Signature schemes

Cryptology (1)

Martin Stanek

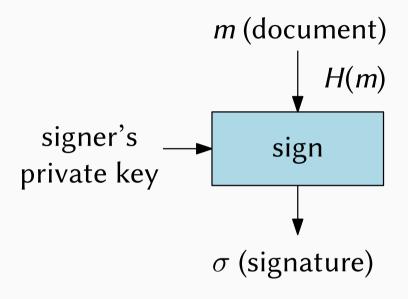
2025

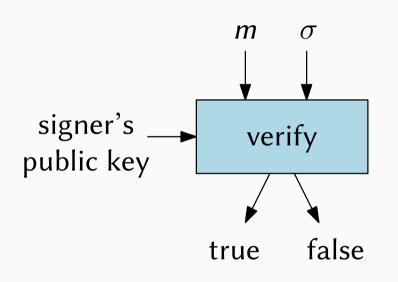
KI FMFI UK Bratislava

Introduction

- electronic signatures in legislation vs. digital signatures in cryptology
- objectives:
 - authenticity and integrity of signed data
 - non-repudiation of origin
 - (usually) universal verifiability, i.e., anyone can verify the signature
 - unforgeability, efficiency, etc.
- objectives impossible to satisfy by a digital signature scheme alone
 - PKI, laws etc. (out of the scope of this lecture)

Digital signature scheme





- asymmetric construction
 - private key signing
 - public key verification

Digital signature scheme – definition

- digital signature scheme: (Gen, Sig, Vrf)
- Gen PPT algorithm → public and private key pair (pk, sk)
- Sig deterministic or probabilistic PT algorithm, creates a signature for a message m and sk: $\sigma = \mathrm{Sig}_{\mathsf{sk}}(m)$
- Vrf usually deterministic PT algorithm;
 input: message, signature and signer's public key

$$\operatorname{Vrf}_{\mathsf{pk}}(m,\sigma) \in \{\mathsf{true},\mathsf{false}\}\$$

correctness of the scheme:

$$\forall (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^k) \ \forall m : \mathsf{Vrf}_{\mathsf{pk}}(m, \mathsf{Sig}_{\mathsf{sk}}(m)) = \mathsf{true}$$

Digital signature schemes – remarks

- schemes with appendix (the most common type) this lecture
 - original document needed for the signature verification
- schemes with message recovery (rarely used)
 - verification produces from a signature the original message and some additional data to verify its correctness
- reasons for using hash function in digital signature schemes
 - shorter, fixed-length data for signing
 - preventing certain attacks, for example random message forgery (see later)
- using h.f. \Rightarrow the security depends on h.f. properties, such as collision resistance

Security

- various possibilities; use the strongest definition
- idea similar to the security definition for MAC
- attacker has access to a public key
- EUF-CMA
 - CMA (chosen message attack) the attacker has access to $Sig_{sk}(\cdot)$ oracle
 - EUF (existential unforgeability) the attacker tries to create a message m (not previously queried) and a valid signature σ , such that $\mathrm{Vrf}_{\mathrm{pk}}(m,\sigma)=\mathrm{true}$
- scheme is EUF-CMA secure if the success probability of any PPT attacker is negligible
- stronger definition SUF-CMA (strong existential unforgeability ...)
 - as EUF-CME, but (m, σ') counts as a successful forgery if (m, σ') , as a pair, was not query and response previously

EUF-CMA definition

- signature scheme $\Pi = \langle Gen, Sig, Vrf \rangle$
- PPT attacker A with access to $Sig_{sk}(\cdot)$ oracle
 - let *Q* be the set of all queries

Sig-forge_{$$A,\Pi$$}(k):
 $(pk, sk) \leftarrow Gen(1^k)$
 $(m, \sigma) \leftarrow A^{Sig_{sk}(\cdot)}(pk)$
if $Vrf_{pk}(m, \sigma) = 1 \land m \notin Q$:
return 1
else: return 0

Definition. A signature scheme $\Pi = \langle \text{Gen, Sig, Vrf} \rangle$ is EUF-CMA, if for any PPT attacker A there exists a negligible function $\text{negl}(\cdot)$ such that:

$$\Pr[\operatorname{Sig-forge}_{A,\Pi}(k) = 1] \le \operatorname{negl}(k).$$

- more precisely, $(t(k), \varepsilon(k), q_S)$ -secure scheme, if for any attacker running in time t(k), and asking q_S oracle quaries

$$\Pr[\operatorname{Sig-forge}_{A,\Pi}(k) = 1] \le \varepsilon(k).$$

RSA signatures

RSA signature scheme (1st attempt)

