Password Authenticated Key Exchange
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

— authenticate user/client using a password

— common scenario for authentication in web application:
= TLS: server authentication, secure channel
= username/password login form, server verifies submitted password

— some risks related to this approach:
= phishing attacks - login to fake web site
e attacker gets all authentication data (username, password)
e multi-factor authentication can mitigate the risk
= TLS might not be available

- PAKE - Password Authenticated Key Exchange (agreement)

Goal: (mutual) authentication of two or more parties and establishing session keys

1/35

Passwords

— special type of shared secret
— easy to use

— potential problems: guessing (low entropy), brute-force attack
= limited length (“small” set of possible passwords)
= passwords from various dictionaries
= patterns/non-uniform selection of passwords

2 /35

Simple protocols

Simple authentication protocol

— challenge/response protocol

— notation: password P, hash function H

C S
— T selects random r
v=H(P,r1) cC,v — v;H(P,r)

v/ password not transmitted in plaintext

X one way authentication (only C is authenticated)

X attacker can accept any v and continue the session with C

X MITM attack: attacker relays communication between C and S
X no session key agreed in the protocol

4/35

Simple key-agreement protocol

— Diffie-Hellman protocol (using a group where CDH is hard)

— notation: generator g

C S
selects random a
A=g° A — selects random b
B B =g"
K = B = gab K = AP = gob

X MITM attack (cause: unauthenticated exchange of parameters)

5/35

Simple AKE protocol

Goals: v password never sent as a plaintext, v' authenticate both parties, v agree on a
session key, v' prevent MITM attack

C S
selects random a, 7
A=g° C,Are — selects random b
— B,7r5,Ep(H(0,msg)) B=g"
verifies Ep(...)
K = B* = gob Ep(H(1,msg)) — verifies Ep_)
K = Ab — gab

— notation:msg =C || A || B || ¢ || rs; H is a hash function
— Ep - symmetric cipher or MACp, key is derived from P

x offline dictionary attack - testing passwords offline using eavesdropped
communication

6 /35

EKE and DH-EKE

EKE (Encrypted Key Exchange) - general description

— Bellovin, Merritt (1992)
— first PAKE protocol

v prevents offline dictionary attack (and achieves previous goals as well)

C S
generates (pkg, sk¢) C,Er(pks) —
— Ep (Epkc (K)) selects random K
decrypts K
selects random 7 Ex(re) — decrypts 1
verifies 7, — Ex(re,1s) select random rg
Ex(rs) — verifies 7y

—- notation: (pk¢, sk¢) pair of keys for asymmetric encryption; Ey, . public-key encryption,
E,, symmetric encryption using a key derived from P; K session key

8 /35

EKE remarks

— EKE is secure against offline dictionary attack, if all (or almost all) decryptions for
distinct passwords yield
= valid public keys for message in the first step
= valid ciphertexts for message in the second step

— implementation problem - choosing suitable encryption schemes (symmetric and
public-key)

— partition attack

offline attack

if decryption with P’ yield an incorrect/impossible public key, then P # P’
example: RSA ... n with small factors, even e

multiple runs of the protocol = password is uniquely determined

Ep should not leak information about P

9/35

DH-EKE

— variant of EKE with DH protocol for key agreement
— only modular groups (!)

— this variant follows the original proposal (Bellovin, Merritt, 1992):

C S
selects random a
A=g° C,Ep(4) — selects random b
B = gb
K = Ab — gab
decrypts 75 «— Ep(B),Eg(rs) selects random rg
K = B% = gab
selects random 7 Ex(re,rg) — decrypts 1¢

verifies 7
verifies 7, — Ep(r¢)

10 / 35

DH-EKE remarks

- more refined version of the protocol is EAP-EKE (RFC 6124):

= separate keys are derived for the protocol itself and for the session

= encryption with MAC used for messages containing nonces (here: ¢, 75)

= additional data are computed, using a key derived from the shared key and all
messages up to given point - protects integrity of the negotiated parameters

= explicit requirements for groups: g is a primitive element (generator) of the group;
p is a “safe” prime, i.e,, g = 2q" + 1 (where q’ is a prime)

= explicit list of suitable groups and their generators

— whatif g is not a generator:
= decrypt Epr(A) and Ep/(B) using password P’
= if a generator is obtained in any plaintext, then P’ is incorrect

— there is = 50% generators in groups with safe prime modulus

11/35

Problems with EKE (DH-EKE, EAP-EKE)

X server knows the password (plaintext)
= successful attack on server results in compromised passwords

— passwords should be stored “salted” (best practice, recommendation)
= after a breach the offline dictionary attack is always possible - an attacker can test
passwords by recomputing the stored value, or by simulating the server side of the
protocol
= we don’t want to make it easier by storing plaintext passwords

— DH constructions are hard to translate to elliptic curves
= How to ensure that decryption with wrong password yields a point on elliptic
curve?

