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Motivation

– authenticate user/client using a password

– common scenario for authentication in web application:

▫︎ TLS: server authentication, secure channel

▫︎ username/password login form, server verifies submitted password

– some risks related to this approach:

▫︎ phishing attacks – login to fake web site

• attacker gets all authentication data (username, password)

• multi-factor authentication can mitigate the risk

▫︎ TLS might not be available

– PAKE – Password Authenticated Key Exchange (agreement)

Goal: (mutual) authentication of two or more parties and establishing session keys
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Passwords

– special type of shared secret

– easy to use

– potential problems: guessing (low entropy), brute-force attack

▫︎ limited length (“small” set of possible passwords)

▫︎ passwords from various dictionaries

▫︎ patterns/non-uniform selection of passwords
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Simple protocols



Simple authentication protocol

– challenge/response protocol

– notation: password 𝑃, hash function 𝐻

𝐶 𝑆

⟵ 𝑟 selects random 𝑟

𝑣 = 𝐻(𝑃, 𝑟) 𝐶, 𝑣 ⟶ 𝑣 =
?
𝐻(𝑃, 𝑟)

✓ password not transmitted in plaintext

× one way authentication (only 𝐶 is authenticated)

× attacker can accept any 𝑣 and continue the session with 𝐶
× MITM attack: attacker relays communication between 𝐶 and 𝑆
× no session key agreed in the protocol
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Simple key-agreement protocol

– Diffie-Hellman protocol (using a group where CDH is hard)

– notation: generator 𝑔

𝐶 𝑆

selects random 𝑎

𝐴 = 𝑔𝑎 𝐴 ⟶ selects random 𝑏

⟵ 𝐵 𝐵 = 𝑔𝑏

𝐾 = 𝐵𝑎 = 𝑔𝑎𝑏 𝐾 = 𝐴𝑏 = 𝑔𝑎𝑏

× MITM attack (cause: unauthenticated exchange of parameters)
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Simple AKE protocol

Goals: ✓ password never sent as a plaintext, ✓ authenticate both parties, ✓ agree on a 

session key, ✓ prevent MITM attack

𝐶 𝑆
selects random 𝑎, 𝑟𝐶

𝐴 = 𝑔𝑎 𝐶, 𝐴, 𝑟𝐶 ⟶ selects random 𝑏
⟵ 𝐵, 𝑟𝑆, 𝐸𝑃(𝐻(0,msg)) 𝐵 = 𝑔𝑏

verifies 𝐸𝑃(…)
𝐾 = 𝐵𝑎 = 𝑔𝑎𝑏 𝐸𝑃(𝐻(1,msg)) ⟶ verifies 𝐸𝑃(…)

𝐾 = 𝐴𝑏 = 𝑔𝑎𝑏

– notation: msg = 𝐶 ‖ 𝐴 ‖ 𝐵 ‖ 𝑟𝐶 ‖ 𝑟𝑆; 𝐻 is a hash function

– 𝐸𝑃 – symmetric cipher or MAC𝑃, key is derived from 𝑃

× offline dictionary attack – testing passwords offline using eavesdropped 

communication
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EKE and DH-EKE



EKE (Encrypted Key Exchange) – general description

– Bellovin, Merritt (1992)

– first PAKE protocol

✓ prevents offline dictionary attack (and achieves previous goals as well)

𝐶 𝑆
generates (𝗉𝗄𝐶 , 𝗌𝗄𝐶) 𝐶, 𝐸𝑃(𝗉𝗄𝐶) ⟶

⟵ 𝐸𝑃(𝐸𝗉𝗄𝐶(𝐾)) selects random 𝐾
decrypts 𝐾

selects random 𝑟𝐶 𝐸𝐾(𝑟𝐶) ⟶ decrypts 𝑟𝐶
verifies 𝑟𝐶 ⟵ 𝐸𝐾(𝑟𝐶 , 𝑟𝑆) select random 𝑟𝑆

𝐸𝐾(𝑟𝑆) ⟶ verifies 𝑟𝑆

– notation: (𝗉𝗄𝐶 , 𝗌𝗄𝐶) pair of keys for asymmetric encryption; 𝐸𝗉𝗄𝐶  public-key encryption, 

