Digital signature schemes

Martin Stanek
Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Introduction

digital signature scheme
security of digital signatures
RSA
textbook version
padding: PKCS \#1, PSS
ElGamal
Digital Signature Algorithm - DSA and ECDSA
Schnorr
EdDSA

Introduction

- "electronic signatures" in legislation
- "digital signatures" in cryptology
- objectives:
- authenticity and integrity of signed data
- non-repudiation of origin
- (usually) universal verifiability, i.e. anyone can verify the signature
- unforgeability, efficiency etc.
- objectives impossible to satisfy by a digital signature scheme alone
- PKI, laws etc. (out of the scope of this lecture)

Digital signature scheme (1)

- asymmetric construction
- private key - signing
- public key - verification

Digital signature scheme (2)

- digital signature scheme: (Gen, Sig, Vrf)
- Gen - PPT algorithm, produces public and private key pair (pk, sk)
- Sig - PPT algorithm, produces a signature from a message and signer's private key: $\sigma=\operatorname{Sig}_{\text {sk }}(m)$
- Vrf - usually deterministic PT algorithm; input: message, signature and signer's public key; $\operatorname{Vrf}_{\mathrm{pk}}(m, \sigma) \in\{$ true/OK, false $/ \times\}$
- correctness of the scheme:

$$
\forall(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{k}\right) \forall m: \operatorname{Vrf}_{\mathrm{pk}}\left(m, \operatorname{Sig}_{\text {sk }}(m)\right)=\operatorname{true}
$$

Digital signature schemes - remarks

- schemes with appendix
- the most common type
- original document needed for the signature verification
- schemes with message recovery
- verification produces from a signature the original message and some additional data to verify its correctness
- rarely used
- this lecture - schemes with appendix
- reasons for using hash function in digital signature schemes
- shorter, fixed-length data for signing
- preventing certain attacks, e.g. random message forgery (see later)
- using h.f. \Rightarrow the security depends on h.f. properties, e.g. collision resistance

Security of digital signatures

- various possibilities; as usual: use the strongest definition
- idea similar to MAC security
- attacker has access to a public key
- EUF-CMA
- CMA (chosen message attack) - the attacker has access to $\operatorname{Sig}_{\text {sk }}(\cdot)$ oracle
- EUF (existential unforgeability) - the attacker tries to create a message m (not previously queried) and a valid signature σ, i.e. $\operatorname{Vrf}_{\mathrm{pk}}(m, \sigma)=$ true
- scheme is EUF-CMA secure if the success probability of any PPT attacker is negligible

RSA signature scheme

- RSA instance/parameters as before:
- public key: (e, n)
- private key: d
- all optimizations can be applied
- 1st attempt (without hashing):
- Sig: $\sigma=m^{d} \bmod n$
- Vrf: $\sigma^{e} \bmod n=m$?
- correctness follows from the properties of RSA
- problems:
- only for short messages
- random message forgery: $(\underbrace{\sigma^{e} \bmod n}, \sigma)$ for $\sigma \in \mathbb{Z}_{n}$
m
the attacker has no control over the message value
- another forgery (using homomorphic property of RSA): take two valid pairs $\left(m_{1}, \sigma_{1}\right),\left(m_{2}, \sigma_{2}\right)$, and produce $\left(m_{1} m_{2} \bmod n, \sigma_{1} \sigma_{2} \bmod n\right)$

RSA signature scheme - standard "textbook" version

- 2nd attempt (with hashing):
- Sig: $\sigma=H(m)^{d} \bmod n$
- Vrf: $\sigma^{e} \bmod n=H(m)$?
- properties:
- messages of arbitrary length
- H is preimage resistant (infeasible to invert) \Rightarrow prevents random message forgery
- H should be collision resistant
- FDH (Full Domain Hash) signature scheme using H with image \mathbb{Z}_{n}
- EUF-CMA secure in random oracle model (for H), assuming the hardness of the RSA problem
- $H(m)$ usually shorter than $n \Rightarrow$ padding for randomization and (sometimes) provable security

