
Hash-based Signatures
Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Introduction

– signature schemes resistant to quantum computers

▫︎ security is not based on hardness of factorization, discrete log etc.

▫︎ security based on properties of hash functions, such as preimage resistance, 2nd

preimage resistance, collision resistance

– we discuss some schemes and their limitations

▫︎ number of signing operations

▫︎ state

▫︎ key/signature length

1 / 37

One-time signatures

Lamport one-time signature scheme

– Lamport (1979)

– 𝑓 : 𝑋 → 𝑌 (for example a hash function)

– message/hash 𝑚 = 𝑚1…𝑚𝑛 ∈ {0, 1}𝑛

– private key: 𝑥𝑖,𝑗 ∈𝑅 𝑋
for 𝑖 = 1, …, 𝑛, and 𝑗 ∈ {0, 1}

– public key: 𝑦𝑖,𝑗 = 𝑓(𝑥𝑖,𝑗)

– signature 𝜎 = (𝑥1,𝑚1 , 𝑥2,𝑚2 , …, 𝑥𝑛,𝑚𝑛)

– verification of 𝜎 = (𝜎1, …, 𝜎𝑛) given 𝑚:

𝑓(𝜎𝑖) =? 𝑦𝑖,𝑚𝑖 ∀𝑖 = 1, …, 𝑛

Sizes (example)

– 256-bit hash function 𝑓 and 𝑛 = 256

– private key: 2 ⋅ 256 ⋅ 256 = 16 384 B

▫︎ assuming |𝑥𝑖,𝑗| = 256 bits

– public key: 16 384 B

– signature length: 8 192 B

– the scheme is fast

3 / 37

Lamport scheme – properties and remarks

One-time signature scheme

– signing two messages (if they differ in

more than one bit) ⇒ combine

signatures to forge signature for a new

message

– signing a hash does not help – signatures

of 𝑂(lg 𝑛) messages are enough to cover

0 and 1 on almost all hash positions

Shorter keys

– private key (seed)

▫︎ generate with PRNG or PRF

– public key (hash all values together)

▫︎ 𝑦 = 𝐻(𝑦1,0, 𝑦1,1, …, 𝑦𝑛,0, 𝑦𝑛,1)
▫︎ add values 𝑦𝑖,1−𝑚𝑖 to the signature

▫︎ 𝜎 is 2 times longer now

▫︎ verification:

compute 𝑦𝑖,𝑚𝑖 = 𝑓(𝑥𝑖,𝑚𝑖)
verify 𝑦 = 𝐻(𝑦1,0, 𝑦1,1, …, 𝑦𝑛,0, 𝑦𝑛,1)

4 / 37

Lamport scheme – improvement with a counter

– reducing the length of keys and

signatures by half (approximately)

– add ⌊lg 𝑛⌋ + 1 bits to the input, counting

the number of 0 bits: 𝑚′ = 𝑚 ‖ (#0𝑚)2

– let 𝑛′ = |𝑚′|

– private key: 𝑥𝑖 ∈𝑅 𝑋 for 𝑖 = 1, …, 𝑛′

– public key: 𝑦𝑖 = 𝑓(𝑥𝑖)

– signature is a sequence: 𝜎 = ⟨𝑥𝑖⟩𝑖∈𝐼 ,

for indices 𝐼 = {1 ≤ 𝑖 ≤ 𝑛′ | 𝑚′
𝑖 = 1}

– verification is obvious

Observation (why is this one-time

signature scheme secure):

– 𝑚′ contains at least one bit 1

– change from 0 to 1 in 𝑚 – corresponding

𝑥𝑖 is not in the signature

– change from 1 to 0 in 𝑚 – more zeroes,

hence at least one 0 changes to 1 in the

counter and corresponding 𝑥𝑖 is not in

the signature

5 / 37

Winternitz one-time signature scheme (WOTS)

– reducing signature length and increasing time complexity (TMTO)