- RSA instance/parameters as before:
 - public key: (e, n)
 - private key: d
 - all optimizations can be applied
- 1st attempt (without hashing):
 - Sig: $\sigma = m^d \mod n$
 - Vrf: $\sigma^e \mod n = m$?
 - correctness follows from the properties of RSA

Problems

- only for short messages
- random message forgery: for any $\sigma \in \mathbb{Z}_n$ $(\underbrace{\sigma^e \bmod n}_{m}, \sigma)$ is a valid pair
 - the attacker has no control over the message value
- another forgery (using homomorphic property of RSA): take two valid pairs $(m_1, \sigma_1), (m_2, \sigma_2),$ and produce $(m_1m_2 \mod n, \sigma_1\sigma_2 \mod n)$

RSA signature scheme (textbook version)

- 2nd attempt (with hashing):
 - Sig: $\sigma = H(m)^d \mod n$
 - Vrf: $\sigma^e \mod n = H(m)$?
- properties:
 - messages of arbitrary length
 - H is preimage resistant (infeasible to invert) ⇒ prevents random message forgery
- *H* should be collision resistant

- FDH (Full Domain Hash) signature scheme using H with image \mathbb{Z}_n
 - EUF-CMA secure in random oracle model (for H), assuming the hardness of the RSA problem
- H(m) usually shorter than n ⇒ padding for randomization and (sometimes) provable security

PKCS #1 v1.5

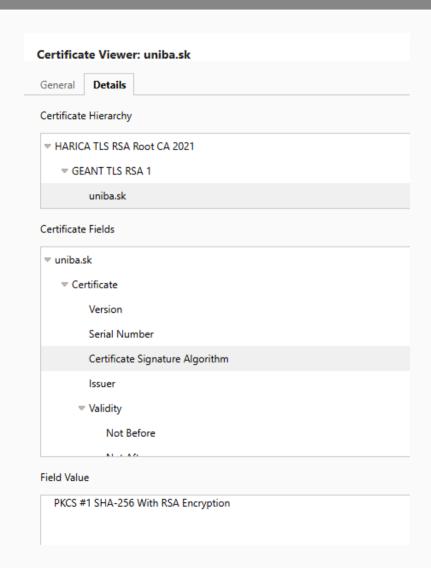
- construction standardized in 1998
- padded digest H(m):

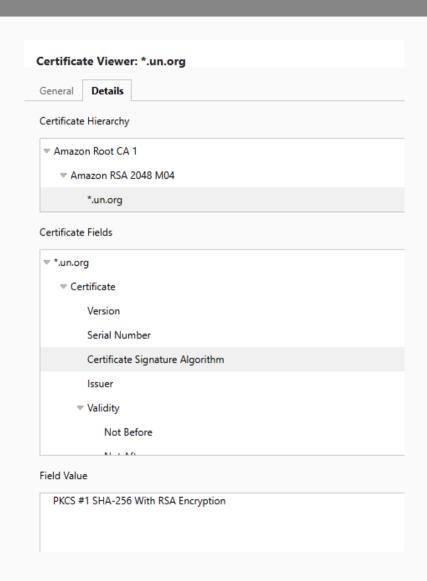
$$0x00 \parallel 0x01 \parallel 0xFF \parallel ... \parallel 0xFF \parallel 0x00 \parallel H(m)$$

"Moreover, while no attack is known against the EMSA-PKCS-v1_5 encoding method, a gradual transition to EMSA-PSS is recommended as a precaution against future developments." (RFC 8017)

- frequently used in practice, e.g. X.509 certificates:
 - "sha256RSA" or "PKCS #1 SHA-256 With RSA Encryption" signature algorithm
- proof of PKCS #1 v1.5 security (2018), EUF-CMA in RO model under the standard RSA assumption