PKCS \#1 v1.5

- construction standardized in 1998
- padded digest $H(m)$:

$$
0 x 00\|0 x 01\| 0 x f f\|\ldots\| 0 x f f\|0 x 00\| H(m)
$$

"Moreover, while no attack is known against the EMSA-PKCS-v1_5 encoding method, a gradual transition to EMSA-PSS is recommended as a precaution against future developments." (RFC 8017, 2016)

- frequently used in practice, e.g. X. 509 certificates:
- "sha256RSA" or "PKCS \#1 SHA-256 With RSA Encryption" signature algorithm
- proof of PKCS \#1 security (2018), EUF-CMA in RO model under the standard RSA assumption

PKCS \#1 v1.5 examples

Certificate Viewer: uniba.sk
General

Certificate Hierarchy
∇ USERTrust RSA Certification Authority
∇ GEANT OV RSA CA 4
uniba.sk

Certificate Fields

Version
Serial Number
Certificate Signature Algorithm
Issuer
∇ Validity

Field Value
PKCS \#1 SHA-384 With RSA Encryption

Certificate Viewer: www.nbu.gov.sk

General Details

Certificate Hierarchy

- ISRG Root X1
- R3
www.nbu.gov.sk

Certificate Fields
∇ www.nbu.gov.sk

- Certificate

Version
Serial Number
Certificate Signature Algorithm

Field Value

PKCS \#1 SHA-256 With RSA Encryption
Digital signatures$11 / 28$

RSA-PSS

- Probabilistic Signature Scheme, PKCS \#1 v2.2 (RFC 8017)
- provable security in random oracle model

- salt - sequence of random bytes
- padding $=0 \times 00\|\ldots\| 0 \times 00 \| 0 \times 01$
- MGF - mask generation function (used in OAEP as well)

RSA-PSS - verify

$\operatorname{Vrf}_{p k}(m, \sigma)$:

1. parse and verify: $\sigma^{e} \bmod n \mapsto$ maskedDB $\left\|H^{*}\right\| 0 x b c$
2. $\mathrm{DB}=$ maskedDB $\oplus \operatorname{MGF}\left(H^{*}\right)$
3. parse and verify: $\mathrm{DB} \mapsto$ padding $\|$ salt
4. verify that $H^{*}=H\left((0 \times 00)^{8}\|H(m)\|\right.$ salt $)$
the signature is correct if all verifications succeed

ElGamal signature scheme

- T. ElGamal (1984)
- it is impossible to use ElGamal encryption scheme's algorithms for digital signatures
- encryption is not a function (randomized a good thing)
- very few schemes offer bijections like RSA
- specific signature scheme must be designed
- initialization identical to encryption scheme: $\mathrm{pk}=(p, g, y), \mathrm{sk}=x$
- $y=g^{x} \bmod p$
- let g be a generator of $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
- scheme can be "rephrased" in other groups
- $\operatorname{Sig}_{\mathrm{sk}}(m)=(r, s)$:

1. $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}$ such that $\operatorname{gcd}(k, p-1)=1$
2. $r=g^{k} \bmod p$
3. $s=(H(m)-x r) \cdot k^{-1} \bmod (p-1)$

ElGamal signature scheme - verification and correctness

- $\operatorname{Vrf}_{\mathrm{pk}}(m,(r, s))$: correct if

$$
1 \leq r<p \quad \& \quad y^{r} \cdot r^{s} \equiv g^{H(m)} \quad(\bmod p)
$$

- correctness:
- the first part is trivial
- the second part: $y^{r} \cdot r^{s} \equiv g^{x r} \cdot g^{k s} \equiv g^{x r+k s} \equiv g^{H(m)}(\bmod p)$
- efficiency
- Sig - single modular exponentiation (can be precomputed)
- Vrf - 3 modular exponentiations
- signature's length \sim a pair from $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$

ElGamal - security (1)

- computing x from y is a discrete logarithm problem
- predictable (leaked) k results in private key compromise:

$$
s=(H(m)-x r) \cdot k^{-1} \bmod (p-1) \quad \Rightarrow \quad x=(H(m)-k s) r^{-1} \bmod (p-1)
$$