𝐸𝑝 symmetric encryption using a key derived from 𝑃; 𝐾 session key
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EKE remarks

– EKE is secure against offline dictionary attack, if all (or almost all) decryptions for 

distinct passwords yield

▫︎ valid public keys for message in the first step

▫︎ valid ciphertexts for message in the second step

– implementation problem – choosing suitable encryption schemes (symmetric and 

public-key)

– partition attack

▫︎ offline attack

▫︎ if decryption with 𝑃′ yield an incorrect/impossible public key, then 𝑃 ≠ 𝑃′

▫︎ example: RSA … 𝑛 with small factors, even 𝑒
▫︎ multiple runs of the protocol ⇒ password is uniquely determined

▫︎ 𝐸𝑃 should not leak information about 𝑃
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DH-EKE

– variant of EKE with DH protocol for key agreement

– only modular groups (!)

– this variant follows the original proposal (Bellovin, Merritt, 1992):

𝐶 𝑆
selects random 𝑎

𝐴 = 𝑔𝑎 𝐶, 𝐸𝑃(𝐴) ⟶ selects random 𝑏
𝐵 = 𝑔𝑏

𝐾 = 𝐴𝑏 = 𝑔𝑎𝑏

decrypts 𝑟𝑆 ⟵ 𝐸𝑃(𝐵), 𝐸𝐾(𝑟𝑆) selects random 𝑟𝑆
𝐾 = 𝐵𝑎 = 𝑔𝑎𝑏

selects random 𝑟𝐶 𝐸𝐾(𝑟𝐶 , 𝑟𝑆) ⟶ decrypts 𝑟𝐶
verifies 𝑟𝑆

verifies 𝑟𝐶 ⟵ 𝐸𝐾(𝑟𝐶)
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DH-EKE remarks

– more refined version of the protocol is EAP-EKE (RFC 6124):

▫︎ separate keys are derived for the protocol itself and for the session

▫︎ encryption with MAC used for messages containing nonces (here: 𝑟𝐶 , 𝑟𝑆)

▫︎ additional data are computed, using a key derived from the shared key and all 

messages up to given point – protects integrity of the negotiated parameters

▫︎ explicit requirements for groups: 𝑔 is a primitive element (generator) of the group; 

𝑝 is a “safe” prime, i.e., 𝑞 = 2𝑞′ + 1 (where 𝑞′ is a prime)

▫︎ explicit list of suitable groups and their generators

– what if 𝑔 is not a generator:

▫︎ decrypt 𝐸𝑃′(𝐴) and 𝐸𝑃′(𝐵) using password 𝑃′

▫︎ if a generator is obtained in any plaintext, then 𝑃′ is incorrect

– there is ≈ 50% generators in groups with safe prime modulus
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Problems with EKE (DH-EKE, EAP-EKE)

× server knows the password (plaintext)

⇒ successful attack on server results in compromised passwords

– passwords should be stored “salted” (best practice, recommendation)

▫︎ after a breach the offline dictionary attack is always possible – an attacker can test 

passwords by recomputing the stored value, or by simulating the server side of the 

protocol

▫︎ we don’t want to make it easier by storing plaintext passwords

– DH constructions are hard to translate to elliptic curves

▫︎ How to ensure that decryption with wrong password yields a point on elliptic 

curve?
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SRP



Secure Remote Password protocol (SRP)

– PAKE protocol, server does not store password in plaintext

▫︎ other properties are preserved (prevention of offline dictionary attack etc.)

– original proposal: Thomas Wu (1998)

– standardization:

▫︎ RFC 2945 (2000) version SRP-3

▫︎ using SRP-6 (2002) together with TLS: RFC 5054 (2007)

▫︎ IEEE P1363.2, ISO IEC 11770-4

– 1Password Security Design (2025):

We do not rely on traditional authentication mechanisms, but instead use Secure Remote 

Password (SRP) to avoid most of the problems of traditional authentication.