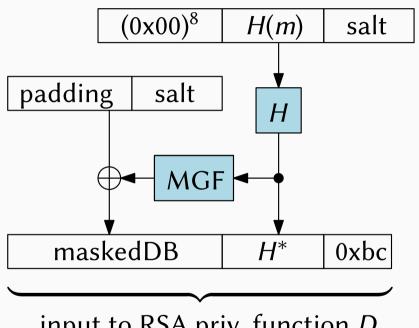
PKCS #1 v1.5 examples





RSA-PSS

- Probabilistic Signature Scheme, PKCS #1 v2.2 (RFC 8017)
- provable security in random oracle model
- salt sequence of random bytes
- padding = $0x00 \parallel ... \parallel 0x00 \parallel 0x01$
- MGF mask generation function (used in OAEP as well)



input to RSA priv. function *D*

RSA-PSS – verification

```
\operatorname{Vrf}_{\mathsf{pk}}(m,\sigma):
```

- 1. parse and verify: $\sigma^e \mod n \mapsto \text{maskedDB} \parallel H^* \parallel 0 \text{xbc}$
- 2. $DB = maskedDB \oplus MGF(H^*)$
- 3. parse and verify: DB \mapsto padding || salt
- 4. verify that $H^* = H((0x00)^8 || H(m) || \text{salt})$

the signature is correct if all verifications succeed

RSA-FDH security proof

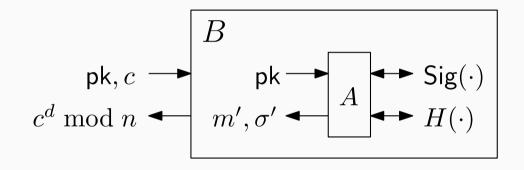
RSA-FDH is EUF-CMA

- RSA problem (inverting RSA): Given pk = (n, e) and $c \in_R \mathbb{Z}_n$, find $x \in \mathbb{Z}_n$: $x^e \equiv c \pmod{n}$.
- RSA assumption: $Pr[A(pk, c) = (c^d \mod n)]$ is negligible for any PPT algorithm A

Theorem. Let Π be a RSA-FDH signature scheme, H be a random oracle. Then Π is EUF-CMA if the RSA assumption holds.

RSA-FDH is EUF-CMA - proof (main idea)

- A is successful in Sig-forge with nonnegligible probability ε_A
 - let (m', σ') be the output of A
- we construct B that inverts RSA with non-negligible probability ε_B
 - input: $pk = (n, e), c \in_R \mathbb{Z}_n$
 - output: $m \in \mathbb{Z}_n$: $m^e \equiv c \pmod{n}$
- *B* simulates *A* with pk
- *B* must correctly simulate both oracles



Reduction from Sig-forge \mapsto RSA problem

Observations

- if A does not ask the oracle H(m'), then σ' is correct with negligible probability
- let q_H be the number of queries that A asked the H oracle
 - indirect queries through Sig_{sk} simulation count as well
- B guesses, what query (we denote it r) A asks for H(m')
 - probability of correct guess: $1/q_H$

H simulation

- *B* remembers all queries and responses
- query $H(m_i)$, for $i \neq r$:
 - 1. $\sigma_i \in_R \mathbb{Z}_n$
 - 2. define $H(m_i) \leftarrow \sigma_i^e \mod n$
 - 3. remember a triplet $(m_i, H(m_i), \sigma_i)$
- query $H(m_i)$, for i = r:
 - 1. define $H(m_i) \leftarrow c$
 - 2. remember a triplet $(m_i, H(m_i), _)$
- in both cases is the output, $H(m_i)$, uniformly distributed in \mathbb{Z}_n
 - exactly like a random oracle

Remarks:

- we have to provide a consistent answers (if we already simulated that query)
- duplicate queries with m_r
 - asked later
 - if m_r was used previously
- if there is a successful A, then there is equally successful A* not asking duplicate queries

Sig simulation

- $\operatorname{Sig}_{\operatorname{sk}}(m)$:
 - 1. if A has not queried H(m) yet, we simulate H and get $(m_i, H(m_i), \sigma_i)$, where $m_i = m$
 - 2. if $m = m_r$, then B ends with a failure
 - 3. output: σ_i
- signatures are consistent with answers in H simulation
- if both conditions are satisfied:
 - A is successful, i.e., A outputs (m', σ') : $(\sigma')^e \mod n = H(m')$, and
 - B guessed r correctly: $m' = m_r$,
 - then $(\sigma')^e \mod n = c$ and B solved RSA problem for c