ElGamal - security (1)

- computing x from y is a discrete logarithm problem
- predictable (leaked) k results in private key compromise:

$$
s=(H(m)-x r) \cdot k^{-1} \bmod (p-1) \quad \Rightarrow \quad x=(H(m)-k s) r^{-1} \bmod (p-1)
$$

- test $1 \leq r<p$ is necessary; let us assume verification without the test:
- let (r, s) be a signature for m, i.e. $g^{H(m)} \equiv y^{r} \cdot r^{s}(\bmod p)$
- we compute a signature (r^{\prime}, s^{\prime}) for some $m^{\prime} \neq m$

1. $u=H\left(m^{\prime}\right) \cdot H(m)^{-1} \bmod (p-1)($ assuming that $H(m)$ is coprime to $p-1)$

$$
g^{H\left(m^{\prime}\right)} \equiv g^{H(m) u} \equiv y^{u r} \cdot r^{u s} \quad(\bmod p)
$$

2. we set $s^{\prime}=u s \bmod (p-1)$ and compute r^{\prime} satisfying

$$
\begin{aligned}
r^{\prime} & \equiv r u \quad(\bmod p-1) \\
r^{\prime} & \equiv r \quad(\bmod p)
\end{aligned}
$$

- apply CRT; with overwhelming probability $r^{\prime} \geq p$, otherwise $u=1$ and we have a collision in $H: H\left(m^{\prime}\right) \equiv H(m)(\bmod p-1)$

ElGamal - security (2)

- Bleichenbacher's attack (1996)
- forging signatures if g has only small factors and $g \mid(p-1)$
- e.g. $g=2$ is a bad choice
- Remark: for discrete logarithm problem all generators are equivalent

ElGamal - security (2)

- Bleichenbacher's attack (1996)
- forging signatures if g has only small factors and $g \mid(p-1)$
- e.g. $g=2$ is a bad choice
- Remark: for discrete logarithm problem all generators are equivalent
- reusing k (for two distinct messages):
- $m_{1},\left(r, s_{1}\right) \Rightarrow H\left(m_{1}\right) \equiv x r+k s_{1}(\bmod p-1)$ $m_{2},\left(r, s_{2}\right) \Rightarrow H\left(m_{2}\right) \equiv x r+k s_{2}(\bmod p-1)$
- we have $H\left(m_{1}\right)-H\left(m_{2}\right) \equiv k\left(s_{1}-s_{2}\right)(\bmod p-1)$
- let $d=\operatorname{gcd}\left(s_{1}-s_{2}, p-1\right)$
- if $d=1$ then $k=\left(H\left(m_{1}\right)-H\left(m_{2}\right)\right)\left(s_{1}-s_{2}\right)^{-1} \bmod (p-1)$
- otherwise we divide the equation (\star) by d, solve it $\bmod (p-1) / d$, and then test d candidates for k
- having k we can easily find the private key x

ElGamal - security (3)

- random message forgery (when H is not used)

$$
\begin{aligned}
& \text { 1. } i, j \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}^{*} \\
& \text { 2. } r=g^{i} \cdot y^{j} \bmod p \\
& \text { 3. } s=-r \cdot j^{-1} \bmod (p-1) \\
& \text { 4. } m=s \cdot i \bmod (p-1)
\end{aligned}
$$

correctness:

$$
\begin{aligned}
y^{r} \cdot r^{s} & \equiv y^{r} \cdot g^{i s} \cdot y^{j s} \\
& \equiv y^{r} \cdot g^{i s} \cdot y^{-j r j^{-1}} \\
& \equiv g^{i s} \equiv g^{m} \quad(\bmod p)
\end{aligned}
$$

Digital Signature Algorithm (DSA)

- removed from FIPS 186-5 (2023) - RSA, ECDSA, EdDSA
- other alternatives available, e.g. ECDSA is faster, with shorter keys
- initialization:

1. generate primes p, q (e.g. $|p|=2048,|q|=256)$ such that $q \mid(p-1)$
2. generate $h \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}$ such that $g=h^{(p-1) / q}>1$ g is a subgroup generator (order q) public domain parameters: (p, q, g)
3. private key: $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
4. public key: $y=g^{x} \bmod p$

DSA - signing and verification

- $\operatorname{Sig}_{\mathrm{sk}}(m)$:

1. $r=g^{k} \bmod p \bmod q$, where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
2. $s=k^{-1}(H(m)+x r) \bmod q$
3. if $r=0$ or $s=0$ start again with step 1 (extremely unlikely)
4. $\sigma=(r, s)$

DSA - signing and verification

- $\operatorname{Sig}_{\mathrm{sk}}(m)$:

1. $r=g^{k} \bmod p \bmod q$, where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
2. $s=k^{-1}(H(m)+x r) \bmod q$
3. if $r=0$ or $s=0$ start again with step 1 (extremely unlikely)
4. $\sigma=(r, s)$

- $\operatorname{Vrf}_{\mathrm{pk}}(m,(r, s))$:

1. verify that $r, s \in \mathbb{Z}_{q}^{*}$
2. $u_{1}=H(m) \cdot s^{-1} \bmod q$

$$
u_{2}=r \cdot s^{-1} \bmod q
$$

3. verify that $\left(g^{u_{1}} \cdot y^{u_{2}} \bmod p\right) \bmod q=r$

DSA - signing and verification

- $\operatorname{Sig}_{\mathrm{sk}}(m)$:

1. $r=g^{k} \bmod p \bmod q$, where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
2. $s=k^{-1}(H(m)+x r) \bmod q$
3. if $r=0$ or $s=0$ start again with step 1 (extremely unlikely)
4. $\sigma=(r, s)$

- $\operatorname{Vrf}_{\mathrm{pk}}(m,(r, s))$:

1. verify that $r, s \in \mathbb{Z}_{q}^{*}$
2. $u_{1}=H(m) \cdot s^{-1} \bmod q$

$$
u_{2}=r \cdot s^{-1} \bmod q
$$

3. verify that $\left(g^{u_{1}} \cdot y^{u_{2}} \bmod p\right) \bmod q=r$

- correctness:

$$
\begin{aligned}
&\left(g^{u_{1}} \cdot y^{u_{2}}\right.\bmod p) \bmod q=g^{H(m) s^{-1}+x r s^{-1}} \bmod p \bmod q \\
& \quad=g^{s^{-1}(H(m)+x r)} \bmod p \bmod q=g^{k} \bmod p \bmod q=r
\end{aligned}
$$

DSA - remarks

- if $r=0$ then the signature does not depend on x
- if $s=0$ then $s^{-1} \bmod q$ does not exist
- efficiency: shorter signatures (comparing to ElGamal's), faster than ElGamal (shorter exponents), r can be precomputed
- H required to prevent random message forgery (try yourself)
- the parameters p, q and g can be shared
- rare for DSA; ensure that parameters are not maliciously prepared
- verifiable procedure for generating the parameters (part of the standard)
- ECDSA: fixed curves and parameters are used (approved)

ECDSA

- point G - generator of subgroup of prime order n
- private key: $d \stackrel{\$}{\leftarrow} \mathbb{Z}_{n}^{*}$; public key: $Q=d G$ and domain parameters
- simplifying some details (e.g. conversions bitstring \leftrightarrow integer)
- $\operatorname{Sig}_{\mathrm{sk}}(m)$:

1. $(x, y)=k G$, where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{n}^{*}$
2. $r=x \bmod n$
3. $s=k^{-1}(H(m)+d r) \bmod n$
4. if $r=0$ or $s=0$ start again with step 1 (extremely unlikely)
5. $\sigma=(r, s)$

- $\operatorname{Vrf}_{\mathrm{pk}}(m,(r, s))$:

1. verify that $r, s \in \mathbb{Z}_{n}^{*}$
2. $u_{1}=H(m) \cdot s^{-1} \bmod n$

$$
u_{2}=r \cdot s^{-1} \bmod n
$$

3. $(x, y)=X=u_{1} G+u_{2} Q \quad$ (if $X=0$ reject)
4. accept iff $x \bmod n=r$

