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Introduction

– electronic signatures in legislation vs. digital signatures in cryptology

– objectives:

▫︎ authenticity and integrity of signed data

▫︎ non-repudiation of origin

▫︎ (usually) universal verifiability, i.e., anyone can verify the signature

▫︎ unforgeability, efficiency, etc.

– objectives impossible to satisfy by a digital signature scheme alone

▫︎ PKI, laws etc. (out of the scope of this lecture)
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Digital signature scheme
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– asymmetric construction

▫︎ private key – signing

▫︎ public key – verification

2 / 40



Digital signature scheme – definition

– digital signature scheme: ⟨Gen, Sig, Vrf⟩

– Gen – PPT algorithm ↦ public and private key pair (𝗉𝗄, 𝗌𝗄)

– Sig – deterministic or probabilistic PT algorithm, creates a signature for a message 𝑚 

and 𝗌𝗄: 𝜎 = Sig𝗌𝗄(𝑚)

– Vrf – usually deterministic PT algorithm;

input: message, signature and signer’s public key

Vrf𝗉𝗄(𝑚, 𝜎) ∈ {true, false}

– correctness of the scheme:

∀(𝗉𝗄, 𝗌𝗄) ← Gen(1𝑘) ∀𝑚 : Vrf𝗉𝗄(𝑚, Sig𝗌𝗄(𝑚)) = true
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Digital signature schemes – remarks

– schemes with appendix (the most common type) – this lecture

▫︎ original document needed for the signature verification

– schemes with message recovery (rarely used)

▫︎ verification produces from a signature the original message and some additional 

data to verify its correctness

– reasons for using hash function in digital signature schemes

▫︎ shorter, fixed-length data for signing

▫︎ preventing certain attacks, for example random message forgery (see later)

– using h.f. ⇒ the security depends on h.f. properties, such as collision resistance
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Security

– various possibilities; use the strongest definition

– idea similar to the security definition for MAC

– attacker has access to a public key

– EUF-CMA

▫︎ CMA (chosen message attack) – the attacker has access to Sig𝗌𝗄(⋅) oracle

▫︎ EUF (existential unforgeability) – the attacker tries to create a message 𝑚 (not 

previously queried) and a valid signature 𝜎, such that Vrf𝗉𝗄(𝑚, 𝜎) = true

– scheme is EUF-CMA secure if the success probability of any PPT attacker is negligible

– stronger definition SUF-CMA (strong existential unforgeability …)

▫︎ as EUF-CME, but (𝑚, 𝜎′) counts as a successful forgery if (𝑚, 𝜎′), as a pair, was not 

query and response previously

5 / 40



EUF-CMA definition

– signature scheme Π = ⟨Gen, Sig, Vrf⟩
– PPT attacker 𝐴 with access to Sig𝗌𝗄(⋅) 

oracle

▫︎ let 𝑄 be the set of all queries

𝐒𝐢𝐠-𝐟𝐨𝐫𝐠𝐞𝑨,𝚷(𝒌) :

(𝗉𝗄, 𝗌𝗄) ← Gen(1𝑘)

(𝑚, 𝜎) ← 𝐴Sig𝗌𝗄(⋅)(𝗉𝗄)
if Vrf𝗉𝗄(𝑚, 𝜎) = 1 ∧ 𝑚 ∉ 𝑄 :

return 1
else: return 0

Definition. A signature scheme Π =
⟨Gen, Sig, Vrf⟩ is EUF-CMA, if for any PPT 

attacker 𝐴 there exists a negligible function 

negl(⋅) such that:

Pr[Sig-forge𝐴,Π(𝑘) = 1] ≤ negl(𝑘).

– more precisely, (𝑡(𝑘), 𝜀(𝑘), 𝑞𝑆)-secure 

scheme, if for any attacker running in 

time 𝑡(𝑘), and asking 𝑞𝑆 oracle quaries

Pr[Sig-forge𝐴,Π(𝑘) = 1] ≤ 𝜀(𝑘).
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RSA signatures



RSA signature scheme (1st attempt)

– RSA instance/parameters as before:

▫︎ public key: (𝑒, 𝑛)
▫︎ private key: 𝑑
▫︎ all optimizations can be applied

– 1st attempt (without hashing):

▫︎ Sig: 𝜎 = 𝑚𝑑 mod 𝑛
▫︎ Vrf: 𝜎𝑒 mod 𝑛 = 𝑚 ?

