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Passwords – introduction

▶ the most frequent authentication method
▶ alone or combined with other methods

(something you know/have/are)
▶ constructions for confidentiality / integrity, e.g.

▶ protocols for authentication and key agreement using shared secret
▶ protection of private keys stored in files

▶ some problems with passwords:
▶ default passwords (e.g. can be found on the Internet)

a global problem (DDoS attacks 2016, IoT, Mirai etc.)?
▶ low entropy of a password, easy to guess
▶ strong passwords hard to remember
▶ passwords stored insecurely, e.g. in cleartext
▶ passwords sent via insecure channel, e.g. telnet
▶ shared among systems (it worsens the impact of a successful attack)
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Passwords – introduction (2)

▶ attacks:
▶ brute-force search
▶ dictionary attacks
▶ precomputation (for example rainbow tables)

▶ password policy, for example:
▶ password length, “diversity” of characters (groups) used in a password
▶ max./min. password age
▶ checking password history, login name or other public account data
▶ block account after x unsuccessful login attempts
▶ delays after unsuccessful login attempts etc.

▶ choosing a password
▶ randomly generated (hard to remember . . . password managers (?))
▶ user chosen (predictability, similarity with other passwords etc.)
▶ phrase-derived passwords, . . .
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Worst passwords (1)

▶ October 2013; Adobe (data of 38 million active users)
▶ overall more than 130 million accounts/passwords (incl. inactive)
▶ top 20 passwords (educated guess, helpful “hints”, ECB mode):
1. 123456 (≈ 1.9 million)
2. 123456789 (≈ 446 thousand)
3. password (≈ 345 thousand)
4. adobe123 (≈ 211 thousand)
5. 12345678
6. qwerty
7. 1234567
8. 111111
9. photoshop
10. 123123

11. 1234567890
12. 000000
13. abc123
14. 1234
15. adobe1
16. macromedia
17. azerty
18. iloveyou
19. aaaaaa
20. 654321
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The most common passwords

How not to choose passwords
source: NordPass, based on breached passwords in 2022
(https://nordpass.com/most-common-passwords-list/)

1 password
2 123456
3 123456789
4 guest
5 qwerty
6 12345678
7 111111
8 12345
9 col123456
10 123123

11 1234567
12 1234
13 1234567890
14 000000
15 555555
16 666666
17 123321
18 654321
19 7777777
20 123
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Entropy of passwords?

▶ estimates of entropy for user chosen password according to NIST SP
800-63-2 (94 character alphabet):

length no checks (bits) rules(∗) (bits)
6 14 23
8 18 30
10 21 32
20 36 42
40 56 62

(*) dictionary tests and composition rule (character groups)

▶ one can expect worse situation when humans select passwords (NIST
overestimated the security of passwords)

▶ entropy is not the best approach to measure password strength

Weir et al. (2010): Testing Metrics for Password Creation Policies by
Attacking Large Sets of Revealed Passwords
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Entropy of passwords – other estimates

▶ estimation of entropy is not easy
▶ substring from a dictionary, number sequences, personal information, . . .

▶ various methods implemented
▶ providing feedback on password strength to users
▶ web sites, password managers, specialized applications, . . .

▶ comparison of KeePass a zxcvbn library (bit security):

password KeePass zxcvbn

qwerty 12 2.32
password1 8 7.57
JE38bslk@psl 67 39.86
spidersarecoolandfun 72 50.66
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NIST SP 800-63-3 Digital Identity Guidelines
▶ NIST SP 800-63-2 is superseded by the SP 800-63 suite (2017)

▶ SP 800-63-3 Digital Identity Guidelines
▶ SP 800-63A Enrollment and Identity Proofing
▶ SP 800-63B Authentication and Lifecycle Management
▶ SP 800-63C Federation and Assertions

▶ no entropy estimates, only guidelines given (length preferred over
complexity rules)

▶ for example, see Appendix A in NIST SP 800-63B:
Users should be encouraged to make their passwords as lengthy as they want,
within reason. . . .

Length and complexity requirements beyond those recommended here significantly
increase the difficulty of memorized secrets and increase user frustration. As a
result, users often work around these restrictions in a way that is
counterproductive. Furthermore, other mitigations such as blacklists, secure
hashed storage, and rate limiting are more effective at preventing modern
brute-force attacks. Therefore, no additional complexity requirements are imposed.

Passwords 9 / 22



How strong are real passwords?