– multiple variants – what function is used and how it is iterated

▫︎ example: 𝑘 → 𝐻(𝑘) → 𝐻2(𝑘) → … → 𝐻𝑤−1(𝑘)
▫︎ we use slightly more complex iteration (but the main idea is the same)

▫︎ impact on security assumptions (collision resistance vs. PRF)

▫︎ standard model (no ROM)

– key-dependent function 𝑓 : 𝑋 × 𝑋 → 𝑋 (like MAC), notation: 𝑓(𝑘, 𝑥) = 𝑓𝑘(𝑥)

– iterating 𝑓 for 𝑘 ∈ 𝑋 and 𝑥 ∈ 𝑋:

▫︎ 𝑓0
𝑘 (𝑥) = 𝑘 → 𝑓1

𝑘 (𝑥) = 𝑓𝑘(𝑥) → 𝑓2
𝑘(𝑥) = 𝑓𝑓𝑘(𝑥)(𝑥) → …

▫︎ for 𝑟 ≥ 1: 𝑓𝑟
𝑘 (𝑥) = 𝑓𝑓𝑟−1

𝑘 (𝑥)(𝑥)

6 / 37

WOTS – generalized checksum, keys and signature

– Winternitz parameter 𝑤 > 1
for example 𝑤 = 16

– 𝑤-ary representation of 𝑚:

𝑚 = (𝑚1, …, 𝑚𝑙1), where 0 ≤ 𝑚𝑖 < 𝑤

– checksum: 𝐶 = ∑𝑙1
𝑖=1(𝑤 − 1 − 𝑚𝑖)

– let 𝑙 = 𝑙1 + 𝑙2, where 𝑙2 is a max length of

𝐶 (𝑤-ary representation)

Keys

– private key: 𝑘1, …, 𝑘𝑙 ∈𝑅 𝑋
– public key: (𝑥, 𝑦1, …, 𝑦𝑙), where

▫︎ 𝑥 ∈𝑅 𝑋
▫︎ 𝑦𝑖 = 𝑓𝑤−1

𝑘𝑖
(𝑥), for 𝑖 = 1, …, 𝑙

𝐒𝐢𝐠𝘀𝗸(𝒎)

1. split into blocks: 𝑚 ‖ 𝐶 ↦ 𝑚1, …, 𝑚𝑙

2. signature

𝜎 = (𝜎1, …, 𝜎𝑙) = (𝑓𝑚1
𝑘1

(𝑥), …, 𝑓𝑚𝑙
𝑘𝑙

(𝑥))

𝐕𝐫𝐟𝗽𝗸(𝒎, 𝝈)

1. split into blocks: 𝑚 ‖ 𝐶 ↦ 𝑚1, …, 𝑚𝑙

2. verify

𝑓𝑤−1−𝑚𝑖
𝜎𝑖

(𝑥) =? 𝑦𝑖 , for 𝑖 = 1, …, 𝑙

7 / 37

WOTS – remarks

– correctness is trivial

– the scheme is insecure without the checksum:

▫︎ take 𝜎𝑖 for 𝑚𝑖 and for any 𝑚′
𝑖 > 𝑚𝑖 compute

𝜎′
𝑖 = 𝑓𝑚′

𝑖
𝑘𝑖

(𝑥) = 𝑓𝑚′
𝑖 −𝑚𝑖

𝜎𝑖
(𝑥)

▫︎ 𝜎′
𝑖 is a correct signature for 𝑖-th block 𝑚′

𝑖

▫︎ the checksum prevents these shifts

– still one-time scheme

8 / 37

WOTS – a sample parameters instantiation

– let 𝑋 = {0, 1}256, |𝑚| = 256, and 𝑤 = 16
▫︎ 𝑙1 = 256/4 = 64, 𝑙2 = ⌊lg(64 ⋅ 15)/4⌋ + 1 = 3 ⇒ 𝑙 = 67

– keys:

▫︎ private key: 𝑙 ⋅ 256 = 2 144 B

▫︎ public key: (𝑙 + 1) ⋅ 256 = 2 176 B

– signature: 𝑙 ⋅ 256 = 2 144 B

▫︎ approximately lg 𝑤 = 4 times shorter than the original Lamport scheme

– avg. speed – comparison with the original Lamport scheme

▫︎ signing: ≈ 𝑙 ⋅ 𝑤/2 calls of 𝑓 vs. 0
▫︎ verification: ≈ 𝑙 ⋅ 𝑤/2 calls of 𝑓 vs. |𝑚| calls (≈ 536 vs. 256)

• WOTS is ≈ 𝑤/(2 ⋅ lg 𝑤) times slower

9 / 37

WOTS+

– Hü lsing (2013)

– similar to WOTS, different iteration of 𝑓 ⇒ tighter security proof

▫︎ weaker or more standard security assumptions (𝑓 properties)

▫︎ WOTS+ as a replacement for WOTS in other schemes

– iteration of 𝑓 : 𝐾 × 𝑋 → 𝑋
▫︎ input: key 𝑘 ∈ 𝐾, 𝑥 ∈ 𝑋, counter 𝑖 ∈ ℕ, randomization values 𝒓 = (𝑟1, …, 𝑟𝑗) for 𝑗 ≥ 𝑖
▫︎ computation:

𝑐0
𝑘 (𝑥, 𝒓) = 𝑥

𝑐1
𝑘 (𝑥, 𝒓) = 𝑓𝑘(𝑐0

𝑘 (𝑥, 𝒓) ⊕ 𝑟1)
…

𝑐𝑖
𝑘(𝑥, 𝒓) = 𝑓𝑘(𝑐𝑖−1

𝑘 (𝑥, 𝒓) ⊕ 𝑟𝑖)

10 / 37

WOTS+ – keys, signature, and verification

– parameters 𝑤 and 𝑙 = 𝑙1 + 𝑙2 just like in

WOTS

– private key: 𝑥1, …, 𝑥𝑙 ∈𝑅 𝑋

– public key: ((𝒓, 𝑘), 𝑦1, …, 𝑦𝑙)
▫︎ 𝑘 ∈𝑅 𝐾
▫︎ 𝒓 = (𝑟1, …, 𝑟𝑤−1), where 𝑟𝑖 ∈𝑅 𝑋
▫︎ 𝑦𝑖 = 𝑐𝑤−1

𝑘 (𝑥𝑖 , 𝒓), for 𝑖 = 1, …, 𝑙

– checksum 𝐶 (just like in WOTS)

▫︎ the checksum ensures that for given

𝑚1, …, 𝑚𝑙 any other message contains

at least one 𝑚′
𝑗 < 𝑚𝑗 .

𝐒𝐢𝐠𝘀𝗸(𝒎)

1. split into blocks: 𝑚 ‖ 𝐶 ↦ 𝑚1, …, 𝑚𝑙

2. signature 𝜎 = (𝜎1, …, 𝜎𝑙) =
(𝑐𝑚1

𝑘 (𝑥1, 𝒓), …, 𝑐𝑚𝑙
𝑘 (𝑥𝑙 , 𝒓))

𝐕𝐫𝐟𝗽𝗸(𝒎, 𝝈)
1. split into blocks: 𝑚 ‖ 𝐶 ↦ 𝑚1, …, 𝑚𝑙
2. verify

𝑐𝑤−1−𝑚𝑖
𝑘 (𝜎𝑖 , 𝒓𝑚𝑖+1,𝑤−1) =? 𝑦𝑖 ∀𝑖 = 1, …, 𝑙

where 𝒓𝑚𝑖+1,𝑤−1 = (𝑟𝑚𝑖+1, …, 𝑟𝑤−1)

11 / 37

WOTS+ – remarks

– reducing the key length:

▫︎ all values 𝑦𝑖 in WOTS and WOTS+ are computed in verification, the public key can

be replaced by their hash

▫︎ 𝒓 can be generated from a seed (PRNG or PRF)

