Passwords
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

— passwords for authentification
— storing passwords, time-memory trade-off
— key derivation functions

- HOTP and TOPT

1/32

Introduction

— the most frequent authentication method
= alone or combined with other methods (something you know/have/are)

— constructions for confidentiality / integrity, such as
= protocols for authentication and key agreement using shared secret
= protection of private keys stored in files

— some problems with passwords:
= default passwords (can be found on the Internet)
e a global problem (DDoS attacks, IoT, Mirai etc.)
= low entropy of a password, easy to guess
= strong passwords hard to remember
= passwords stored insecurely, e.g. in cleartext
= passwords sent via insecure channel, e.g. telnet
= shared among systems (it worsens the impact of a successful attack)

2 /32

Attacks and policies

— attacks:
= brute-force search
= dictionary attacks
= precomputation (for example rainbow tables)

— password policy, for example:
= password length, “diversity” of characters (groups) used in a password
= max./min. password age
= checking password history, login name or other public account data
= block account after x unsuccessful login attempts
= delays after unsuccessful login attempts, etc.

— choosing a password
= randomly generated (hard to remember ... password managers (?))
= user chosen (predictability, similarity with other passwords etc.)
= phrase-derived passwords, ...
3/32

The most common passwords

— How not to choose a password

— source: NordPass, Top 200 Most Common Passwords, 2024 Edition
= personal and corporate lists

I Y =

123456
123456789
12345678
password

qwerty123 10.

o oo

qwerty1
111111
12345
secret
123123

11.
12.
13.
14.
15.

1234567890
1234567
000000

qwerty
abc123

16.
17.
18.
19.
20.

password1
iloveyou
11111111
dragon
monkey

4 /32

https://nordpass.com/most-common-passwords-list/

Entropy of passwords chosen by users

— estimates of entropy according to NIST SP 800-63-2 (94 character alphabet):

length no checks (bits) rules™ (bits)

6 14 23
8 18 30
10 21 32
20 36 42
40 56 62

(*) dictionary tests and composition rule (character groups)

— expect worse reality; NIST overestimated the security of passwords

5/ 32

Entropy of passwords - other estimates

- estimating entropy is not easy
= substring from a dictionary, number sequences, personal information, ...

— various methods implemented
= providing feedback on password strength to users
= web sites, password managers, specialized applications, ...

— comparison of KeePassXC, zxcvbn library (bit security):

password KeePassXC zxcvbn
12345678 1.58 2.00
dragonl 6.32 9.54
u39;2$mMiaEJ?2 77.90 43.19
shipfumeshead 32.54 32.13

6 /32

NIST SP 800-63-3 Digital Identity Guidelines

— NIST SP 800-63-2 is superseded by the SP 800-63 suite

— NIST SP 800-63B-4: Digital Identity Guidelines, Authentication and Authenticator
Management (2025)

— requirements for passwords, few examples:

= 1FA = length > 15; MFA = length > 8

= Verifiers SHALL NOT impose other composition rules (e.g., requiring mixtures of
different character types).

= Verifiers SHALL NOT require subscribers to change passwords periodically.
However, verifiers SHALL force a change if there is evidence that the authenticator
has been compromised.

= Verifiers SHALL NOT permit the subscriber to store a hint that is accessible to an
unauthenticated claimant.

— Appendix A with a discussion on the strength of passwords

7 /32

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63B-4.pdf

Storing passwords

cleartext
hash of th d and It: H
— database/file leak = all passwords 45t 01 the password and a sa @ 1l's)
, — salt - random, not necessary secret
compromised

- fast H = fast brute-f
- passwords readable by admin, from s ast brute-force

backups etc.
“slow” hashing of password and salt: H°(p || s)

— iteration count c - to slow down the
computation c-times, e.g.,, ¢ = 1000

— verification: 2 ms » 2 seconds (acceptable?)

— attack: 10 days ~ 27.4 years (sufficient?)

password hash: H(p)

- equal passwords = equal hashes

— precomputed hashes applicable for
various systems

8 /32

Time-Memory trade-off

Time and memory for password searching

- assumption: h = H(p), attacker knows h
— N - size of the password space

— brute-force: time T = N, memory M = 1, no precomputation needed
= example: SHA-1, random alphanumeric (62 characters) password of length 10
Apple M3 Pro GPU = 3000 MH/s = 8.87 years
Nvidia RTX 5090 =~ 70 000 MH/s = 138.8 days

— precomputation of all hashes (only once, time = N), subsequent search in the table:
T=1,M~=N
= example: SHA-1, alphanumeric passwords of length 10 ... 33 572 PB (passwords and
hashes, i.e. 6210 - (10 + 20) bytes)

10/ 32

Time and memory for password searching (2)

— time-memory trade-off (TMTO)
= applicable for inverting any function
= computing a preimage of a hash function
= finding a key
e in a block cipher: f(x) = E,,(m) (K/CPA)
e for MAC: f(x) = Mac,(m), etc.

