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Introduction

— electronic signatures in legislation vs. digital signatures in cryptology

— objectives:
= authenticity and integrity of signed data
= non-repudiation of origin
= (usually) universal verifiability, i.e., anyone can verify the signature
= unforgeability, efficiency, etc.

— objectives impossible to satisfy by a digital signature scheme alone
= PKI, laws etc. (out of the scope of this lecture)
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Digital signature scheme

m (document)

m o
| Hom | |
signer’s __ sign signer’s ___ verify
private key l public key ’/ \
o (signature) true  false

— asymmetric construction
= private key - signing
= public key - verification

2 /40



Digital signature scheme - definition

— digital signature scheme: (Gen, Sig, Vrf)
— Gen - PPT algorithm ~ public and private key pair (pk, sk)

— Sig - deterministic or probabilistic PT algorithm, creates a signature for a message m
and sk: ¢ = Sig, (m)

— Vrf - usually deterministic PT algorithm;
input: message, signature and signer’s public key

Vrfy (m, o) € {true, false}
— correctness of the scheme:

V(pk, sk) « Gen(l") vm : Vrf, (m, Sigg (m)) = true
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Digital signature schemes - remarks

— schemes with appendix (the most common type) - this lecture
= original document needed for the signature verification

— schemes with message recovery (rarely used)
= verification produces from a signature the original message and some additional
data to verify its correctness

— reasons for using hash function in digital signature schemes
= shorter, fixed-length data for signing
= preventing certain attacks, for example random message forgery (see later)

— using h.f. = the security depends on h.f. properties, such as collision resistance
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— various possibilities; use the strongest definition
— idea similar to the security definition for MAC
— attacker has access to a public key

- EUF-CMA
= CMA (chosen message attack) - the attacker has access to Sig () oracle
= EUF (existential unforgeability) - the attacker tries to create a message m (not
previously queried) and a valid signature o, such that Vrf,,(m, o) = true

— scheme is EUF-CMA secure if the success probability of any PPT attacker is negligible

— stronger definition SUF-CMA (strong existential unforgeability ...)
= as EUF-CME, but (m, ¢’) counts as a successful forgery if (m, "), as a pair, was not
query and response previously
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EUF-CMA definition

— signature scheme II = (Gen, Sig, Vrf)
— PPT attacker A with access to Sig, (+)
oracle
= let Q be the set of all queries
Sig-forge, (k) :
(pk, sk) « Gen(1¥)
(m, 0) « A& (pk)
if Vrfyx(m,0) =1 AmeQ:

return 1
else: return 0

Definition. A signature scheme I =

(Gen, Sig, Vrf) is EUF-CMA, if for any PPT
attacker A there exists a negligible function
negl(-) such that:

Pr[Sig-forgeA’H(k) = 1] < negl(k).

— more precisely, (t(k), e(k), gs)-secure
scheme, if for any attacker running in
time t(k), and asking g oracle quaries

Pr[Sig-forgeA,n(k) = 1] < e(k).
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RSA signatures




RSA signature scheme (1st attempt)

Problems

— RSA instance/parameters as before: — only for short messages

public key: (e, n)
private key: d
all optimizations can be applied

- random message forgery: for any ¢ € Z,
(o° modn, o) is a valid pair

m
— 1st attempt (without hashing): = the attacker has no control over the
= Sig: 0 = m? modn message value

Vrf: 6 modn =m?
correctness follows from the
properties of RSA

— another forgery (using homomorphic
property of RSA): take two valid pairs
(m4, 07), (m,, 0,), and produce
(m;m, modn, 6,0, modn)
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RSA signature scheme (textbook version)

- 2nd attempt (with hashing):

= Sig: 0 = H(m)? modn - FDH (Full Domain Hash) signature scheme

o Vrf: 0¢ modn = H(m) ? using H with image 7Z,,
_ = EUF-CMA secure in random oracle
~ properties: model (for H), assuming the hardness of
= messages of arbitrary length the RSA problem

= H is preimage resistant (infeasible
to invert) = prevents random
message forgery

— H(m) usually shorter than n = padding for
randomization and (sometimes) provable

security
— H should be collision resistant
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PKCS #1 v1.5

— construction standardized in 1998
- padded digest H(m):
0x00 || 0x01 || OXFF || ... || OXFF || 0x00 || H(m)

“Moreover, while no attack is known against the EMSA-PKCS-v1_5 encoding method, a
gradual transition to EMSA-PSS is recommended as a precaution against future
developments.” (RFC 8017)

- frequently used in practice, e.g. X.509 certificates:
= “sha256RSA” or “PKCS #1 SHA-256 With RSA Encryption” signature algorithm

— proof of PKCS #1 v1.5 security (2018), EUF-CMA in RO model under the standard RSA
assumption
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PKCS #1 v1.5 examples