12 /35

SRP

Secure Remote Password protocol (SRP)

— PAKE protocol, server does not store password in plaintext
= other properties are preserved (prevention of offline dictionary attack etc.)

— original proposal: Thomas Wu (1998)

- standardization:
= RFC 2945 (2000) version SRP-3
= using SRP-6 (2002) together with TLS: RFC 5054 (2007)
= [EEE P1363.2,ISO IEC 11770-4

— 1Password Security Design (2025):
We do not rely on traditional authentication mechanisms, but instead use Secure Remote
Password (SRP) to avoid most of the problems of traditional authentication.

— Apple uses SRP in iCloud, according Apple Platform Security (2024):
The HSM cluster verifies that a user knows their iCloud Security Code using Secure
Remote Password protocol (SRP); the code itself isn’t sent to Apple.
14 /35

Evolution of SRP: SRP-3

— protocol is slightly different in the RFC (we will follow the original proposal)
= explicit choice of random u vs. derivation of u from B
= construction of the first verification message M,

— calculation in GF(n), where n is a large prime
= both field operations are used (“+” and “-")

— notation:
= g - generator of (Z;, -)
= password P
= random salt s
= hash function H

— P is stored on server as a verifier v = g*, where x = H(s, P)

15 /35

SRP-3 - protocol

C S
selects random a
A=g° CA — selects random b, u

— s,Bu B=v+g"

computes: computes:

x = H(s, P) S = (Av¥)?

S=(B-g0""" K = H(S)

K =H(S)

M; =H(A,B,K) M, — verifies M,

verifies M, — M, M, = H(A,M{,K)

16 / 35

SRP-3 - protocol

C S
selects random a
A=g° CA — selects random b, u

— s,Bu B=v+g"

computes: computes:

x = H(s, P) S = (Av¥)?

S=(B-g0""" K = H(S)

K =H(S)

M; =H(A,B,K) M, — verifies M,

verifies M, — M, M, = H(A,M{,K)

— computation of shared secret S:
= client: (B — g*)*™™* = (g"+g°-g

= server: (Av¥)” = (g% - gxu)b = gabtubx

x)a+ux ab+ubx

=4

16 / 35

SRP-3 - security goals

— assumption: active attacker with ability to eavesdrop and manipulate transmitted data

— What are the security goals of SRP?
= confidentiality of P and x
= confidentiality of K
= security against offline dictionary attack

17 / 35

SRP-3 - Why B depends on v?

— simpler alternative: B = g?, C does not need to compute g*, rest of the protocol intact

— attacker E asks the server for s and then impersonates the server
1. C > E(S):C,A = g“
2. E(S) - C:s,B = g”,u, for randomly selected b, u
3. C > E(S):M; =H(A,B,K), where S = B** and K = H(S)

- now FE can perform this offline dictionary attack:
= E computes x', v’ for a password P’ and then S’ = (Av’ “)b and K' = H(S")
= if P = P’ then those values are equal to values computed by C
= E verifies this with check H(4,B,K') = M,

- “4v” prevents the attack - the attacker can’t use a single instance to test unlimited
number of passwords (he must choose v’ that C substracts)

18 / 35

SRP-3 - remarks

- Why is u random, instead of some constant?

= attacker E can impersonate C

= assumptions: E obtains v and s (knowing v requires access to server’s data)
1. E(C) »S:C,A=g%-v7¢
2. S—> E(C):s,B,whereB =v + g°
3. E computes: S = (B — v)¢ = g%

S computes: S = (4 - v%)’ = (g - v~¥ -)’ = gab
= therefore u must be unpredictable (unknown till C sends A)

— no proofs of security claims

19 /35

SRP-3 - Two-for-one password guessing attack

— neither x nor v are known to attacker

— online password guessing using interaction with C:
= attacker E (knows s) guesses P’ and computes x’ = H(s,P'), v’ = gx'
= E impersonates the server using these values x’, v’
= if the protocol finishes successfully (M, is correct), then P’ is correct