▫︎ similarly for values 𝑥1, …, 𝑥𝑙 in the private key

12 / 37

Multiple-time signatures

(with state)

Merkle hash tree

– Merkle (1979)

– signature scheme for a single message is impractical

– multiple one-time signature schemes

▫︎ combined together into one tree-like structure

– Merkle hash tree – many applications, e.g., file systems (ZFS), BitTorrent, Bitcoin, Git, …

– binary tree of hash values:

▫︎ input: data 𝑧0, …, 𝑧2ℎ−1, for ℎ ≥ 1 (we assume 2ℎ input data for simplicity)

▫︎ 𝐻 – hash function

▫︎ values in the leaf nodes: 𝐻(𝑧𝑖), for 𝑖 = 0, …, 2ℎ − 1
▫︎ value in an inner node 𝑣: 𝐻(𝑎 ‖ 𝑏),

where 𝑎 (or 𝑏) is the value of the left (or right) child of 𝑣

14 / 37

Example: Merkle hash tree for ℎ = 3

H(z0) H(z1)
α000 α001

α00 = H(α000 ||α001)

H(z2) H(z3)
α010 α011

α01 = H(α010 ||α011)

H(z4) H(z5)
α100 α101

α10 = H(α100 ||α101)

H(z6) H(z7)
α110 α111

α11 = H(α110 ||α111)

α0 = H(α00 ||α01) α1 = H(α10 ||α11)

α = H(α0 ||α1)

15 / 37

Merkle hash tree – authentication path

– authentication path for a given leaf:

▫︎ a sequence of sibling nodes values on the path to the root

▫︎ it allows to compute the root value from the leaf and additional ℎ values

H(z0) H(z1)
α000 α001

α00 = H(α000 ||α001)

H(z2) H(z3)
α010 α011

α01 = H(α010 ||α011)

H(z4) H(z5)
α100 α101

α10 = H(α100 ||α101)

H(z6) H(z7)
α110 α111

α11 = H(α110 ||α111)

α0 = H(α00 ||α01) α1 = H(α10 ||α11)

α = H(α0 ||α1)

authentication path for 𝛼010: auth(𝛼010) = (𝛼011, 𝛼00, 𝛼1)

16 / 37

Merkle Signature Scheme (MSS)

– leaf data – public keys of OTS schemes

– public key: root value of the Merkle hash tree

– private key:

▫︎ key for some (suitable) algorithm to generate OTS schemes

▫︎ alternatively a sequence of OTS schemes private keys

– we are able to sign up to 2ℎ messages:

▫︎ use OTS schemes sequentially one by one

▫︎ saved state – counter of already used OTS schemes

– a signature contains:

▫︎ signature using the next OTS scheme

▫︎ public key of this OTS scheme

▫︎ authentication path

17 / 37

MSS – verification

– input:

▫︎ MSS public key (root value)

▫︎ message

▫︎ signature in OTS scheme and its public key

▫︎ authentication path

– verification steps:

1. verify signature in OTS scheme

2. compute a root value (from public key and authentication path)

3. compare the root value with the public key of MSS

– security depends on properties of these elements:

▫︎ 𝐻 used in Merkle hash tree

▫︎ used OTS scheme

▫︎ cryptographic constructions used in generation of OTS schemes

18 / 37

MSS – remarks

– all OTS schemes and entire tree must be generated for MSS instantiation

▫︎ limit on ℎ (big trees are impractical), and therefore on the number of signatures

– authentication path computation:

▫︎ Merkle tree traversal – sequential computation of authentication paths

▫︎ possible in linear time and memory 𝑂(ℎ) (per authentication path)

– What if 2ℎ OTS schemes were used?