– Apple uses SRP in iCloud, according Apple Platform Security (2024):

The HSM cluster verifies that a user knows their iCloud Security Code using Secure 

Remote Password protocol (SRP); the code itself isn’t sent to Apple.
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Evolution of SRP: SRP-3

– protocol is slightly different in the RFC (we will follow the original proposal)

▫︎ explicit choice of random 𝑢 vs. derivation of 𝑢 from 𝐵
▫︎ construction of the first verification message 𝑀1

– calculation in GF(𝑛), where 𝑛 is a large prime

▫︎ both field operations are used (“+” and “⋅”)

– notation:

▫︎ 𝑔 – generator of (ℤ∗𝑛, ⋅)
▫︎ password 𝑃
▫︎ random salt 𝑠
▫︎ hash function 𝐻

– 𝑃 is stored on server as a verifier 𝑣 = 𝑔𝑥, where 𝑥 = 𝐻(𝑠, 𝑃)
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SRP-3 – protocol

𝐶 𝑆
selects random 𝑎

𝐴 = 𝑔𝑎 𝐶, 𝐴 ⟶ selects random 𝑏, 𝑢
⟵ 𝑠, 𝐵, 𝑢 𝐵 = 𝑣 + 𝑔𝑏

computes: computes:

𝑥 = 𝐻(𝑠, 𝑃) 𝑆 = (𝐴𝑣𝑢)𝑏

𝑆 = (𝐵 − 𝑔𝑥)𝑎+𝑢𝑥 𝐾 = 𝐻(𝑆)
𝐾 = 𝐻(𝑆)

𝑀1 = 𝐻(𝐴, 𝐵, 𝐾) 𝑀1 ⟶ verifies 𝑀1
verifies 𝑀2 ⟵ 𝑀2 𝑀2 = 𝐻(𝐴,𝑀1, 𝐾)
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SRP-3 – protocol

𝐶 𝑆
selects random 𝑎

𝐴 = 𝑔𝑎 𝐶, 𝐴 ⟶ selects random 𝑏, 𝑢
⟵ 𝑠, 𝐵, 𝑢 𝐵 = 𝑣 + 𝑔𝑏

computes: computes:

𝑥 = 𝐻(𝑠, 𝑃) 𝑆 = (𝐴𝑣𝑢)𝑏

𝑆 = (𝐵 − 𝑔𝑥)𝑎+𝑢𝑥 𝐾 = 𝐻(𝑆)
𝐾 = 𝐻(𝑆)

𝑀1 = 𝐻(𝐴, 𝐵, 𝐾) 𝑀1 ⟶ verifies 𝑀1
verifies 𝑀2 ⟵ 𝑀2 𝑀2 = 𝐻(𝐴,𝑀1, 𝐾)

– computation of shared secret 𝑆:

▫︎ client: (𝐵 − 𝑔𝑥)𝑎+𝑢𝑥 = (𝑔𝑥 + 𝑔𝑏 − 𝑔𝑥)
𝑎+𝑢𝑥

= 𝑔𝑎𝑏+𝑢𝑏𝑥

▫︎ server: (𝐴𝑣𝑢)𝑏 = (𝑔𝑎 ⋅ 𝑔𝑥𝑢)𝑏 = 𝑔𝑎𝑏+𝑢𝑏𝑥
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SRP-3 – security goals

– assumption: active attacker with ability to eavesdrop and manipulate transmitted data

– What are the security goals of SRP?

▫︎ confidentiality of 𝑃 and 𝑥
▫︎ confidentiality of 𝐾
▫︎ security against offline dictionary attack
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SRP-3 – Why 𝐵 depends on 𝑣?

– simpler alternative: 𝐵 = 𝑔𝑏, 𝐶 does not need to compute 𝑔𝑥, rest of the protocol intact

– attacker 𝐸 asks the server for 𝑠 and then impersonates the server

1. 𝐶 → 𝐸(𝑆): 𝐶, 𝐴 = 𝑔𝑎

2. 𝐸(𝑆) → 𝐶: 𝑠, 𝐵 = 𝑔𝑏, 𝑢, for randomly selected 𝑏, 𝑢
3. 𝐶 → 𝐸(𝑆): 𝑀1 = 𝐻(𝐴, 𝐵, 𝐾), where 𝑆 = 𝐵𝑎+𝑢𝑥 and 𝐾 = 𝐻(𝑆)

– now 𝐸 can perform this offline dictionary attack:

▫︎ 𝐸 computes 𝑥′, 𝑣′ for a password 𝑃′ and then 𝑆′ = (𝐴𝑣′ 𝑢)𝑏 and 𝐾′ = 𝐻(𝑆′)
▫︎ if 𝑃 = 𝑃′ then those values are equal to values computed by 𝐶
▫︎ 𝐸 verifies this with check 𝐻(𝐴, 𝐵, 𝐾′) =

?
𝑀1

– “+𝑣” prevents the attack – the attacker can’t use a single instance to test unlimited 

number of passwords (he must choose 𝑣′ that 𝐶 substracts)
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SRP-3 – remarks

– Why is 𝑢 random, instead of some constant?

▫︎ attacker 𝐸 can impersonate 𝐶
▫︎ assumptions: 𝐸 obtains 𝑣 and 𝑠 (knowing 𝑣 requires access to server’s data)

1. 𝐸(𝐶) → 𝑆: 𝐶, 𝐴 = 𝑔𝑎 ⋅ 𝑣−𝑢

2. 𝑆 → 𝐸(𝐶): 𝑠, 𝐵, where 𝐵 = 𝑣 + 𝑔𝑏

3. 𝐸 computes: 𝑆 = (𝐵 − 𝑣)𝑎 = 𝑔𝑎𝑏

𝑆 computes: 𝑆 = (𝐴 ⋅ 𝑣𝑢)𝑏 = (𝑔𝑎 ⋅ 𝑣−𝑢 ⋅ 𝑣𝑢)𝑏 = 𝑔𝑎𝑏

▫︎ therefore 𝑢 must be unpredictable (unknown till 𝐶 sends 𝐴)

– no proofs of security claims
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SRP-3 – Two-for-one password guessing attack

– neither 𝑥 nor 𝑣 are known to attacker

– online password guessing using interaction with 𝐶:

▫︎ attacker 𝐸 (knows 𝑠) guesses 𝑃′ and computes 𝑥′ = 𝐻(𝑠, 𝑃′), 𝑣′ = 𝑔𝑥
′

▫︎ 𝐸 impersonates the server using these values 𝑥′, 𝑣′

▫︎ if the protocol finishes successfully (𝑀1 is correct), then 𝑃′ is correct
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SRP-3 – Two-for-one password guessing attack

– neither 𝑥 nor 𝑣 are known to attacker

– online password guessing using interaction with 𝐶:

▫︎ attacker 𝐸 (knows 𝑠) guesses 𝑃′ and computes 𝑥′ = 𝐻(𝑠, 𝑃′), 𝑣′ = 𝑔𝑥
′

▫︎ 𝐸 impersonates the server using these values 𝑥′, 𝑣′

▫︎ if the protocol finishes successfully (𝑀1 is correct), then 𝑃′ is correct

– guessing two passwords simultaneously:

1. 𝐸 makes a guess 𝑃1, 𝑃2 and computes corresponding 𝑥1, 𝑥2 and 𝑣1, 𝑣2
2. 𝐶 → 𝐸(𝑆): 𝐶, 𝐴
3. 𝐸(𝑆) → 𝐶: 𝑠, 𝐵 = 𝑔𝑥1 + 𝑔𝑥2 , 𝑢
4. 𝐶 → 𝐸(𝑆): 𝑀1 = 𝐻(𝐴, 𝐵, 𝐾), where 𝐾 = 𝐻(𝑆) = 𝐻((𝐵 − 𝑔𝑥)𝑎+𝑢𝑥)
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SRP-3 – Two-for-one password guessing attack (cont.)