- correctness - obvious

ECDSA - remarks

- shorted keys and faster (comparing to DSA)
- somewhat popular (usually with P-256 curve), 12% according to the CT logs
- used with Bitcoin (curve Secp256k1)

DSA/ECDSA - problems with k

- predictable/repeating k results in private key compromise
- sometimes it hurts: (2010) Sony PS3 ECDSA with constant k, (2013) Android's Java SecureRandom with low entropy
- variant with deterministic (EC)DSA proposed in RFC 6979
- various attacks when some additional information about k is known, for example (Faugère et al., 2012):
- assumption: known messages and signatures, such that k-values share some common bits (the bits themselves are unknown to the attacker)
- works for both DSA and ECDSA
- concrete results for 160-bit q : 100 signed messages with shared 4 LSBs ... 100% probability of success 200 signed messages with shared 3 LSBs ... 100% probability of success 400 signed messages with shared 1 LSBs ... 90% probability of success

Schnorr signature scheme

- simple construction, base for other schemes
- let us use the DSA's parameters (any underlying group can be used):
- public domain parameters: (p, q, g)
- g is a generator of some subgroup (order q)
- private key: $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
- public key: $y=g^{x} \bmod p$
- hash function H with image \mathbb{Z}_{q}
- $\operatorname{Sig}_{\mathrm{sk}}(m)$:

1. $r=H\left(m \| g^{k} \bmod p\right)$, where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
2. $s=k+x r \bmod q$
3. $\sigma=(r, s)$

Schnorr signature scheme

- simple construction, base for other schemes
- let us use the DSA's parameters (any underlying group can be used):
- public domain parameters: (p, q, g)
- g is a generator of some subgroup (order q)
- private key: $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
- public key: $y=g^{x} \bmod p$
- hash function H with image \mathbb{Z}_{q}
- $\operatorname{Sig}_{\mathrm{sk}}(m)$:

1. $r=H\left(m \| g^{k} \bmod p\right)$, where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{*}$
2. $s=k+x r \bmod q$
3. $\sigma=(r, s)$
$-\operatorname{Vrf}_{p k}(m,(r, s))=$ true $\Leftrightarrow H\left(m \| g^{s} \cdot y^{-r} \bmod p\right)=r$

- correctness: $g^{s} \cdot y^{-r} \equiv g^{k+x r} \cdot g^{-x r} \equiv g^{k}(\bmod p)$

Schnorr signature scheme - security

- EUF-CMA in ROM under the discrete logarithm assumption
- again: k must be unpredictable

EdDSA

- EdDSA (Edwards Curve Digital Signature Algorithm, RFC 8032)
- deterministic variant of Schnorr signature scheme
- included in the FIPS 186-5 (Ed448 and Ed25519)
- Ed25519 ~ EdDSA with Curve25519 (in a different form) and SHA-512
- optimized for speed and security
- Simplified EdDSA - parameters:
- H - hash function with $2 b$-bit output
- B - point on elliptic curve, that generates a subgroup of prime order l
- Keys:
-b-bit string k
- compute $H(k)=\mathbf{h}=\left(h_{0}, \ldots, h_{2 b-1}\right)$
- left half of \mathbf{h} is a scalar $a=\mathbf{h}[0 \ldots b-1]$
- $A=a B$
- private key: k (sometimes with A) or a with the right half $\mathbf{h}[b \ldots 2 b-1]$
- public key: A

EdDSA - signing and verification

- Signing a message m :

1. $r=H(\mathbf{h}[b \ldots 2 b-1], m)$
2. $R=r B$
3. $s=r+H(R, A, m) \cdot a \bmod l$
4. signature: (R, s)

- Verification of (R, s) for m :
- check if $s B=R+H(R, A, m) \cdot A$
- correctness:

$$
s B=(r+H(R, A, m) \cdot a) B=r B+H(R, A, m) \cdot(a B)=R+H(R, A, m) \cdot A
$$