▫︎ generate a new instance (tree) and distribute public key

▫︎ use the last OTS scheme to sign a new tree

▫︎ create a sufficiently large instance such so this does not happen

– signatures are longer (authentication path) – ℎ hash values

▫︎ size of the tree impacts the length of the signature

19 / 37

MSS – remarks (2)

– if WOTS (WOTS+) is used in MSS

▫︎ public key of OTS scheme is computed from a signature (beside 𝑥 for WOTS or (𝒓, 𝑘)

for WOTS+)

▫︎ signature is shorter, this idea used, for example, in XMSS

– problem in MSS: no longer one-time scheme but now it is stateful

▫︎ important for security: avoid using one OTS scheme multiple times

▫︎ important for efficiency: authentication path computation

– state might be acceptable for some use cases

▫︎ for example CA signs certificates in HSM

– in general having state is undesirable and potential problem

▫︎ load-balancing, system recovery from backups (old state), etc.

20 / 37

XMSS (eXtended Merkle Signature Scheme)

– Buchmann, Dahmen, Hü lsing (2011)

– RFC 8391, NIST SP 800-208

– modification of Merkle hash tree

▫︎ xor masks when aggregating

▫︎ L-trees hanging in leaves – storing public keys for WOTS+ schemes (hashing public

key – useful in security proofs)

▫︎ assumption of second preimage resistance is sufficient, instead of collision

resistance

– masks (random string with suitable length)

▫︎ left and right masks chosen for each non-leaf height

21 / 37

XMSS tree

. . .

root of L-tree (for public key in WOTS+ scheme)

α010 α011

α01 = H(α010 ⊕ bl2 ||α011 ⊕ br2)

α0 = H(α00 ⊕ bl1 ||α01 ⊕ br1) α1 = H(α10 ⊕ bl1 ||α11 ⊕ br1)

α = H(α0 ⊕ bl0 ||α1 ⊕ br0)

.

(new set of masks, shared among all L-trees)

22 / 37

XMSS – remarks

– L-tree

▫︎ construction like XMSS tree (new independent masks, but same for each L-tree)

▫︎ leaves – public keys for WOTS scheme (𝑥, 𝑦1, …, 𝑦𝑙)
▫︎ not necessary a power of 2, but still binary tree

– still stateful

– example parameters (XMSS-SHA2_20_256, one of “required” in RFC 8391):

▫︎ ℎ = 20, capacity for 220 signatures

▫︎ 𝑤 = 16, SHA2-256

▫︎ signature size: 2 820 bytes

23 / 37

Few-time signatures

(without state)

HORS (Hash to Obtain Random Subset)

– reveal only a subset of private key values

for each signature

– hash function 𝐻 : {0, 1}∗ → {0, 1}𝑛

– preimage resistant function 𝑓 : 𝑋 → 𝑋,

similar to Lamport scheme

– parameters:

▫︎ 𝑘 – 𝐻(𝑚) is divided into 𝑘 chunks

ℎ0, …, ℎ𝑘−1, i.e., 𝑘 ∣ 𝑛
▫︎ 𝑎 = 𝑛/𝑘 (chunk length)

▫︎ 𝑡 = 2𝑎 – the number of private key

components

𝐆𝐞𝐧
– private key: 𝑥0, …, 𝑥𝑡−1 ∈𝑅 𝑋
– public key: 𝑦0, …, 𝑦𝑡−1, where 𝑦𝑖 = 𝑓(𝑥𝑖)

𝐒𝐢𝐠𝘀𝗸(𝒎)
1. split 𝐻(𝑚) ↦ ℎ0, ℎ1, …, ℎ𝑘−1
2. 𝜎 = (𝑥ℎ0 , 𝑥ℎ1 , …, 𝑥ℎ𝑘−1)

𝐕𝐫𝐟𝗽𝗸(𝒎, 𝝈)

1. let 𝜎 = (𝜎0, …, 𝜎𝑘−1)

2. split 𝐻(𝑚) ↦ ℎ0, ℎ1, …, ℎ𝑘−1

3. verify 𝑓(𝜎𝑖) =? 𝑦ℎ𝑖 ∀𝑖 = 0, …, 𝑘 − 1

25 / 37

HORS remarks

– sizes (let’s assume |𝑋| = 2256, 𝑛 = 256, 𝑘 = 16, 𝑡 = 2256/16 = 216):

▫︎ private key, public key: 𝑡𝑛 bits (2 097 152 bytes)

▫︎ signature: 𝑘𝑛 bits (512 bytes)

– What is the probability that after signing 𝑐 = 8 messages, all hash chunks for a

message 𝑚′ are presented in previous signatures?