Certificate Viewer: uniba.sk
General Details
Certificate Hierarchy

* HARICA TLS RSA Root CA 2021
- GEAMNT TLS RSA 1

uniba.sk

Certificate Fields

= uniba.sk
= Certificate
Version
Serial Number
Certificate Signature Algorithm
Issuer
= Validity

Mot Before

R1_o A

Field Value

PKICS #1 SHA-258 With RSA Encryption

Certificate Viewer: *.un.org
General | Details
Certificate Hierarchy

* Amazon Root CA 1
w Amazon RSA 2048 M0D4

*un.org

Certificate Fields

¥ *.un.org
w Certificate
Wersion
Serial Number
Certificate Signature Algorithm
Issuer
= Validity

Mot Before

R1_x R

Field Value

PKCS #1 SHA-256 With RSA Encryption
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RSA-PSS

8
_ Probabilistic Signature Scheme, PKCS #1 v2.2 (0x00)° | H(m) | salt
(RFC 8017) . i
padding | salt
— provable security in random oracle model H
- salt - sequence of random bytes < MGF
- padding = 0x00 || ... || 0x00 || 0x01 v
maskedDB H* | Oxbc

— MGF - mask generation function (used in OAEP
as well)

\ - 4
-~

input to RSA priv. function D
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RSA-PSS - verification

Vrfp (m, o):

1. parse and verify: ¢ modn — maskedDB || H* || Oxbc
2. DB = maskedDB & MGF(H™)

3. parse and verify: DB — padding || salt

4. verify that H* = H((0x00)8 || H(m) || salt)

the signature is correct if all verifications succeed
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RSA-FDH security proof




RSA-FDH is EUF-CMA

— RSA problem (inverting RSA):
Given pk = (n,e) and ¢ €g Z,, find x € Z,;: x® = ¢ (mod n).

- RSA assumption:
Pr[A(pk, ¢) = (c¢* mod n)] is negligible for any PPT algorithm A

Theorem. Let I be a RSA-FDH signature scheme, H be a random oracle. Then II is EUF-
CMA if the RSA assumption holds.

15 / 40



RSA-FDH is EUF-CMA - proof (main idea)

— A is successful in Sig-forge with non-
negligible probability ¢4
= let (m',0") be the output of A

— we construct B that inverts RSA with
non-negligible probability g
= input: pk = (n,e), c €x Z,
= output: m € Z,,: m® = ¢ (modn)

— B simulates A with pk

— B must correctly simulate both oracles

B

pk,c —™ pk—*

c? modn +— m/, o’ <+

<> Sig(+)
«> H()

Reduction from Sig-forge — RSA problem
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Observations

— if A does not ask the oracle H(m'), then ¢’ is correct with negligible probability

— let gy be the number of queries that A asked the H oracle
= indirect queries through Sig,, simulation count as well

- B guesses, what query (we denote it r) A asks for H(m')
= probability of correct guess: 1/qy
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- B remembers all queries and responses

- query H(m;), fori # r: HEMIETS:
1. 0; €Eg Zy, — we have to provide a consistent answers
2. define H(m;) « o modn (if we already simulated that query)

3. remember a triplet (m;, H(m;), o;) - duplicate queries with m,.

- query H(m;), fori = r: = asked later
1. define H(m;) < ¢ = if m,- was used previously

2. remember a triplet (m;, H(m;), ) — if there is a successful 4, then there is

— in both cases is the output, H(m;), equally successful A* not asking
uniformly distributed in Z, duplicate queries
= exactly like a random oracle
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Sig simulation

~ Sigg(m):
1. if A has not queried H(m) yet, we simulate H and get (m;, H(m;), g;), where m; = m
2. if m = m,., then B ends with a failure
3. output: g;

— signatures are consistent with answers in H simulation

- if both conditions are satisfied:
= A is successful, i.e., 4 outputs (m’,¢"): (¢")° modn = H(mm'), and
= B guessed r correctly: m' = m,,,

then (¢')° modn = c and B solved RSA problem for ¢
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RSA-FDH - conclusion

- if Ais PPT sois B

— B’s probability of success eg = €4/qy (oreyq = € - qy)
= ¢p is non-negligible, if ¢4 is non-negligible

- example:
= let gy = 2°° and we want 128-bit security, i.e., g, ® 27128 = g5 =~ 27178
= according RFC 3766 this corresponds to n with 6722 bits

— tight reduction: if ez = ¢4 (and time complexity as well)
= for example RSA-PSS (Probabilistic Signature Scheme)
= similarly to RSA-FDH in random oracle model
= potential disadvantage: RNG is needed
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ElGamal signature scheme

- T. ElGamal (1984) — initialization identical to encryption
— itis impossible to use ElGamal SElOEmE gk =gy sk=x
= y=g*modp

encryption scheme’s algorithms for
digital signatures
= encryption is not a function