RSA-FDH – conclusion

- if A is PPT, so is B
- *B*'s probability of success $\varepsilon_B \approx \varepsilon_A/q_H$ (or $\varepsilon_A \approx \varepsilon_B \cdot q_H$)
 - ε_B is non-negligible, if ε_A is non-negligible
- example:
 - let $q_H = 2^{50}$ and we want 128-bit security, i.e., $\varepsilon_A \approx 2^{-128}$ \Rightarrow $\varepsilon_B \approx 2^{-178}$
 - according RFC 3766 this corresponds to n with 6722 bits
- **tight reduction**: if $\varepsilon_B \approx \varepsilon_A$ (and time complexity as well)
 - for example RSA-PSS (Probabilistic Signature Scheme)
 - similarly to RSA-FDH in random oracle model
 - potential disadvantage: RNG is needed

ElGamal

ElGamal signature scheme

- T. ElGamal (1984)
- it is impossible to use ElGamal encryption scheme's algorithms for digital signatures
 - encryption is not a function (randomized ... a good thing)
 - very few schemes offer bijections like RSA
 - specific signature scheme must be designed

- initialization identical to encryption scheme: pk = (p, g, y), sk = x
 - $y = g^x \mod p$
 - let g be a generator of (\mathbb{Z}_p^*, \cdot)
 - scheme can be "rephrased" in other groups
- $-\operatorname{Sig}_{\mathsf{sk}}(m) = (r, s):$
 - 1. $k \in_R \mathbb{Z}_{p-1}$ such that gcd(k, p-1) = 1
 - $2. r = g^k \bmod p$
 - 3. $s = (H(m) xr) \cdot k^{-1} \mod (p-1)$

ElGamal signature scheme – verification and correctness

- $Vrf_{pk}(m, (r, s))$: the signature is correct if

$$1 \le r < p$$
 & $y^r \cdot r^s \equiv g^{H(m)} \pmod{p}$

- correctness
 - the first part is trivial
 - the second part: $y^r \cdot r^s \equiv g^{xr} \cdot g^{ks} \equiv g^{xr+ks} \equiv g^{H(m)} \pmod{p}$
- efficiency
 - Sig single modular exponentiation (can be precomputed)
 - Vrf 3 modular exponentiations
 - signature's length \approx a pair from $\mathbb{Z}_p \times \mathbb{Z}_{p-1}$

ElGamal – security (1)

- computing x from y is a discrete logarithm problem
- predictable (leaked) k results in private key compromise:

$$s = (H(m) - xr) \cdot k^{-1} \mod (p-1) \implies x = (H(m) - ks)r^{-1} \mod (p-1)$$

- Bleichenbacher's attack (1996)
 - forging signatures if g has only small factors and $g \mid (p-1)$
 - for example, g = 2 is a bad choice
 - Remark: for discrete logarithm problem all generators are equivalent

ElGamal – security (2)

- test $1 \le r < p$ is necessary; let us assume verification without the test:
 - let (r, s) be a signature for m: $g^{H(m)} \equiv y^r \cdot r^s \pmod{p}$
 - we compute a signature (r', s') for some $m' \neq m$
 - 1. $u = H(m') \cdot H(m)^{-1} \mod (p-1)$ (assuming that H(m) is coprime to p-1)

$$g^{H(m')} \equiv g^{H(m)u} \equiv y^{ur} \cdot r^{us} \pmod{p}$$

2. we set $s' = us \mod (p-1)$ and compute r' satisfying

$$r' \equiv ru \pmod{p-1}$$
$$r' \equiv r \pmod{p}$$

apply CRT; with overwhelming probability $r' \ge p$, otherwise u = 1 and we have a collision in $H: H(m') \equiv H(m) \pmod{p-1}$

ElGamal – security (3)

- reusing *k* (for two distinct messages):
 - $m_1, (r, s_1) \Rightarrow H(m_1) \equiv xr + ks_1 \pmod{p-1}$ $m_2, (r, s_2) \Rightarrow H(m_2) \equiv xr + ks_2 \pmod{p-1}$
 - we have $H(m_1) H(m_2) \equiv k(s_1 s_2) \pmod{p-1}$ (*)
 - let $d = \gcd(s_1 s_2, p 1)$
 - if d = 1 then $k = (H(m_1) H(m_2))(s_1 s_2)^{-1} \mod (p 1)$
 - otherwise we divide the equation (\star) by d, solve it mod (p-1)/d, and then test d candidates for k
 - knowing k we can easily find the private key x