20 /35

SRP-3 - Two-for-one password guessing attack

— neither x nor v are known to attacker

— online password guessing using interaction with C:
= attacker E (knows s) guesses P’ and computes x’ = H(s,P'), v’ = gx'
= E impersonates the server using these values x’, v’
= if the protocol finishes successfully (M, is correct), then P’ is correct

— guessing two passwords simultaneously:
1. E makes a guess P;, P, and computes corresponding x4, X, and v, v,
2. C>E(S):CA
3. E(§) > C:s,B=g*+g*2,u
4, C > E(S):M; = H(A,B,K), where K = H(S) = H((B — g¥)**%*)

20 /35

SRP-3 - Two-for-one password guessing attack (cont.)

- ValueS = (B — gx)a+ux —_ (,gxl + gxz . gx)a+ux
= if P = P; (or P = P,), then C computes S; = g*2(@+¥¥1) (or §, = g¥i(atuxa))
= E can compute S| = (4-v¥)? and Sj = (4 - v¥)™*
o lfP = Pl: S{ — (ga . gxlu)xz — gxz(a+ux1) — Sl
“ lfP = PZ: Sé = (ga J gxzu)xl —= gxl(a'l'uxZ) — SZ
= F can decide if any of those cases happened using M,

— E does not have to choose u in a special way, the attack works even if u is computed as
a truncated H(B) (RFC 2945)

21/ 35

SRP-6

— T.Wu (2002) - improved version SRP-6

— motivation for new version:
1. two-for-one attack (parameter k used as a multiplication factor for v)
2. implementation issue with message order (when group parameters must be sent)
= 1 additional round required
= solution: parameters/group ID and B sent before A
= A sent together with M,

— parameter k
= SRP-6: k = 3; SRP-6a: k = H(n, g)
= without knowledge of dlog,k the two-for-one attack does not work
= computation k = H(n, g) makes harder malicious choice n, g, where the attacker
knows dlog,k

22 /35

SRP-6 protocol (original message order)

C S
selects random a
A= g° CA — selects random b

— s,B B=kv+gP

computes: computes:
uw = H(A,B) uw = H(A,B)

x = H(s, P) S = (4v*)”

S = (B —kg*)*™* K = H(S)

K =H(S)

— computation of shared secret S: .
= client: (B — kgx)a+ux — (kgx + gb — kgx)a ux _ gabtubx
= Server: (Avu)b = (g% - gxu)b = gabtubx

23 /35

SRP-6 protocol (cont.)

— additional messages for verifying K (equality on both ends):

C S
M, =HHMm)®H(g),H(C),s, A, B,K) M, — verifies M,
verifies M, — M, M, = H(A,M{,K)

24 /35

SRP remarks (1)

- S send s to anyone
= saltis not secret, however ...
= knowing s allows a pre-computation (before obtaining v), e.g., constructing TMTO
tables = pre-computation attack

— protocol uses multiplication and addition
= group operation is not enough
= can’t be translated to elliptic curves (less efficient)

— specific requirements for n and g (“safe prime” and generator)
= direct use of some standardized parameters is not possible
= RFC 5054 defines specific 1024, 1536 a 2048-bit primes and generators
= larger primes are adopted from RFC 3526 (More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE)), but with different
generator g

25 /35

SRP remarks (2)

- What if g is not a generator?
= g generates a proper subgroup [g] of (Z;,,)

= if for some P’ thevalue B —v' = B — gH(S’P’) & [g], then P’ is not correct password
= partition attack

26 /35

Conclusion

- many PAKE protocols exist

— balanced PAKE protocols (both parties know the password):
= EKE, DH-EKE, Dragonfly (SAE), SPEKE,]J-PAKE, ...

- augmented, or asymmetric PAKE protocols (client/server)
= server does not store password-equivalent data, i.e., data that allow successful

authentication as a client
= SRP, Augmented-EKE, B-SPEKE, OPAQUIE, ...