▫︎ correctness follows from the 

properties of RSA

Problems

– only for short messages

– random message forgery: for any 𝜎 ∈ ℤ𝑛
(𝜎𝑒 mod 𝑛⏟

𝑚
, 𝜎) is a valid pair

▫︎ the attacker has no control over the 

message value

– another forgery (using homomorphic 

property of RSA): take two valid pairs 

(𝑚1, 𝜎1), (𝑚2, 𝜎2), and produce 

(𝑚1𝑚2 mod 𝑛, 𝜎1𝜎2 mod 𝑛)
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RSA signature scheme (textbook version)

– 2nd attempt (with hashing):

▫︎ Sig: 𝜎 = 𝐻(𝑚)𝑑 mod 𝑛
▫︎ Vrf: 𝜎𝑒 mod 𝑛 = 𝐻(𝑚) ?

– properties:

▫︎ messages of arbitrary length

▫︎ 𝐻 is preimage resistant (infeasible 

to invert) ⇒ prevents random 

message forgery

– 𝐻 should be collision resistant

– FDH (Full Domain Hash) signature scheme 

using 𝐻 with image ℤ𝑛
▫︎ EUF-CMA secure in random oracle 

model (for 𝐻), assuming the hardness of 

the RSA problem

– 𝐻(𝑚) usually shorter than 𝑛 ⇒ padding for 

randomization and (sometimes) provable 

security
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PKCS #1 v1.5

– construction standardized in 1998

– padded digest 𝐻(𝑚):

0x00 ‖ 0x01 ‖ 0xFF ‖ … ‖ 0xFF ‖ 0x00 ‖ 𝐻(𝑚)

“Moreover, while no attack is known against the EMSA-PKCS-v1_5 encoding method, a 

gradual transition to EMSA-PSS is recommended as a precaution against future 

developments.” (RFC 8017)

– frequently used in practice, e.g. X.509 certificates:

▫︎ “sha256RSA” or “PKCS #1 SHA-256 With RSA Encryption” signature algorithm

– proof of PKCS #1 v1.5 security (2018), EUF-CMA in RO model under the standard RSA 

assumption
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PKCS #1 v1.5 examples
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RSA-PSS

– Probabilistic Signature Scheme, PKCS #1 v2.2 

(RFC 8017)

– provable security in random oracle model

– salt – sequence of random bytes

– padding = 0x00 ‖ … ‖ 0x00 ‖ 0x01

– MGF – mask generation function (used in OAEP 

as well)

maskedDB

MGF

︸ ︷︷ ︸
input to RSA priv. function D

(0x00)8 H(m) salt

padding salt
H

H∗

MGF

0xbc
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RSA-PSS – verification

Vrf𝗉𝗄(𝑚, 𝜎):

1. parse and verify: 𝜎𝑒 mod 𝑛 ↦ maskedDB ‖ 𝐻∗ ‖ 0xbc
2. DB = maskedDB ⊕ MGF(𝐻∗)
3. parse and verify: DB ↦ padding ‖ salt
4. verify that 𝐻∗ = 𝐻((0x00)8 ‖ 𝐻(𝑚) ‖ salt)

the signature is correct if all verifications succeed
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RSA-FDH security proof



RSA-FDH is EUF-CMA

– RSA problem (inverting RSA):

Given 𝗉𝗄 = (𝑛, 𝑒) and 𝑐 ∈𝑅 ℤ𝑛, find 𝑥 ∈ ℤ𝑛: 𝑥𝑒 ≡ 𝑐 (mod 𝑛).