ElGamal – security (4)

- random message forgery (when H is not used)
 - 1. $i, j \in_R \mathbb{Z}_{p-1}^*$
 - 2. $r = g^i \cdot y^j \mod p$
 - 3. $s = -r \cdot j^{-1} \mod (p-1)$
 - 4. $m = s \cdot i \mod (p-1)$
- correctness:

$$y^{r} \cdot r^{s} \equiv y^{r} \cdot g^{is} \cdot y^{js}$$
$$\equiv y^{r} \cdot g^{is} \cdot y^{-jrj^{-1}}$$
$$\equiv g^{is} \equiv g^{m} \pmod{p}$$

ECDSA

Elliptic Curve Digital Signature Algorithm

- FIPS 186-5 (2023) RSA, ECDSA, EdDSA
- usually with P-256 curve; Ethereum (curve secp256k1)
- 31% certificates use ECDSA (69% RSA), source: CT logs (November 2025)
- common parameters:
 - E an elliptic curve
 - $G \in E$ a subgroup generator of prime order n
- simplifying some details (conversions bitstring ↔ integer, etc.)

Initialization

- private key: $d ∈_R \{1, ..., n 1\}$
- public key: Q = dG

ECDSA – signing and verification

$Sig_{sk}(m)$:

- 1. $R = (r_x, r_y) = kG$, where $k \in_R \{1, ..., n-1\}$
- 2. $r = r_x \mod n$
- 3. $s = k^{-1}(H(m) + rd) \mod n$ *H* is a suitable hash function
- 4. if r = 0 or s = 0 then start again with step 1 (unlikely)
- 5. signature $\sigma = (r, s)$

ECDSA – signing and verification

$Sig_{sk}(m)$:

- 1. $R = (r_x, r_y) = kG$, where $k \in_R \{1, ..., n-1\}$
- 2. $r = r_x \mod n$
- 3. $s = k^{-1}(H(m) + rd) \mod n$ *H* is a suitable hash function
- 4. if r = 0 or s = 0 then start again with step 1 (unlikely)
- 5. signature $\sigma = (r, s)$

$\operatorname{Vrf}_{\mathsf{pk}}(m,(r,s))$:

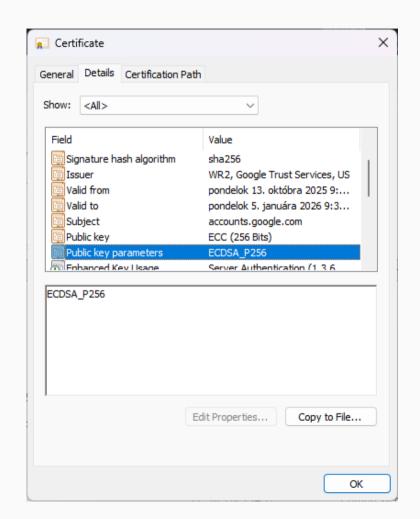
- 1. verify that $r, s \in \{1, ..., n-1\}$
- 2. $u = H(m) \cdot s^{-1} \mod n$ $v = r \cdot s^{-1} \mod n$
- 3. $R' = (r_x', r_y') = uG + vQ$
- 4. verify that $r'_x \mod n = r$

Correctness:

$$uG + vQ = H(m) \cdot s^{-1} \cdot G + r \cdot s^{-1} \cdot d \cdot G$$
$$= s^{-1} \cdot (H(m) + rd) \cdot G$$
$$= kG = R$$

ECDSA – remarks

- efficiency:
 - shorter signatures and faster then ElGamal's scheme
 - shorter keys and faster then DSA (the same scheme on modular group)
 - r can be precomputed
- *H* required to prevent random message forgery
- ECDSA: fixed curves and parameters are used
- EUF-CMA with DL assumption in ROM



ECDSA – security problems

- predictable/repeating k results in private key compromise
 - (2010) Sony PS3 ECDSA with constant k
 (2013) Android's Java SecureRandom with low entropy
 - deterministic variant can help
- various attacks when some/partial information about k is known
 - even less than 1 bit information
- malleable signatures: $(r, s) \mapsto (r, -s \mod n)$
 - verification $(u' = H(m) \cdot (-s)^{-1} \mod n = -u; v = r \cdot (-s)^{-1} \mod n = -v)$:

$$u'G + v'Q = -(uG + vQ) = -kG = (r_x, -r_y) \Rightarrow r_x \mod n = r$$

• Why does it matter? Bitcoin "transaction malleability" \rightarrow Mt. Gox collapse (2014)