▶ 2012 LinkedIn
▶ password hashes leaked – approx. 6,5 million users
▶ SHA-1, no salt used
▶ approx. 60% passwords broken
▶ experiment (F. Pesce):

▶ dictionary attack, no GPU or specialized HW used, no rainbow table
▶ 4 hours – recovery of approx. 900 thousand users passwords
▶ continuing the attack . . . approx. 2 million passwords compromised

▶ May 2016 – story continues
▶ 167 million accounts, 62 million unique hashes
▶ KoreLogic:

2 hours . . . 65% hashes cracked
1 day . . . 78% hashes cracked (86% accounts)
2 days . . . 80% hashes cracked
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Storing passwords (informal discussion)

▶ cleartext
▶ database/file leak⇒ all passwords compromised
▶ passwords readable by admin, from backups etc.

▶ password hash: H(p)
▶ equal passwords ⇒ equal hashes
▶ precomputed hashes “applicable” for various systems/installations

▶ hash of the password and a “salt” H(p | | s)
▶ salt – random string (for each password), not necessary secret
▶ hash function speed ⇒ fast brute-force (many passwords can be tested in

short time)
▶ “slow” hashing of password and salt Hc (p | | s)

▶ iteration count c – to slow down the computation of the hash c-times, e.g.
c = 1 000

▶ password verification: for example 2 ms vs. 2 seconds (acceptable?)
▶ attack: for example 10 days vs. more than 27 years (sufficient?)
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Time and memory for password searching

▶ assumption: h = H(p), attacker knows h
▶ N – size of the password space
▶ trivial attacks:

▶ brute-force: time T ≈ N , memory M ≈ 1, no precomputation needed

example: SHA-1, random alphanumeric (62 characters) password of
length 8, 14.5 million hashes/s (i7-2600 @ 3.40 GHz) ≈ 174 days
using GPU is much better, e.g. single Nvidia RTX 4090 runs about 50 000
million SHA-1 hashes/s ≈ 72 minutes

▶ precomputation of all hashes (only once, time ≈ N), subsequent search in
the table: T ≈ 1, M ≈ N
example: SHA-1, alphanumeric passwords of length 8 . . . 6114 TB
(passwords and hashes, i.e. 628 · (8 + 20) bytes)
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Time and memory for password searching (2)

▶ time-memory trade-off (TMTO)
▶ applicable for inverting any function
▶ computing a preimage of a hash function
▶ finding a key in a block cipher f (x) = Ex (m) (K/CPA),

for MAC f (x) = Macx (m), for stream cipher f maps the key and IV into a
running key
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Hellman’s TMTO for passwords – idea

p1,1
H−→ h1,1

g
−→ p1,2 …

H−→ h1,t−1
g
−→ p1,t

H−→ h1,t

p2,1
H−→ h2,1

g
−→ p2,2 …

H−→ h2,t−1
g
−→ p2,t

H−→ h2,t
...

...
...

pm,1
H−→ hm,1

g
−→ pm,2 …

H−→ hm,t−1
g
−→ pm,t

H−→ hm,t

▶ store ⟨pi,1, hi,t⟩mi=1 sorted/indexed by the second coordinate
▶ inverting H:

1. for i = 0, 1, … , t − 1: test for (H ◦ g)i (h) in the last column
2. after a match, say (H ◦ g)i (h) = hr ,t , we compute p = (g ◦ H)t−1−i (pr ,1)

(false “alarms” possible)

▶ memory M ≈ m; time T ≈ t (on-line), precomputation ≈ mt
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Hellman’s TMTO for passwords – covering the space (1)

▶ the attack can find only those passwords that are in some chain
▶ if g ◦ H is a single-cycle permutation on password space, then we have

the TMTO with TM = N (unrealistic)
▶ usually the mapping behaves like a random mapping

▶ collisions: prob. increases for increasing number of elements in the table
▶ chains can cycle or merge

▶ problem: it is hard to cover more than N/t elements in a single table
▶ let’s assume a covering of mt ≥ N/t elements and we add another chain
▶ probability that no collision with already covered elements occurs:

Pr <
(
N − N/t

N

) t
= (1 − 1/t)t ≈ 1/e

. . . and the probability lowers further with increasing covering

▶ single table can be used for approx. N/t elements
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Hellman’s TMTO for passwords – covering the space (2)
▶ solution: use t independent tables (for distinct choices of g)

▶ experimental results: if mt2 ≈ N , then each table covers approx. 0.8 · mt
elements, and the prob. of success for t tables is approx. 1− (1− 0.8mt/N)t
≈ 1 − (1 − (0.8mt2/N)/t)t ≈ 1 − e−0.8mt2/N ≈ 1 − e−0.8 ≈ 0.55