– RSA assumption:

Pr[𝐴(pk, 𝑐) = (𝑐𝑑 mod 𝑛)] is negligible for any PPT algorithm 𝐴

Theorem. Let Π be a RSA-FDH signature scheme, 𝐻 be a random oracle. Then Π is EUF-

CMA if the RSA assumption holds.
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RSA-FDH is EUF-CMA – proof (main idea)

– 𝐴 is successful in Sig-forge with non-

negligible probability 𝜀𝐴
▫︎ let (𝑚′, 𝜎′) be the output of 𝐴

– we construct 𝐵 that inverts RSA with 

non-negligible probability 𝜀𝐵
▫︎ input: 𝗉𝗄 = (𝑛, 𝑒), 𝑐 ∈𝑅 ℤ𝑛
▫︎ output: 𝑚 ∈ ℤ𝑛: 𝑚𝑒 ≡ 𝑐 (mod 𝑛)

– 𝐵 simulates 𝐴 with 𝗉𝗄

– 𝐵 must correctly simulate both oracles

Reduction from Sig-forge ↦ RSA problem
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Observations

– if 𝐴 does not ask the oracle 𝐻(𝑚′), then 𝜎′ is correct with negligible probability

– let 𝑞𝐻 be the number of queries that 𝐴 asked the 𝐻 oracle

▫︎ indirect queries through Sigsk simulation count as well

– 𝐵 guesses, what query (we denote it 𝑟) 𝐴 asks for 𝐻(𝑚′)
▫︎ probability of correct guess: 1/𝑞𝐻
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𝐻 simulation

– 𝐵 remembers all queries and responses

– query 𝐻(𝑚𝑖), for 𝑖 ≠ 𝑟:

1. 𝜎𝑖 ∈𝑅 ℤ𝑛
2. define 𝐻(𝑚𝑖) ← 𝜎𝑒

𝑖 mod 𝑛
3. remember a triplet (𝑚𝑖 , 𝐻(𝑚𝑖), 𝜎𝑖)

– query 𝐻(𝑚𝑖), for 𝑖 = 𝑟:

1. define 𝐻(𝑚𝑖) ← 𝑐
2. remember a triplet (𝑚𝑖 , 𝐻(𝑚𝑖),    )

– in both cases is the output, 𝐻(𝑚𝑖), 

uniformly distributed in ℤ𝑛
▫︎ exactly like a random oracle

Remarks:

– we have to provide a consistent answers 

(if we already simulated that query)

– duplicate queries with 𝑚𝑟
▫︎ asked later

▫︎ if 𝑚𝑟 was used previously

– if there is a successful 𝐴, then there is 

equally successful 𝐴∗ not asking 

duplicate queries
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Sig simulation

– Sigsk(𝑚):

1. if 𝐴 has not queried 𝐻(𝑚) yet, we simulate 𝐻 and get (𝑚𝑖 , 𝐻(𝑚𝑖), 𝜎𝑖), where 𝑚𝑖 = 𝑚
2. if 𝑚 = 𝑚𝑟 , then 𝐵 ends with a failure

3. output: 𝜎𝑖

– signatures are consistent with answers in 𝐻 simulation

– if both conditions are satisfied:

▫︎ 𝐴 is successful, i.e., 𝐴 outputs (𝑚′, 𝜎′): (𝜎′)𝑒 mod 𝑛 = 𝐻(𝑚′), and

▫︎ 𝐵 guessed 𝑟 correctly: 𝑚′ = 𝑚𝑟 ,

then (𝜎′)𝑒 mod 𝑛 = 𝑐 and 𝐵 solved RSA problem for 𝑐
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RSA-FDH – conclusion

– if A is PPT, so is B

– 𝐵’s probability of success 𝜀𝐵 ≈ 𝜀𝐴/𝑞𝐻  (or 𝜀𝐴 ≈ 𝜀𝐵 ⋅ 𝑞𝐻)

▫︎ 𝜀𝐵 is non-negligible, if 𝜀𝐴 is non-negligible

– example:

▫︎ let 𝑞𝐻 = 250 and we want 128-bit security, i.e., 𝜀𝐴 ≈ 2−128 ⇒  𝜀𝐵 ≈ 2−178

▫︎ according RFC 3766 this corresponds to 𝑛 with 6722 bits

– tight reduction: if 𝜀𝐵 ≈ 𝜀𝐴 (and time complexity as well)

▫︎ for example RSA-PSS (Probabilistic Signature Scheme)

▫︎ similarly to RSA-FDH in random oracle model

▫︎ potential disadvantage: RNG is needed
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ElGamal



ElGamal signature scheme

– T. ElGamal (1984)

– it is impossible to use ElGamal 

encryption scheme’s algorithms for 

digital signatures

▫︎ encryption is not a function 

(randomized … a good thing)