11/ 32

Hellman’s TMTO for passwords

H g
P11~ hi1 = P12
H g

P21 h2,1 — D22

H g
pm,l = hm,l - Pm,z

H g H
- hl,t—l =Pt hl,t

H g H
- hz,t—1 = P2t hz,t

H g H
= hm,t—l = pm,t = hm,t

12 /32

Hellman’s TMTO for passwords

H g H g H

P11 h1,1 - P12 - hl,t—l =Pt hl,t
H g H g H

P21 h2,1 = P22 o h2,t—1 = P2t h2,t
H g H g H

pm,l — hm,l - pm,z - hm,t—l - pm,t - hm,t

- store (p; 1, h;)i~ sorted/indexed by the second coordinate

— inverting H:
1. fori = 0,1, ..t — 1: test for (H o g)'(h) in the last column
2. after a match, say (H o g)'(h) = h,.;, we compute p = (g o H)t_l‘i(pm)
(“false alarms” possible)

- memory M = m; time T = t (on-line), precomputation = mt

12 /32

Hellman’s TMTO - covering the password space (1)

— the attack can find only those passwords that are in some chain

- if g o H is a single-cycle permutation on password space, then we have the TMTO with
TM = N (unrealistic)

— usually the mapping behaves like a random mapping
= collisions: prob. increases for increasing number of elements in the table
= chains can cycle or merge

13 /32

Hellman’s TMTO - covering the password space (2)

— problem: it is hard to cover more than N/t elements in a single table
=]let’s assume a covering of mt = N/t elements and we add another chain
= probability that no collision with already covered elements occurs:

t
Pr<(N_N/t> =(1-1/t) ~

Q|-

N

... and the probability lowers further with increasing covering

— single table can be used for approx. N/t elements

14 / 32

Hellman’s TMTO - covering the password space (3)

— solution: use t independent tables (for distinct choices of g)
— experimental results: if mt? =~ N, then each table covers approx. 0.8 - mt elements

— probability of success for t tables is approx.

0.8 - mt? /N)t

1—(1—0.8-mt/N)tz1—<1— p

~ i — e—O.8mt2/N ~ 1 — =08 < g

- time (on-line) T = t?, memory M ~ mt

15/ 32

Hellman’s TMTO - covering the password space (4)

- we want to cover N elements, i.e., mt -t = N;

— TMTO curve: TM? ~ t*m? ~ N2

interesting point on the curve: T = M = N?/3 (t = m = N1/3)
example: SHA-1, alphanumeric password of length 10 - approx. 4.9 minutes (Apple
M3 Pro GPU, no time for lookups counted); 546 GB (a pair counted as 20+10 bytes)

- Improvements:

distinguished points - fixed part of values in the last column, e.g., first d bits are
zero, thus reducing table lookups (disk operations)

rainbow tables - distinct g; for each column: reduction of collision probability, more
costly search, single table; overall constant-time speedup

example: ophcrack - cracking Windows LAN Manager passwords

16 / 32

How not to store passwords (1)

— LAN Manager hash (Windows, P is a fixed plaintext)

14 characters (max.)

AN

first 7 chars next 7 chars

uppercase & DES key conversion

| DES41(P) DES2(P) | LAN Manager hash

— each half can be attacked independently

17/ 32

How not to store passwords (2)

— Adobe hack (2013)
= encrypted passwords, 3DES in ECB mode (single key)

— Ashley Madison (2015)
= bcrypt, some passwords with additional MD5 hash

— plaintext passwords (2019)
= Google, Facebook, Twitter, etc.

18/ 32

Key derivation functions

Passwords used for cryptographic constructions

— PKCS #5 v 2.1 (RFC 8018) Password-Based Cryptography Specification
= derivation of symmetric keys from passwords (encryption, MAC)
= password checking (non-standardized, just a note in RFC)
= PBKDF2 (Password based key derivation function)
e input: password P, salt S, iteration count ¢, output length d (in bytes)

- salt
= random bit string of sufficient length (for example 128), secrecy not required
= potentially many different keys for a single password
= makes precomputation of keys for dictionary passwords useless = the attacker
must wait for the salt value
= deterministic alternative for random generation of the salt: KDF(P, M), where M is
the message to be processed (not secure if message space is small)

— iteration count (makes the brute-force attack harder)
= increase the work factor for computation, min. 1000 recommended
20 / 32

PBKDF2

— output: T; || T, || ... (as needed)

- max. output length (232 — 1) - H;, where H; is the length of underlying h.f's output
= 80 GB for SHA-1

- computation: T; = F(P, S, c, i), where
F(P,S,C,i) — U]_ @UZ @ @UC
U, = PRF(P,S || INT(i)) INT returns 4-byte value
U, = PRF(P, U,)
U. = PRF(P,U;-4)

— standard PRF is HMAC-SHA-1: PRF(a, b) = HMAC,(b)
= HMAC-SHA-256 and similar constructions are commonly used as well

21/ 32

— C. Persival (2009)

- idea: make the brute-force even harder
= password cracking easy to parallelize
= GPU, custom ASIC (Application Specific Integrated Circuit)
= PBKDF2 - small memory
= large memory requirements increase the circuit area (and its price)