– value 𝑆 = (𝐵 − 𝑔𝑥)𝑎+𝑢𝑥 = (𝑔𝑥1 + 𝑔𝑥2 − 𝑔𝑥)𝑎+𝑢𝑥

▫︎ if 𝑃 = 𝑃1 (or 𝑃 = 𝑃2), then 𝐶 computes 𝑆1 = 𝑔𝑥2(𝑎+𝑢𝑥1) (or 𝑆2 = 𝑔𝑥1(𝑎+𝑢𝑥2))
▫︎ 𝐸 can compute 𝑆′1 = (𝐴 ⋅ 𝑣𝑢1 )

𝑥2  and 𝑆′2 = (𝐴 ⋅ 𝑣𝑢2 )
𝑥1

▫︎ if 𝑃 = 𝑃1: 𝑆′1 = (𝑔𝑎 ⋅ 𝑔𝑥1𝑢)𝑥2 = 𝑔𝑥2(𝑎+𝑢𝑥1) = 𝑆1
▫︎ if 𝑃 = 𝑃2: 𝑆′2 = (𝑔𝑎 ⋅ 𝑔𝑥2𝑢)𝑥1 = 𝑔𝑥1(𝑎+𝑢𝑥2) = 𝑆2
▫︎ 𝐸 can decide if any of those cases happened using 𝑀1

– 𝐸 does not have to choose 𝑢 in a special way, the attack works even if 𝑢 is computed as 

a truncated 𝐻(𝐵) (RFC 2945)
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SRP-6

– T. Wu (2002) – improved version SRP-6

– motivation for new version:

1. two-for-one attack (parameter 𝑘 used as a multiplication factor for 𝑣)

2. implementation issue with message order (when group parameters must be sent)

▫︎ 1 additional round required

▫︎ solution: parameters/group ID and 𝐵 sent before 𝐴
▫︎ 𝐴 sent together with 𝑀1

– parameter 𝑘
▫︎ SRP-6: 𝑘 = 3; SRP-6a: 𝑘 = 𝐻(𝑛, 𝑔)
▫︎ without knowledge of dlog𝑔𝑘 the two-for-one attack does not work

▫︎ computation 𝑘 = 𝐻(𝑛, 𝑔) makes harder malicious choice 𝑛, 𝑔, where the attacker 

knows dlog𝑔𝑘
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SRP-6 protocol (original message order)

𝐶 𝑆
selects random 𝑎

𝐴 = 𝑔𝑎 𝐶, 𝐴 ⟶ selects random 𝑏
⟵ 𝑠, 𝐵 𝐵 = 𝑘𝑣 + 𝑔𝑏

computes: computes:

𝑢 = 𝐻(𝐴, 𝐵) 𝑢 = 𝐻(𝐴, 𝐵)
𝑥 = 𝐻(𝑠, 𝑃) 𝑆 = (𝐴𝑣𝑢)𝑏

𝑆 = (𝐵 − 𝑘𝑔𝑥)𝑎+𝑢𝑥 𝐾 = 𝐻(𝑆)
𝐾 = 𝐻(𝑆)

– computation of shared secret 𝑆:

▫︎ client: (𝐵 − 𝑘𝑔𝑥)𝑎+𝑢𝑥 = (𝑘𝑔𝑥 + 𝑔𝑏 − 𝑘𝑔𝑥)
𝑎+𝑢𝑥

= 𝑔𝑎𝑏+𝑢𝑏𝑥

▫︎ server: (𝐴𝑣𝑢)𝑏 = (𝑔𝑎 ⋅ 𝑔𝑥𝑢)𝑏 = 𝑔𝑎𝑏+𝑢𝑏𝑥
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SRP-6 protocol (cont.)

– additional messages for verifying 𝐾 (equality on both ends):

𝐶 𝑆
𝑀1 = 𝐻(𝐻(𝑛)⊕𝐻(𝑔), 𝐻(𝐶), 𝑠, 𝐴, 𝐵, 𝐾) 𝑀1 ⟶ verifies 𝑀1

verifies 𝑀2 ⟵ 𝑀2 𝑀2 = 𝐻(𝐴,𝑀1, 𝐾)
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SRP remarks (1)

– 𝑆 send 𝑠 to anyone

▫︎ salt is not secret, however …

▫︎ knowing 𝑠 allows a pre-computation (before obtaining 𝑣), e.g., constructing TMTO 

tables ⇒ pre-computation attack

– protocol uses multiplication and addition

▫︎ group operation is not enough

▫︎ can’t be translated to elliptic curves (less efficient)

– specific requirements for 𝑛 and 𝑔 (“safe prime” and generator)

▫︎ direct use of some standardized parameters is not possible

▫︎ RFC 5054 defines specific 1024, 1536 a 2048-bit primes and generators

▫︎ larger primes are adopted from RFC 3526 (More Modular Exponential (MODP) 

Diffie-Hellman groups for Internet Key Exchange (IKE)), but with different 

generator 𝑔
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SRP remarks (2)

– What if 𝑔 is not a generator?