Pr ≤ (
𝑐𝑘
𝑡

)
𝑘

= (
8 ⋅ 16

216)
16

= 2−144

▫︎ the probability increases with larger 𝑐, and multiple attempts to find 𝑚′

– HORST: fix unacceptable public key size

▫︎ combining HORS with a Merkle tree: leaves are the private key values 𝑥0, …, 𝑥𝑡−1
▫︎ public key is the root of the Merkle tree

▫︎ signature: 𝑘 signature leaves, together with their authentication paths

26 / 37

FORS (Forest of Random Subsets)

FORS is used in SPHINCS+ scheme,

improvement of HORST scheme

– better security, signature speed and size

(smaller parameters)

Setup:

– 𝑘 trees are used instead of 1
– 𝑘 sets of 𝑡 private key values, each set is

used to form a tree

– public key: a single hash value of root

nodes

– private key: pseudorandom seed

Signature:

– 𝑘 private key values with authentication

paths

– ℎ𝑖 selects private key value in the 𝑖-th

tree

Verification:

– compute root nodes (∗) of all trees and

verify the public key

(∗) using candidate public keys

computed from the signature, message

and authentication paths

27 / 37

Stateless schemes

Goldreich’s idea

– goals: no state in the scheme & sign large number of messages

– huge binary tree, for example ℎ = 256 (2256 leaves)

▫︎ every node represents an OTS scheme

▫︎ every scheme can be generated using private key and position of the node (PRF/

PRNG)

– private key: random bit string

– public key: public key of the OTS scheme in the root of the tree (𝑌)

29 / 37

Signing message 𝑚

1. 𝐻(𝑚) is an index to some leaf 𝛽 in the tree

2. compute keys for OTS schemes for all nodes (and their siblings) on path from 𝛽 to the

root (public keys 𝑌𝑙
ℎ, 𝑌𝑟

ℎ , …, 𝑌𝑙
1 , 𝑌𝑟

1)

3. sign 𝐻(𝑚) using OTS scheme for 𝛽 ↦ 𝜎𝑚

4. every sibling pair of public keys is signed by OTS scheme for their parent node,

obtaining signatures (𝜎0, 𝜎1, …, 𝜎ℎ−1), where 𝜎0 is the signature in the root

5. signature: 𝜎 = (𝜎𝑚, 𝜎0, …, 𝜎ℎ−1, 𝑌𝑙
1 , 𝑌𝑟

1 , …, 𝑌𝑙
ℎ, 𝑌𝑟

ℎ)

30 / 37

Verification

– input:

▫︎ message 𝑚 (or 𝐻(𝑚))

▫︎ public key for root OTS scheme 𝑌
▫︎ signature 𝜎 = (𝜎𝑚, 𝜎0, …, 𝜎ℎ−1, 𝑌𝑙

1 , 𝑌𝑟
1 , …, 𝑌𝑙

ℎ, 𝑌𝑟
ℎ)

– verification steps:

1. determine a leaf 𝛽 from 𝐻(𝑚)
2. verify signature 𝜎𝑚 using the correct 𝑌𝑙

ℎ or 𝑌𝑟
ℎ

3. verify certification path, i.e., signatures (𝜎0, …, 𝜎ℎ−1), using public keys from 𝜎 and

using public key 𝑌 for 𝜎0 verification

– state not needed, probability of collision is negligible

– signature in any node is always the same

▫︎ public keys of children are certified

▫︎ OTS scheme is sufficient

31 / 37

Stateless scheme optimizations (1)

– problem with the previous approach: very long signatures, not practical

– usually a combination of multiple techniques

– deterministic/pseudorandom leaf selection in the tree

– using few-time signature schemes instead of WOTS/WOTS+ in leaves

▫︎ HORS, HORST, FORS, etc.