▫︎ very few schemes offer bijections like 

RSA

▫︎ specific signature scheme must be 

designed

– initialization identical to encryption 

scheme: 𝗉𝗄 = (𝑝, 𝑔, 𝑦), 𝗌𝗄 = 𝑥
▫︎ 𝑦 = 𝑔𝑥 mod 𝑝
▫︎ let 𝑔 be a generator of (ℤ∗

𝑝, ⋅)
▫︎ scheme can be “rephrased” in other 

groups

– Sig𝗌𝗄(𝑚) = (𝑟, 𝑠):

1. 𝑘 ∈𝑅 ℤ𝑝−1 such that gcd(𝑘, 𝑝 − 1) = 1
2. 𝑟 = 𝑔𝑘 mod 𝑝
3. 𝑠 = (𝐻(𝑚) − 𝑥𝑟) ⋅ 𝑘−1 mod (𝑝 − 1)
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ElGamal signature scheme – verification and correctness

– Vrf𝗉𝗄(𝑚, (𝑟, 𝑠)): the signature is correct if

1 ≤ 𝑟 < 𝑝 & 𝑦𝑟 ⋅ 𝑟𝑠 ≡ 𝑔𝐻(𝑚) (mod 𝑝)

– correctness

▫︎ the first part is trivial

▫︎ the second part: 𝑦𝑟 ⋅ 𝑟𝑠 ≡ 𝑔𝑥𝑟 ⋅ 𝑔𝑘𝑠 ≡ 𝑔𝑥𝑟+𝑘𝑠 ≡ 𝑔𝐻(𝑚) (mod 𝑝)

– efficiency

▫︎ Sig – single modular exponentiation (can be precomputed)

▫︎ Vrf – 3 modular exponentiations

▫︎ signature’s length ≈ a pair from ℤ𝑝 × ℤ𝑝−1
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ElGamal – security (1)

– computing 𝑥 from 𝑦 is a discrete logarithm problem

– predictable (leaked) 𝑘 results in private key compromise:

𝑠 = (𝐻(𝑚) − 𝑥𝑟) ⋅ 𝑘−1 mod (𝑝 − 1) ⇒ 𝑥 = (𝐻(𝑚) − 𝑘𝑠)𝑟−1 mod (𝑝 − 1)

– Bleichenbacher’s attack (1996)

▫︎ forging signatures if 𝑔 has only small factors and 𝑔 | (𝑝 − 1)
▫︎ for example, 𝑔 = 2 is a bad choice

▫︎ Remark: for discrete logarithm problem all generators are equivalent
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ElGamal – security (2)

– test 1 ≤ 𝑟 < 𝑝 is necessary; let us assume verification without the test:

▫︎ let (𝑟, 𝑠) be a signature for 𝑚: 𝑔𝐻(𝑚) ≡ 𝑦𝑟 ⋅ 𝑟𝑠 (mod 𝑝)
▫︎ we compute a signature (𝑟′, 𝑠′) for some 𝑚′ ≠ 𝑚

1. 𝑢 = 𝐻(𝑚′) ⋅ 𝐻(𝑚)−1 mod (𝑝 − 1) (assuming that 𝐻(𝑚) is coprime to 𝑝 − 1)

𝑔𝐻(𝑚′) ≡ 𝑔𝐻(𝑚)𝑢 ≡ 𝑦𝑢𝑟 ⋅ 𝑟𝑢𝑠 (mod 𝑝)
2. we set 𝑠′ = 𝑢𝑠 mod (𝑝 − 1) and compute 𝑟′ satisfying

𝑟′ ≡ 𝑟𝑢 (mod 𝑝 − 1)
𝑟′ ≡ 𝑟 (mod 𝑝)

▫︎ apply CRT; with overwhelming probability 𝑟′ ≥ 𝑝, otherwise 𝑢 = 1 and we have a 

collision in 𝐻: 𝐻(𝑚′) ≡ 𝐻(𝑚) (mod 𝑝 − 1)
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ElGamal – security (3)

– reusing 𝑘 (for two distinct messages):

▫︎ 𝑚1, (𝑟, 𝑠1) ⇒ 𝐻(𝑚1) ≡ 𝑥𝑟 + 𝑘𝑠1 (mod 𝑝 − 1)
𝑚2, (𝑟, 𝑠2) ⇒ 𝐻(𝑚2) ≡ 𝑥𝑟 + 𝑘𝑠2 (mod 𝑝 − 1)