= let g be a generator of (Z*, )
= scheme can be “rephrased” in other

(randomized ... a good thing) sToUps
= very few schemes offer bijections like - Sig, (m) = (r,s):

RSA 1. k €g Zy_q such thatged(k,p — 1) =1
= specific signature scheme must be 2. 7 =g"modp

designed 3.s=HmM)—xr) -k *mod(p—1)
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ElGamal signature scheme - verification and correctness

- Vrf,(m, (r, 5)): the signature is correct if
1<r<p & y"-r5=g"mM (modp)

- correctness
= the first part is trivial
= the second part: y" - r$ = g*" - gks = g*"tks = gHM) (mod p)

— efficiency
= Sig — single modular exponentiation (can be precomputed)
= Vrf - 3 modular exponentiations
= signature’s length =~ a pair from Z, X Z,,_4
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ElGamal - security (1)

— computing x from y is a discrete logarithm problem

— predictable (leaked) k results in private key compromise:
s=Hm)—xr) -k Tmod(p—1) = x=Hm)—ks)r 1mod(p—1)

— Bleichenbacher’s attack (1996)
= forging signatures if g has only small factorsand g | (p — 1)
= for example, g = 2 is a bad choice
= Remark: for discrete logarithm problem all generators are equivalent
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ElGamal - security (2)

- test 1 < r < pisnecessary; let us assume verification without the test:
= let (r,s) be a signature form: g"#™ = y" . S (mod p)
= we compute a signature (r’,s’) for some m' = m

1. u=H@m')-Hm) 'mod (p —1) (assuming that H(m) is coprime top — 1)

H(m') = JH(m)u

g g =y"" - r** (modp)

2. wesets' = usmod (p — 1) and compute r’ satisfying

r'=ru(modp —1)
r' = r (modp)

= apply CRT; with overwhelming probability " > p, otherwise u = 1 and we have a
collisionin H: H(m') = H(m) (modp — 1)
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ElGamal - security (3)

- reusing k (for two distinct messages):

= mq, (r,s;) = H(@my) =xr+ks; (modp — 1)
m,, (r,s,) = H(m,) =xr+ ks, (modp — 1)

= we have H(m,) — H(m,) = k(s; —s,) (modp —1) (%)
= letd = ged(s; — so,p — 1)
o ifd = 1thenk = (H(my) — H(m,))(sy — s,)" mod (» — 1)

= otherwise we divide the equation (*) by d, solve it mod (p — 1)/d, and then test d
candidates for k

= knowing k we can easily find the private key x
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ElGamal - security (4)

- random message forgery (when H is not used)

1. i,j €g Ly

2. r=g" "y modp

3. s=-r-j tmod (p — 1)
4. m=s-imod(p—1)

— correctness:
YT 7S = yT . gis .y
= g7 . gis . y=iTi”
= g = g™ (mod p)

1
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Elliptic Curve Digital Signature Algorithm

— FIPS 186-5 (2023) - RSA, ECDSA, EdDSA
— usually with P-256 curve; Ethereum (curve secp256k1)
— 31% certificates use ECDSA (69% RSA), source: CT logs (November 2025)

— common parameters:
= E - an elliptic curve
= (G € E - asubgroup generator of prime order n

— simplifying some details (conversions bitstring < integer, etc.)

Initialization
— private key: d € {1,...n — 1}
— public key: Q = dG
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ECDSA - signing and verification

Sigsk(m):

1. R = (rx, ry) = kG,
where k €5 {1,..,n — 1}

2. T =1, modn

3. s=k Y(H(m) + rd) modn
H is a suitable hash function

4. ifr = 0 or s = 0 then start again with
step 1 (unlikely)

5. signature o = (r,s)
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ECDSA - signing and verification

Vrf,(m, (1,5)):

Sig, (m): 1. verify thatr,s € {1, ..,n — 1}

1. R = (1) = kG, 2. u=H(m) s 1modn
where k € {1, ...,n — 1} v=r-s 1modn

2. r =1, modn 3. R = (r,é,rjﬁ) = uG + vQ

3. s=k Y (H(m) + rd) modn 4. verify thatr, modn =r

H is a suitable hash function
4. ifr = 0 or s = 0 then start again with Correctness:
step 1 (unlikely} uG+vQ=Hm)-s 1 -G+r-s71-d-G
5. signature ¢ = (r, ) =s 1. (Hm)+7rd) -G
=kG =R
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ECDSA - remarks

n  Certificate *

General Details  Certification Path

— efficiency: Show: [ <al> .

= shorter signatures and faster then ElGamal’s Fild value
Signature hash algorithm sha256
scheme

Issuer WR2, Google Trust Services, US
'I.u'alid from pondelok 13, oktdbra 2025 9:...
= shorter keys and faster then DSA (the same
scheme on modular group)

'u'alid to pondelok 5. januéra 2026 9:3...