▫︎ 𝑔 generates a proper subgroup [𝑔] of (ℤ∗𝑛, ⋅)

▫︎ if for some 𝑃′ the value 𝐵 − 𝑣′ = 𝐵 − 𝑔𝐻(𝑠,𝑃
′) ∉ [𝑔], then 𝑃′ is not correct password 

⇒ partition attack
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Conclusion

– many PAKE protocols exist

– balanced PAKE protocols (both parties know the password):

▫︎ EKE, DH-EKE, Dragonfly (SAE), SPEKE, J-PAKE, …

– augmented, or asymmetric PAKE protocols (client/server)

▫︎ server does not store password-equivalent data, i.e., data that allow successful 

authentication as a client

▫︎ SRP, Augmented-EKE, B-SPEKE, OPAQUE, …

– the first protocol resistant to pre-computation attack: OPAQUE (2018)
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OPAQUE



OPAQUE

– PAKE secure against pre-computation attack

– main idea:

▫︎ combination of OPRF and AKE protocol, or

▫︎ combination of OPRF and PAKE protocol

▫︎ AKE and PAKE must have suitable properties (they can’t be arbitrary)

– OPRF (Oblivious Pseudorandom Function)

▫︎ pseudorandom function 𝐹𝑘(𝑥)
▫︎ OPRF is a protocol with two parties 𝐶 (input 𝑥) and 𝑆 (input 𝑘)

▫︎ 𝐶 learns 𝐹𝑘(𝑥) at the end, and nothing else

▫︎ 𝑆 learns nothing (in particular, nothing about 𝑥)
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Example: DH-OPRF

– 𝑙 – security parameter

– group 𝐺 of prime order 𝑞 (where |𝑞| = 𝑙)

– hash functions

𝐻′ : {0, 1}𝑙 → 𝐺
𝐻 with range {0, 1}𝑙

– PRF 𝐹 : ℤ𝑞 × {0, 1}𝑙 → {0, 1}𝑙:

𝐹𝑘(𝑥) = 𝐻(𝑥, 𝐻′(𝑥)𝑘)

OPRF protocol

1. 𝐶 → 𝑆: 𝑎 = 𝐻′(𝑥)𝑟 , for 𝑟 ∈𝑅 ℤ𝑞
2. 𝑆 → 𝐶: 𝑏 = 𝑎𝑘

3. 𝐶 computes 𝐻(𝑥, 𝑏1/𝑟)

– correctness:

𝑏1/𝑟 = (𝐻′(𝑥)𝑟)𝑘/𝑟 = 𝐻′(𝑥)𝑘

– security:

▫︎ ROM (for hash function) and “one 

more DH” assumption
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Idea: combining OPRF and PAKE

– 𝑆 stores 𝑘 and 𝐻(𝑅) for a client 𝐶

𝐶 𝑆
password 𝑃 ⟵ OPRF ⟶ 𝑘

output 𝑅 = 𝐹𝑘(𝑃)
𝑅 ⟵ PAKE ⟶ 𝐻(𝑅)

session key 𝐾 session key 𝐾

– pre-computation attack is impossible, since 𝑅 is random to the attacker

– attacker learns 𝑘 and 𝐻(𝑅) only after 𝑆 is compromised
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Idea: combining OPRF and AKE

– assumptions for AKE:

▫︎ 𝐶’s public/private key: 𝗉𝗄𝐶/𝗌𝗄𝐶
▫︎ 𝑆’s public/private key: 𝗉𝗄𝑆/𝗌𝗄𝑆

– AuthEnc – authenticated encryption 𝑐 = AuthEnc𝑅(𝗉𝗄𝐶 , 𝗌𝗄𝐶 , 𝗉𝗄𝑆)
▫︎ 𝑆 stores 𝑘, 𝑐, 𝗉𝗄𝐶  for 𝐶