▫︎ just for message signing

▫︎ secure signing of few messages

▫︎ smaller tree (less leaves)

– change the structure from a single huge tree to multiple levels of smaller Merkle trees

▫︎ the size of authentication path is smaller than the size of equally long (element-

wise) chain of one-time signatures

32 / 37

Hypertree

– multiple layers of small Merkle trees

– OTS: signing the roots of lower trees

– few-time signatures at the bottom

– randomized hashing of the message

(random selection of FTS scheme)

– all schemes (their private keys) are

derived from a seed

– limit the number of messages that can

be signed, for security estimates

Figure source:

D. Bernstein et al.: The SPHINCS+ Signature

Framework (2019)

33 / 37

PQC standardization

– SPHINCS+ if one of the three signature schemes selected for standardization

▫︎ FIPS 205 Stateless Hash-Based Digital Signature Standard (2024)

▫︎ SLH-DSA based on SHAKE or SHA2 hash functions

– NIST Third Round Status Report:

SPHINCS+ was selected for standardization because it provides a workable (albeit rather

large and slow) signature scheme whose security seems quite solid and is based on an

entirely different set of assumptions than those of our other signature schemes to be

standardized.

– SPHINCS+: hypertree, OTS: WOTS+, FTS: FORS

34 / 37

SLH-DSA parameters

Table source: NIST, FIPS 205 (2024)

– “s” variant optimized for size, “f” variant optimized for speed

– security category 1 means 128-bit security, with limit 264 signatures

– hypertree: 𝑑 layers, ℎ′ height of a single layer, ℎ = 𝑑 ⋅ ℎ′

– FORS parameters: 𝑎, 𝑘; WOTS+ parameter: 𝑤
– 𝑚 – the length of the message digest (in bytes)

35 / 37

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf

Conclusion

– hash-based signature schemes

▫︎ limited number of signatures

▫︎ simple principles, usually simple requirements/assumptions

▫︎ optimization aiming at practicality and weaker assumptions complicate

construction

36 / 37

Exercises

1. WOTS? simplifies calculation of 𝐶 in WOTS scheme in the following way: 𝐶 = ∑𝑙1
𝑖=1 𝑚𝑖 .

The rest of the scheme remains intact. Is this variant secure (explain why)?

2. Consider HORS scheme with: |𝑋| = 2256, 𝑛 = 256, 𝑘 = 16, 𝑡 = 2256/16 = 216. Implement

an experiment that answers the following question: How many signatures we need to

collect on average so we can produce a valid signature of some fixed message 𝑚′?

3. Calculate the size of signatures in Goldreich’s construction for ℎ = 256. Assume that

WOTS/WOTS+ is used for OTS with 𝑤 = 16 and SHA2-256.

37 / 37

	Introduction
	One-time signatures
	Lamport one-time signature scheme
	Lamport scheme – properties and remarks
	Lamport scheme – improvement with a counter
	Winternitz one-time signature scheme (WOTS)
	WOTS – generalized checksum, keys and signature
	WOTS – remarks
	WOTS – a sample parameters instantiation
	WOTS+
	WOTS+ – keys, signature, and verification
	WOTS+ – remarks

	Multiple-time signatures (with state)
	Merkle hash tree
	Example: Merkle hash tree for h=3
	Merkle hash tree – authentication path
	Merkle Signature Scheme (MSS)
	MSS – verification
	MSS – remarks
	MSS – remarks (2)
	XMSS (eXtended Merkle Signature Scheme)
	XMSS tree
	XMSS – remarks

	Few-time signatures (without state)
	HORS (Hash to Obtain Random Subset)
	HORS remarks
	FORS (Forest of Random Subsets)

	Stateless schemes
	Goldreich's idea
	Signing message m
	Verification
	Stateless scheme optimizations (1)
	Hypertree
	PQC standardization
	SLH-DSA parameters
	Conclusion
	Exercises