▫︎ we have 𝐻(𝑚1) − 𝐻(𝑚2) ≡ 𝑘(𝑠1 − 𝑠2) (mod 𝑝 − 1) (⋆)

▫︎ let 𝑑 = gcd(𝑠1 − 𝑠2, 𝑝 − 1)

▫︎ if 𝑑 = 1 then 𝑘 = (𝐻(𝑚1) − 𝐻(𝑚2))(𝑠1 − 𝑠2)−1 mod (𝑝 − 1)

▫︎ otherwise we divide the equation (⋆) by 𝑑, solve it mod (𝑝 − 1)/𝑑, and then test 𝑑 

candidates for 𝑘

▫︎ knowing 𝑘 we can easily find the private key 𝑥
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ElGamal – security (4)

– random message forgery (when 𝐻 is not used)

1. 𝑖, 𝑗 ∈𝑅 ℤ∗
𝑝−1

2. 𝑟 = 𝑔𝑖 ⋅ 𝑦𝑗 mod 𝑝
3. 𝑠 = −𝑟 ⋅ 𝑗−1 mod (𝑝 − 1)
4. 𝑚 = 𝑠 ⋅ 𝑖 mod (𝑝 − 1)

– correctness:

𝑦𝑟 ⋅ 𝑟𝑠 ≡ 𝑦𝑟 ⋅ 𝑔𝑖𝑠 ⋅ 𝑦𝑗𝑠

≡ 𝑦𝑟 ⋅ 𝑔𝑖𝑠 ⋅ 𝑦−𝑗𝑟𝑗−1

≡ 𝑔𝑖𝑠 ≡ 𝑔𝑚 (mod 𝑝)
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ECDSA



Elliptic Curve Digital Signature Algorithm

– FIPS 186-5 (2023) – RSA, ECDSA, EdDSA

– usually with P-256 curve; Ethereum (curve secp256k1)

– 31% certificates use ECDSA (69% RSA), source: CT logs (November 2025)

– common parameters:

▫︎ 𝐸 – an elliptic curve

▫︎ 𝐺 ∈ 𝐸 – a subgroup generator of prime order 𝑛

– simplifying some details (conversions bitstring ↔ integer, etc.)

Initialization

– private key: 𝑑 ∈𝑅 {1, …, 𝑛 − 1}
– public key: 𝑄 = 𝑑𝐺
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ECDSA – signing and verification

𝐒𝐢𝐠𝘀𝗸(𝒎):

1. 𝑅 = (𝑟𝑥, 𝑟𝑦) = 𝑘𝐺,

where 𝑘 ∈𝑅 {1, …, 𝑛 − 1}

2. 𝑟 = 𝑟𝑥 mod 𝑛

3. 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑟𝑑) mod 𝑛
𝐻 is a suitable hash function

4. if 𝑟 = 0 or 𝑠 = 0 then start again with 

step 1 (unlikely)

5. signature 𝜎 = (𝑟, 𝑠)

30 / 40



ECDSA – signing and verification

𝐒𝐢𝐠𝘀𝗸(𝒎):

1. 𝑅 = (𝑟𝑥, 𝑟𝑦) = 𝑘𝐺,

where 𝑘 ∈𝑅 {1, …, 𝑛 − 1}

2. 𝑟 = 𝑟𝑥 mod 𝑛

3. 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑟𝑑) mod 𝑛
𝐻 is a suitable hash function

4. if 𝑟 = 0 or 𝑠 = 0 then start again with 

step 1 (unlikely)

5. signature 𝜎 = (𝑟, 𝑠)

𝐕𝐫𝐟𝗽𝗸(𝒎, (𝒓, 𝒔)):

1. verify that 𝑟, 𝑠 ∈ {1, …, 𝑛 − 1}

2. 𝑢 = 𝐻(𝑚) ⋅ 𝑠−1 mod 𝑛
𝑣 = 𝑟 ⋅ 𝑠−1 mod 𝑛

3. 𝑅′ = (𝑟′
𝑥 , 𝑟′

𝑦) = 𝑢𝐺 + 𝑣𝑄

4. verify that 𝑟′
𝑥 mod 𝑛 = 𝑟

Correctness:

𝑢𝐺 + 𝑣𝑄 = 𝐻(𝑚) ⋅ 𝑠−1 ⋅ 𝐺 + 𝑟 ⋅ 𝑠−1 ⋅ 𝑑 ⋅ 𝐺
= 𝑠−1 ⋅ (𝐻(𝑚) + 𝑟𝑑) ⋅ 𝐺
= 𝑘𝐺 = 𝑅
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ECDSA – remarks

– efficiency:

▫︎ shorter signatures and faster then ElGamal’s 

scheme

▫︎ shorter keys and faster then DSA (the same 

scheme on modular group)

▫︎ 𝑟 can be precomputed

– 𝐻 required to prevent random message forgery

– ECDSA: fixed curves and parameters are used

– EUF-CMA with DL assumption in ROM
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ECDSA – security problems

– predictable/repeating 𝑘 results in private key compromise

▫︎ (2010) Sony PS3 ECDSA with constant 𝑘
(2013) Android’s Java SecureRandom with low entropy

▫︎ deterministic variant can help

– various attacks when some/partial information about 𝑘 is known

▫︎ even less than 1 bit information

– malleable signatures: (𝑟, 𝑠) ↦ (𝑟, −𝑠 mod 𝑛)
▫︎ verification (𝑢′ = 𝐻(𝑚) ⋅ (−𝑠)−1 mod 𝑛 = −𝑢; 𝑣 = 𝑟 ⋅ (−𝑠)−1 mod 𝑛 = −𝑣):

𝑢′𝐺 + 𝑣′𝑄 = −(𝑢𝐺 + 𝑣𝑄) = −𝑘𝐺 = (𝑟𝑥, −𝑟𝑦) ⇒ 𝑟𝑥 mod 𝑛 = 𝑟
▫︎ Why does it matter? Bitcoin “transaction malleability” → Mt. Gox collapse (2014)
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ECDSA – deterministic variant

– 𝑘 is computed deterministically from 𝐻(𝑚) and the private key 𝑑
▫︎ FIPS 186-5 prescribes a deterministic random bit generator based on HMAC

– protects again attack exploiting insufficient randomness in 𝑘
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Schnorr



Schnorr signature scheme (on elliptic curve)

– simple construction, base for 

various other cryptographic 

schemes

– let us use the ECDSA-like 

parameters (any underlying group 

can be used):

▫︎ 𝐸, 𝐺 ∈ 𝐸, prime 𝑛 = ord(𝐺)
▫︎ private key: 𝑑 ∈𝑅 {1, …, 𝑛 − 1}
▫︎ public key: 𝑄 = 𝑑𝐺

– hash function 𝐻 with range ℤ𝑛

– several slightly different variants

𝐒𝐢𝐠𝘀𝗸(𝒎):

1. 𝑅 = 𝑘𝐺, where 𝑘 ∈𝑅 {1, …, 𝑛 − 1}
2. 𝑟 = 𝐻(𝑅 ‖ 𝑚)
3. 𝑠 = 𝑘 + 𝑟𝑑 mod 𝑛
4. 𝜎 = (𝑟, 𝑠)

𝐕𝐫𝐟𝗽𝗸(𝒎, (𝒓, 𝒔)): 𝐻(𝑠𝐺 − 𝑟𝑄 ‖ 𝑚) = 𝑟 ?

Correctness:

𝑠𝐺 − 𝑟𝑄 = (𝑘 + 𝑟𝑑)𝐺 − (𝑟𝑑)𝐺 = 𝑅
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Schnorr signature scheme – remarks

– EUF-CMA in ROM under the discrete logarithm assumption

– again: 𝑘 must be unpredictable; deterministic variant can be constructed as well

– we can change the first component from 𝑟 to 𝑅 (or its 𝑥-coordinate):

𝐒𝐢𝐠𝘀𝗸(𝒎):

1. 𝑅 = 𝑘𝐺, where 𝑘 ∈𝑅 {1, …, 𝑛 − 1}
2. 𝑟 = 𝐻(𝑅 ‖ 𝑚)
3. 𝑠 = 𝑘 + 𝑟𝑑 mod 𝑛
4. 𝜎 = (𝑅, 𝑠)