ECDSA – deterministic variant

- k is computed deterministically from H(m) and the private key d
 - FIPS 186-5 prescribes a deterministic random bit generator based on HMAC
- protects again attack exploiting insufficient randomness in k

Schnorr

Schnorr signature scheme (on elliptic curve)

- simple construction, base for various other cryptographic schemes
- let us use the ECDSA-like
 parameters (any underlying group
 can be used):
 - $E, G \in E$, prime $n = \operatorname{ord}(G)$
 - private key: $d ∈_R \{1, ..., n 1\}$
 - public key: Q = dG
- hash function H with range \mathbb{Z}_n
- several slightly different variants

$\operatorname{Sig}_{\operatorname{sk}}(m)$:

- 1. R = kG, where $k \in_R \{1, ..., n-1\}$
- 2. $r = H(R \parallel m)$
- 3. $s = k + rd \mod n$
- 4. $\sigma = (r, s)$

$$\operatorname{Vrf}_{\mathsf{pk}}(m, (r, s)) : H(sG - rQ \parallel m) = r?$$

Correctness:

$$sG - rQ = (k + rd)G - (rd)G = R$$

Schnorr signature scheme – remarks

- EUF-CMA in ROM under the discrete logarithm assumption
- again: *k* must be unpredictable; deterministic variant can be constructed as well
- we can change the first component from r to R (or its x-coordinate):

- the verification equation is linear \mapsto batch verification (verify multiple signatures)
 - $(m_i, (R_i, s_i))$ for public keys Q_i (for i = 1, ..., t)
 - verification: $(\sum_i a_i s_i) \cdot G (\sum_i a_i r_i \cdot Q_i) = \sum_i a_i R_i$, for $a_i \in \{1, ..., n-1\}$

EdDSA

Edwards Curve Digital Signature Algorithm

- EdDSA (RFC 8032)
 - deterministic variant of Schnorr signature scheme
 - included in the FIPS 186-5 (Ed448 and Ed25519)
- Ed25519: EdDSA with Curve25519 (in a different form) and SHA-512
 - optimized for speed and security
- Simplified EdDSA parameters:
 - H hash function with 2b-bit output
 - □ G point that generates a subgroup of prime order n

Keys

- *b*-bit string *k*
- compute $H(k) = \mathbf{h} = (h_0, ..., h_{2b-1})$
- left half of **h** is a scalar a = h[0...b 1]
- -A = aG
- private key: k (sometimes with A) or a with the right half h[b...2b-1]
- public key: A

EdDSA – signing and verification

$\operatorname{Sig}_{\operatorname{sk}}(m)$:

$$\operatorname{Vrf}_{\mathsf{pk}}(m,(R,s))$$
:

1.
$$r = H(h[b...2b-1] \parallel m)$$

- verify that $sG = R + H(R \parallel A \parallel m) \cdot A$

- 2. R = rG
- 3. $s = r + H(R || A || m) \cdot a \mod n$
- 4. signature: (R, s)

Correctness:

$$sG = (r + H(R \parallel A \parallel m) \cdot a)G = rG + H(R \parallel A \parallel m) \cdot (aG) = R + H(R \parallel A \parallel m) \cdot A$$

Exercises

- 1. What problems do we avoid by checking $r \neq 0$ and $s \neq 0$ in ECDSA scheme?
- 2. Show that random message forgery is possible in ECDSA variant without H.
- 3. Find what digital signature algorithms are supported by your (or some) SSH server. Compare the sizes of private and public keys for at least 3 algorithms.
- 4. Show that batch verification can be tricked to accept set of invalid signatures, if coefficients a_i are fixed (for example $a_i = i$).
- 5. Is EdDSA linear similarly to the previously discussed variant of Schnorr's scheme?
- 6. Double scalar multiplication of two points on elliptic curve: aP + bQ. Study and illustrate Shamir's trick for a = 23 and b = 18. Compare with a straightforward computation of aP and bQ using double-and-add method, and adding the results.