Subject acoounts,google, com

=] Public key ECC (256 Bits)
Public key parameters ECDSA_P256

.E]Fnh:unn:d Kew | leans Server Anthentiratinn (1 3 A
= 7 can be precomputed
ECDSA_P256
— H required to prevent random message forgery
— ECDSA: fixed curves and parameters are used
. . . Edit Properties... Copy to File. ..
- EUF-CMA with DL assumption in ROM i B




ECDSA - security problems

— predictable/repeating k results in private key compromise
= (2010) Sony PS3 ECDSA with constant k
(2013) Android’s Java SecureRandom with low entropy
= deterministic variant can help

— various attacks when some/partial information about k is known
= even less than 1 bit information

- malleable signatures: (r,s) — (r, —s mod n)
= verification (u' = H(m) - (=s) 'modn = —w;v =7 (-s) "' modn = —v):

u'G+v'Q=—-wuG+vQ)=—-kG = (rx, —ry) = r.modn=r
= Why does it matter? Bitcoin “transaction malleability” — Mt. Gox collapse (2014)
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ECDSA - deterministic variant

— k is computed deterministically from H (m) and the private key d
= FIPS 186-5 prescribes a deterministic random bit generator based on HMAC

— protects again attack exploiting insufficient randomness in k
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Schnorr signature scheme (on elliptic curve)

— simple construction, base for

various other cryptographic Sigg (m):
schemes 1. R = kG, where k €5 {1,..,n — 1}
— let us use the ECDSA-like 2. r=H(R ||m)
parameters (any underlying group ~ 3 $ = k +rdmodn
4, 0 = (r,s)

can be used):

« E,G € E,primen = ord(G)
= private key: d € {1, ..,n — 1} Vrf, (m, (r,5)): H(sG —rQ ||m) =717
= publickey: Q = dG

Correctness:

— hash function H with range 7Z,
sG—1rQ =(k+rd)G—-(rd)G =R

— several slightly different variants
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Schnorr signature scheme - remarks

— EUF-CMA in ROM under the discrete logarithm assumption
— again: k must be unpredictable; deterministic variant can be constructed as well

— we can change the first component from r to R (or its x-coordinate):

Sigg (m): Vrf o (m, (R, s)):

1. R = kG, where k €5 {1,...,n — 1} 1. r=H(R || m)

2. r=H(R || m) 2. verify thatsG —rQ = R
3. s=k+rdmodn

4. 0= (R,s) (Bitcoin: 7 = H(Ry || Qx | m))

— the verification equation is linear ~ batch verification (verify multiple signatures)
= (my, (R;, s;)) for public keys Q; (fori =1, ..., t)
= verification: (Zl aiSi) -G — (Zl ari - Ql) — Zi al-Rl-, for a; €p {1, coop 15— 1}
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Edwards Curve Digital Signature Algorithm

- EdDSA (RFC 8032)
= deterministic variant of Schnorr

signature scheme

_ _ Keys
= included in the FIPS 186-5 (Ed448

— b-bit string k

el 3625515 - compute H(k) = h = (hy, ..., hop_1)
- Ed25519: EADSA with Curve25519 (ina - lefthalf of his a scalara = h[0...b — 1]
different form) and SHA-512 - A=aG
= optimized for speed and security — private key: k (sometimes with A) or a

with the right half h[b...2b — 1]

— Simplified EADSA - parameters: _
— public key: A

= H - hash function with 2b-bit output
= (G — point that generates a subgroup
of prime order n
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EdDSA - signing and verification

Sigs(m): Vrf, (m, (R, s)):
1. r=H(h|b..2b — 1] || m) — verifythatsG =R+ H(R||A||m) A
2. R=1G

3.s=r+HR|A|m)-a modn
4. signature: (R, s)

Correctness:

sG=+HR|A|m)-a)6 =rG+H(R|A|m)-(aG)=R+H(R|A]|m)-A
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Exercises

1. What problems do we avoid by checkingr # 0 and s # 0 in ECDSA scheme?
2. Show that random message forgery is possible in ECDSA variant without H.

3. Find what digital signature algorithms are supported by your (or some) SSH server.
Compare the sizes of private and public keys for at least 3 algorithms.

4. Show that batch verification can be tricked to accept set of invalid signatures, if
coefficients a; are fixed (for example a; = i).

5. Is EADSA linear similarly to the previously discussed variant of Schnorr’s scheme?

6. Double scalar multiplication of two points on elliptic curve: aP + bQ. Study and
illustrate Shamir’s trick for a = 23 and b = 18. Compare with a straightforward
computation of aP and bQ using double-and-add method, and adding the results.
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