𝐶 𝑆
password 𝑃 ⟵ OPRF ⟶ 𝑘

output 𝑅 = 𝐹𝑘(𝑃)
decrypts and verifies ⟵ 𝑐 𝑐

𝗉𝗄𝐶 , 𝗌𝗄𝐶 , 𝗉𝗄𝑆 ⟵ AKE ⟶ 𝗉𝗄𝑆, 𝗌𝗄𝑆, 𝗉𝗄𝐶
session key 𝐾 session key 𝐾
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AKE example – HMQV

– HMQV: variant of DH protocol with implicit authentication of 𝐾
– modifiable for arbitrary finite groups, such as elliptic curves

– multiple variants of MQV (Menezes-Qu-Vanstone) / HMQV (hash MQV)

– private and public key for participant 𝐴: 𝗉𝗄𝐴 = 𝑔𝗌𝗄𝐴

𝐶 𝑆
selects random 𝑥𝐶 𝑋𝐶 = 𝑔𝑥𝐶 ⟶

⟵ 𝑋𝑆 = 𝑔𝑥𝑆 selects random 𝑠𝑆
𝐾 = KE(𝗌𝗄𝐶 , 𝑥𝐶 , 𝗉𝗄𝑆, 𝑋𝑆) 𝐾 = KE(𝗌𝗄𝑆, 𝑥𝑆, 𝗉𝗄𝐶 , 𝑋𝐶)

session key 𝐾 session key 𝐾

Computation (parameters 𝑒𝐶 = 𝐻(𝑋𝐶 , 𝑆) and 𝑒𝑆 = 𝐻(𝑋𝑆, 𝐶)):

𝑈: KE(𝗌𝗄𝐶 , 𝑥𝐶 , 𝗉𝗄𝑆, 𝑋𝑆) = 𝐻((𝑋𝑆 ⋅ 𝗉𝗄
𝑒𝑆
𝑆 )𝑥𝐶+𝗌𝗄𝐶⋅𝑒𝐶) = 𝐻(𝑔(𝑥𝑆+𝗌𝗄𝑆⋅𝑒𝑆)(𝑥𝐶+𝑒𝐶⋅𝗌𝗄𝐶))

𝑆: KE(𝗌𝗄𝑆, 𝑥𝑆, 𝗉𝗄𝐶 , 𝑋𝐶) = 𝐻((𝑋𝐶 ⋅ 𝗉𝗄
𝑒𝐶
𝐶 )(𝑥𝑆+𝗌𝗄𝑆⋅𝑒𝑆}) = 𝐻(𝑔(𝑥𝐶+𝑒𝐶⋅𝗌𝗄𝐶)(𝑥𝑆+𝗌𝗄𝑆⋅𝑒𝑆))
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Remark – small group confinement

– potential problem in DH-like schemes or schemes with security related to DLOG

▫︎ unauthenticated data – group element

▫︎ existence of small subgroups

Example: DH protocol in (ℤ∗𝑝, ⋅) with 

generator 𝑔
– let 𝑤 ∣ (𝑝 − 1) be a small prime

– let 𝑘 = (𝑝 − 1)/𝑤
– attack:

1. 𝐴 → 𝐸(𝐵): 𝐴 = 𝑔𝑎

2. 𝐸(𝐴) → 𝐵: 𝐴𝑘

3. 𝐵 → 𝐸(𝐴): 𝐵 = 𝑔𝑏

4. 𝐸(𝐵) → 𝐴: 𝐵𝑘

– 𝐴 and 𝐵 compute shared secret 𝑔𝑘𝑎𝑏

– 𝐸 can find this secret searching in small 

subgroup [𝑔𝑘] (order 𝑤)

▫︎ (𝑔𝑘)𝑤 = 𝑔(𝑝−1)𝑤/𝑤 = 𝑔𝑝−1 = 1

– choose suitable groups and check 

parameters
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Exercises

1. Discuss all checks you can perform in EKE protocol when ElGamal on a modular group is 

used for asymmetric encryption.

2. SRP-3: What is wrong with this modification?

– use 𝐵 = 𝑣 ⋅ 𝑔𝑏 and 𝐶 computes 𝑆 = (𝐵/𝑔𝑥)𝑎+𝑢𝑥

– advantage: we work only in the group (ℤ∗𝑛, ⋅)
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