— the attacker can choose:
= moderate time and (relatively) large memory requirements
= small memory and large time requirements

— another memory-hard alternative: Argon2
= Biryukov, Dinu, Khovratovich (2015)

22 /32

scrypt - theory: ROMix (1)

- ROMix(B, N) (sequential memory-hard function)

parameters: hash function H with k bit output
Integerify function, bijection {0, 1}* - {0, .., 2¥ — 1}
input: B - bit string of k bits
N - work factor (N < 2k/8)
computation: V; = HY(B)for0 <i < N
X = HY(B)
fori =0,..N—1:
j = Integerify(X)
X=HXeV)
return X

- pseudorandom order of accessing V; values

23 /32

scrypt - theory: ROMix (2)

— real scrypt specification - RFC 7914
= scryptROMix and scryptBlockMix functions, scryptROMix is a variation of ROMix,
parameters (work factor N, block size, parallelism)

— instantiation: PBKDF2-HMAC-SHA256, Salsa20/8 core

24 /32

HOTP and TOTP

One-time passwords

— multifactor authentication, 2-step verification, ...
= something you know/have/are
= often mobile phone: SMS, push notifications, authenticator app

— one-time passwords

— HOTP and TOTP
= HOTP: HMAC-Based One-Time Password Algorithm (RFC 4226)
= TOTP: Time-Based One-Time Password Algorithm (RFC 6238)

26 /32

FreeOTP example

FreeOTP

Manual Add

FMFI UK
Cryptology (1)

Secret FreeOTP

Type

/5066663

Digits
Algorithm

Interval

otpauth://totp/FMFI%20UK:Cryptology%20(1)?secret=0NUG65LMM
RRGKYTFOR2GK4TUNBQW45DINFZTCMRT&algorithm=SHA256&digits=8
&period=30&lock=false

27 / 32

HOTP

— actors: HOTP generator (client), HOTP validator (server)
— HMACg(+), default based on SHA-1

— parameters:
= K - shared secret (static symmetric key, = 128 bits)
= (- counter value (8B, synchronized, starts with 0)
= Digits - output length (= 6)

HOTP(K, C) = Truncate(HMAC(C))

— Truncate - transform HMAC output to HOTP value
= focus on uniformity and implementation clarity

— client increments C, and then calculates the next HOTP value

— server recalculates and compares received HOTP value
= server increments C after a successful authentication
28 / 32

HOTP - remarks

— authentication protocol over a secure channel, such as TLS, IPsec
— security of shared secret is important (obviously)

— validation failure (HOTP values do not match)
= resynch protocol (look-ahead window)
= look-ahead parameter s - server validates against s consecutive values
= if unsuccessful — failed attempt

— brute-force attack prevention
= brute-force attack is, in theory, the best attack possible
= throttling parameter - the maximum number of failed attempts

— in some scenarios, server can request multiple HOTP values

— bidirectional authentication possible

29 /32

TOTP

— extension of HOTP: counter value C replaced by time
= short-lived OTP values (instead of valid until next successful authentication™)

— HMAC based on SHA-1 (default), SHA-256, SHA-512

— parameters:
= X — time step in seconds (usually X = 30 seconds)
= time - current Unix time (seconds since 1.1.1970)
= T = |time/X| - number of time steps

TOTP(K,T) = HOTP(K, T)

30 /32

TOTP - remarks

— time step size: security vs. usability

- “one-time only” requirement: the server must not accept the second attempt after the
successful validation

— delay window - accept TOTP value from the previous time step
= time when the value was entered vs. time when it is validated
= recommended 1 time step

— resynchronization
= clock drift
= server can set limits on forward and backward time drifts
= remember the drift and adjust for next validation

31/32

Exercises

1. Find a method for storing passwords used by your favorite Linux distribution.
2. What is the maximum time step the NIST SP 800-63B-4 requires for TOTP?

3. Find the least secure and the most secure alphanumeric passwords of length 2 according
to the zxcvbn library.

32 /32

	Content
	Introduction
	Attacks and policies
	The most common passwords
	Entropy of passwords chosen by users
	Entropy of passwords – other estimates
	NIST SP 800-63-3 Digital Identity Guidelines
	Storing passwords
	Time-Memory trade-off
	Time and memory for password searching
	Time and memory for password searching (2)
	Hellman's TMTO for passwords
	Hellman's TMTO – covering the password space (1)
	Hellman's TMTO – covering the password space (2)
	Hellman's TMTO – covering the password space (3)
	Hellman's TMTO – covering the password space (4)
	How not to store passwords (1)
	How not to store passwords (2)

	Key derivation functions
	Passwords used for cryptographic constructions
	PBKDF2
	scrypt
	scrypt – theory: ROMix (1)
	scrypt – theory: ROMix (2)

	HOTP and TOTP
	One-time passwords
	FreeOTP example
	HOTP
	HOTP – remarks
	TOTP
	TOTP – remarks
	Exercises

