of MAC uses three algorithms: Gen, Mac, Vrf

v

PPT attacker A, with oracle access to Mac (for random k)

v

existentially unforgeable under an adaptive chosen message attack:

> the probability that any attacker A produces a pair (m, h) such that
Macy(m) = h (and A did not query the oracle with m) is negligible

> MAC uses a key, therefore the birthday attack is not applicable

> output of MAC can be shorter than output of a hash function
> for example IPSec: HMAC-SHA1-96 (truncated HMAC)

MAC 4/13

CBC-MAC

> MAC constructed from a block cipher

> initial attempt:

1vV=0"

output

> secure for fixed length inputs (assuming PRP property of E)

MAC 5/13

CBC-MAC (2)

> insecure for variable length inputs:

1. A queries Macy oracle with 1-block messages m and m’

2. Aobtains h = Mac,(m) = Ex(m) and i = Mac,(m’) = Ex(m’)

3. A queries the oracle with two-block message m|| x and obtains
h* = Ex(Ex(m) & x)

4. Let us compute MAC for two-block message m’ || h@® h' @ x:

Ex(Ex(m') ® Ex(m) & Ex(m') @ x) = Ex(Ex(m) ® x) = h*

i.e. A knows the valid MAC for this message without asking the oracle

MAC 6/13

CBC-MAC (3)
> how to fix CBC-MAC:

1V =0"

output

> two different keys k, k’

> derive k' from k,e.g. k' = E, k' = Ex(k) ...
> or derive two keys from a single key: k; = Ex(1), ky = E(2)

MAC 7/13

CMAC

> authentication mode of block ciphers, approved by NIST (SP 800-38B)
> simplified presentation
> assuming that the input length is divisible by block length (padding and
slightly different subkey used otherwise)
m=m,...,m
[=E0); ki =MSB()? (< 1)®R: [<1
Ris a constant depending on block length, e.g. Ri5s = 0'2°10000111
> the last block is transformed: m}, = m; ® kq
> CBC processing (starting with Cy = 0):
1. Ci= E(Cioi®m),fori=1,..,t-1
2. Ct = Ex(Ci—y ® m}) final round
3. output: C; (can be truncated)

vyy

MAC 8/13

MAC construction based on hash functions

» natural but (often) insecure approaches (let H be a hash function):

1. Macy(m) = H(k|| m)
using some iterated H (e.g. MD-based) allows the attacker to compute
MAC for an extended message

2. Macy(m) = H(m|| k)
using some iterated H (e.g. MD-based) means that finding collision
implies colliding MAC (security of MAC reduces/weakens to collision
resistance)

easy to propose other ideas, e.g. H(k || m|| k) ...security proof?
(btw. some weaknesses were identified even in this construction)

MAC 9/13

HMAC

MAC construction based on hash functions
the most popular / used MAC today (SSL/TLS, SSH, IPSec, ...)

provable security (if underlying compression function is PRF)

vV v.v Yy

construction:
HMAC,(m) = H(k ® opad || H(k @ ipad || m))

> opad/ipad - block-length outer/inner padding (0x5c5c.../ 0x3636...), i.e.
64 bytes for MD5, SHA-1 or SHA-256

> almost as fast as underlying hash function (just 3 additional blocks)

> truncation of output possible (e.g. used in IPSec)

MAC 10/13

Combined construction

> another approach: Macy(m) = Ex(H(m))

> provable security, if E is PRP and H is collision resistant
» problems:

> stronger assumptions than HMAC (thus no reason to use it)

> block ciphers usually with short block length n and because of collisions,
the bit-security is just n/2

> for example AES with 128-bit block (and truncated hash) leads to 64-bit
security

MAC 11/13

MAC from sponge construction

> KMAC - Keccak MAC (NIST SP 800-185, 2016)

> basic idea of MAC from sponge hash function:

input x MAC

L—{ padding

key k

MAC 12/13

Secure channel

confidentiality & integrity/authenticity
usually both needed for a secure communication

authenticated encryption — specific modes of a block cipher
encryption (standard confidentiality modes) & MAC
> How to combine them properly?
> options (we use two independent keys ki, k>):
1. EtM (Encrypt then MAC, e.g. IPSec): ¢ = E, (m), {c, Macy,(c))
2. MtE (MAC then Encrypt, e.g. SSL/TLS): E¢, (m|| Macy,(m))
3. E&M (Encrypt and MAC, e.g. SSH): (E, (m), Macy, (m))
> theory: EtM is the correct approach (others can be made secure)
> AEAD ciphers are prioritized nowadays

> SSL: authenticated encryption (GCM); only AEAD ciphers for TLS 1.3
> SSH: authenticated encryption (GCM): e.g. aes128-gcm@openssh.com

MAC 13/13

	Introduction
	security of MAC

	Constructions
	block cipher based
	HMAC
	MAC from sponge construction

	Secure channel