▶ time (on-line) T ≈ t2, memory M ≈ mt
▶ we want to cover N elements, i.e. mt · t ≈ N ;
▶ TMTO curve: TM2 ≈ t4m2 ≈ N2

▶ interesting point on the curve: T = M = N2/3 (t ≈ m ≈ N1/3)
▶ example: SHA-1, alphanumeric password of length 8 – approx. 4.2 minutes

(no time for lookups counted); 101.5 GB (a pair counted as 20+8 bytes)
▶ improvements:

▶ distinguished points – fixed part of values in the last column, e.g. first d
bits are zero, thus reducing table lookups (i.e. disk operations)

▶ rainbow tables – distinct gi for each column: reduction of collision
probability, more costly search, single table; overall constant-time speedup
example: ophcrack – cracking Windows LAN Manager passwords
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How not to store passwords (1)

▶ LAN Manager hash (Windows, P is a fixed plaintext)
14 characters (max.)

first 7 chars next 7 chars

uppercase & DES key conversion

DESk1(P) DESk2(P) LAN Manager hash

▶ each half can be attacked independently
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How not to store passwords (2)

▶ Adobe hack (2013)
▶ encrypted passwords, 3DES in ECB mode (single key)

▶ Ashley Madison (2015)
▶ bcrypt, some passwords with additional MD5 hash

▶ plaintext passwords (2019)
▶ Google, Facebook, Twitter, etc.
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Password used for cryptographic constructions
▶ PKCS #5 v 2.1 (RFC 8018) Password-Based Cryptography Specification
▶ various use of passwords:

▶ derivation of symmetric keys from passwords (encryption, MAC)
▶ password checking (non-standardized, just a note in RFC)

▶ PBKDF2 (Password based key derivation function)
▶ input: password P , salt S, iteration count c, output length d (in bytes)
▶ salt

▶ random bit string of sufficient length (e.g. 64), secrecy not required
▶ potentially many different keys for a single password
▶ makes precomputation of keys for dictionary passwords useless⇒ the

attacker must wait for the salt value
▶ deterministic alternative for random generation of the salt: KDF(P ,M),

where M is the message to be processed (not if message space is small)
▶ iteration count (makes the brute-force attack harder)

▶ increase the work factor for function computation, min. 1000
recommended in the RFC 8018 (based on NIST SP 800-132)
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PBKDF2
▶ output: T1 | | T2 | | … (as needed)
▶ max. output length (232 − 1) · Hl , where Hl is the length of underlying

h.f.’s output
▶ e.g. 80 GB for SHA-1

▶ computation: Ti = F (P , S, c, i), where

F (P , S, c, i) = U1 ⊕ U2 ⊕ … ⊕ Uc

U1 = PRF(P , S | | INT(i)) INT returns 4-byte value

U2 = PRF(P ,U1)
…

Uc = PRF(P ,Uc−1)

▶ standard PRF is HMAC-SHA-1: PRF(a, b) = HMACa(b)
▶ HMAC-SHA-256 and similar constructions are commonly used as well

▶ alternatives to PBKDF2: bcrypt (based on Blowfish block cipher,
frequently used), scrypt (increasing memory requirements)
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scrypt

▶ C. Persival (2009)
▶ idea: make the brute-force even harder

▶ password cracking easy to parallelize
▶ GPU, custom ASIC (Application Specific Integrated Circuit)
▶ PBKDF2 – small memory
▶ large memory requirements increase the circuit area (and its price)

▶ the attacker can choose:
▶ moderate time and (relatively) large memory requirements
▶ small memory and large time requirements

▶ another memory-hard alternative: Argon2
▶ Biryukov, Dinu, Khovratovich (2015)
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scrypt – theory: ROMix
▶ ROMix(B,N) (sequential memory-hard function)

parameters: h.f. H with k bit output,
Integerify function (bijection {0, 1}k → {0, … , 2k − 1})

input: B – bit string of k bits
N – work factor (N < 2k/8)

computation: Vi = Hi (B) for 0 ≤ i < N
X = HN (B)
iterate for i = 0, … ,N − 1:

j = Integerify(X )
X = H(X ⊕ Vj)

return X

▶ pseudorandom order of accessing Vj values
▶ real scrypt specification – RFC 7914

▶ scryptROMix and scryptBlockMix functions, scryptROMix is a variation
of ROMix, parameters (work factor N , block size, parallelization)

▶ instantiation: PBKDF2-HMAC-SHA256, Salsa20/8 core
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