𝐕𝐫𝐟𝗽𝗸(𝒎, (𝑹, 𝒔)):

1. 𝑟 = 𝐻(𝑅 ‖ 𝑚)
2. verify that 𝑠𝐺 − 𝑟𝑄 = 𝑅

(Bitcoin: 𝑟 = 𝐻(𝑅𝑥 ‖ 𝑄𝑥 ‖ 𝑚))

– the verification equation is linear ↦ batch verification (verify multiple signatures)

▫︎ (𝑚𝑖 , (𝑅𝑖 , 𝑠𝑖)) for public keys 𝑄𝑖  (for 𝑖 = 1, …, 𝑡)

▫︎ verification: (∑𝑖 𝑎𝑖𝑠𝑖) ⋅ 𝐺 − (∑𝑖 𝑎𝑖𝑟𝑖 ⋅ 𝑄𝑖) = ∑𝑖 𝑎𝑖𝑅𝑖 , for 𝑎𝑖 ∈𝑅 {1, …, 𝑛 − 1}
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EdDSA



Edwards Curve Digital Signature Algorithm

– EdDSA (RFC 8032)

▫︎ deterministic variant of Schnorr 

signature scheme

▫︎ included in the FIPS 186-5 (Ed448 

and Ed25519)

– Ed25519: EdDSA with Curve25519 (in a 

different form) and SHA-512

▫︎ optimized for speed and security

– Simplified EdDSA – parameters:

▫︎ 𝐻 – hash function with 2𝑏-bit output

▫︎ 𝐺 – point that generates a subgroup 

of prime order 𝑛

Keys

– 𝑏-bit string 𝑘
– compute 𝐻(𝑘) = 𝒉 = (ℎ0, …, ℎ2𝑏−1)
– left half of 𝒉 is a scalar 𝑎 = 𝒉[0…𝑏 − 1]
– 𝐴 = 𝑎𝐺
– private key: 𝑘 (sometimes with 𝐴) or 𝑎 

with the right half 𝒉[𝑏…2𝑏 − 1]
– public key: 𝐴
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EdDSA – signing and verification

𝐒𝐢𝐠𝘀𝗸(𝒎):

1. 𝑟 = 𝐻(𝒉[𝑏…2𝑏 − 1] ‖ 𝑚)
2. 𝑅 = 𝑟𝐺
3. 𝑠 = 𝑟 + 𝐻(𝑅 ‖ 𝐴 ‖ 𝑚) ⋅ 𝑎 mod 𝑛
4. signature: (𝑅, 𝑠)

𝐕𝐫𝐟𝗽𝗸(𝒎, (𝑹, 𝒔)):

– verify that 𝑠𝐺 = 𝑅 + 𝐻(𝑅 ‖ 𝐴 ‖ 𝑚) ⋅ 𝐴

Correctness:

𝑠𝐺 = (𝑟 + 𝐻(𝑅 ‖ 𝐴 ‖ 𝑚) ⋅ 𝑎)𝐺 = 𝑟𝐺 + 𝐻(𝑅 ‖ 𝐴 ‖ 𝑚) ⋅ (𝑎𝐺) = 𝑅 + 𝐻(𝑅 ‖ 𝐴 ‖ 𝑚) ⋅ 𝐴
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Exercises

1. What problems do we avoid by checking 𝑟 ≠ 0 and 𝑠 ≠ 0 in ECDSA scheme?

2. Show that random message forgery is possible in ECDSA variant without 𝐻.

3. Find what digital signature algorithms are supported by your (or some) SSH server. 

Compare the sizes of private and public keys for at least 3 algorithms.

4. Show that batch verification can be tricked to accept set of invalid signatures, if 

coefficients 𝑎𝑖  are fixed (for example 𝑎𝑖 = 𝑖).

5. Is EdDSA linear similarly to the previously discussed variant of Schnorr’s scheme?

6. Double scalar multiplication of two points on elliptic curve: 𝑎𝑃 + 𝑏𝑄. Study and 

illustrate Shamir’s trick for 𝑎 = 23 and 𝑏 = 18. Compare with a straightforward 

computation of 𝑎𝑃 and 𝑏𝑄 using double-and-add method, and adding the results.
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