— the first protocol resistant to pre-computation attack: OPAQUE (2018)

27/ 35

OPAQUE

OPAQUE

- PAKE secure against pre-computation attack

— main idea:
= combination of OPRF and AKE protocol, or
= combination of OPRF and PAKE protocol
= AKE and PAKE must have suitable properties (they can’t be arbitrary)

— OPRF (Oblivious Pseudorandom Function)
= pseudorandom function Fj, (x)
= OPREF is a protocol with two parties C (input x) and S (input k)
= (learns Fj (x) at the end, and nothing else
= S learns nothing (in particular, nothing about x)

29 /35

Example: DH-OPRF

— | - security parameter
— group G of prime order g (where |g| = [)

— hash functions
H :{0,1} -G
H with range {0, 1}}

- PRFF :Z, x{0,1} - {0, 1}%:

Fr(x) = H(x, H' (x)*)

OPREF protocol

1. C > S:a=H'(x)", forr € Z,
2. S—> C:b=aF

3. C computes H(x,bl/r)

— correctness:
bY/m = (H' ()N = H' ()"

- security:
= ROM (for hash function) and “one
more DH” assumption

30 /35

Idea: combining OPRF and PAKE

— S stores k and H(R) for a client C

C S
password P «— OPRF — k
output R = F; (P)
R «— PAKE — H(R)
session key K session key K

— pre-computation attack is impossible, since R is random to the attacker

— attacker learns k and H(R) only after S is compromised

31/35

Idea: combining OPRF and AKE

— assumptions for AKE:
= (’s public/private key: pk./sk.
= S’s public/private key: pks/sks

— AuthEnc - authenticated encryption ¢ = AuthEncg (pke, sk¢, pks)
= S stores k, ¢, pky for C

C S
password P «— OPRF — k
output R = F;.(P)
decrypts and verifies — C C
pkc, ske, pks «— AKE — pks, sks, pke
session key K session key K

32 /35

AKE example - HMQV

— HMAQV: variant of DH protocol with implicit authentication of K
- modifiable for arbitrary finite groups, such as elliptic curves

— multiple variants of MQV (Menezes-Qu-Vanstone) / HMQV (hash MQV)
~ private and public key for participant 4: pk, = g4

C S
selects random x Xc =g —
— X =g*s selects random sg
K = KE(sk¢, x¢, pks, Xs) K = KE(sks, x5, pk¢, X¢)
session key K session key K

Computation (parameters e; = H(X.,S) and e = H(Xs, C)):

U: KE(Skc,xC, ka, XS) — H((XS . pkgs)xC+SkC'eC) — H(g(x5+sk5.es)(xc+ec.5kc))
S: KE(skg, xs, pke, X¢) = H((Xc : pkgC)(xs+skS.eS}) _ H(g(xc+ec-skc)(x5+sks.es))

33 /35

Remark - small group confinement

— potential problem in DH-like schemes or schemes with security related to DLOG
= unauthenticated data - group element
= existence of small subgroups

Example: DH protocol in (Z*,) with — E can find this secret searching in small
generator g subgroup [g*] (order w)

- letw | (p — 1) be a small prime 5 (Y = gD = gl — 4
-lethk=@(m-1)/w

— choose suitable groups and check
parameters

— attack:
1. A E(B):A= g%
2. E(A) - B: A®
3. B> E(A):B=g"
4. E(B) = A: B¥
~ A and B compute shared secret g*@?

34 /35

Exercises

1. Discuss all checks you can perform in EKE protocol when ElGamal on a modular group is
used for asymmetric encryption.

2. SRP-3: What is wrong with this modification?
— use B =v- g? and C computes S = (B/g*)*™*
- advantage: we work only in the group (Z, -)

35 /35

	Motivation
	Passwords
	Simple protocols
	Simple authentication protocol
	Simple key-agreement protocol
	Simple AKE protocol

	EKE and DH-EKE
	EKE (Encrypted Key Exchange) – general description
	EKE remarks
	DH-EKE
	DH-EKE remarks
	Problems with EKE (DH-EKE, EAP-EKE)

	SRP
	Secure Remote Password protocol (SRP)
	Evolution of SRP: SRP-3
	SRP-3 – protocol
	SRP-3 – security goals
	SRP-3 – Why B depends on v?
	SRP-3 – remarks
	SRP-3 – Two-for-one password guessing attack
	SRP-3 – Two-for-one password guessing attack (cont.)
	SRP-6
	SRP-6 protocol (original message order)
	SRP-6 protocol (cont.)
	SRP remarks (1)
	SRP remarks (2)
	Conclusion

	OPAQUE
	OPAQUE
	Example: DH-OPRF
	Idea: combining OPRF and PAKE
	Idea: combining OPRF and AKE
	AKE example – HMQV
	Remark – small group confinement
	Exercises

