Password Authenticated Key Exchange Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Motivation

- authenticate user/client using a password
- common scenario for authentication in web application:
 - TLS: server authentication, secure channel
 - username/password login form, server verifies submitted password
- some risks related to this approach:
 - phishing attacks login to fake web site
 - attacker gets all authentication data (username, password)
 - multi-factor authentication can mitigate the risk
 - TLS might not be available
- PAKE Password Authenticated Key Exchange (agreement)

Goal: (mutual) authentication of two or more parties and establishing session keys

Passwords

- special type of shared secret
- easy to use
- potential problems: guessing (low entropy), brute-force attack
 - limited length ("small" set of possible passwords)
 - passwords from various dictionaries
 - patterns/non-uniform selection of passwords

Simple protocols

Simple authentication protocol

- challenge/response protocol
- notation: password P, hash function H

$$C \qquad \qquad S$$

$$\leftarrow \qquad r \qquad \text{selects random } r$$

$$v = H(P,r) \qquad C, v \rightarrow \qquad v \stackrel{?}{=} H(P,r)$$

- √ password not transmitted in plaintext
- \times one way authentication (only C is authenticated)
- \times attacker can accept any v and continue the session with C
- × MITM attack: attacker relays communication between C and S
- × no session key agreed in the protocol

Simple key-agreement protocol

- Diffie-Hellman protocol (using a group where CDH is hard)
- notation: generator *g*

CSselects random
$$a$$
 $A = g^a$ $A \rightarrow$ selects random b $A = g^a$ $A \rightarrow$ $B = g^b$ $A = B^a = g^{ab}$ $A \rightarrow$ $B = g^b$

× MITM attack (cause: unauthenticated exchange of parameters)

Simple AKE protocol

Goals: ✓ password never sent as a plaintext, ✓ authenticate both parties, ✓ agree on a session key, ✓ prevent MITM attack

CSselects random
$$a, r_C$$
 $A = g^a$ $C, A, r_C \rightarrow$ selects random b $\leftarrow B, r_S, E_P(H(0, msg))$ $B = g^b$ verifies $E_P(...)$ $E_P(H(1, msg)) \rightarrow$ verifies $E_{P(...)}$ $K = B^a = g^{ab}$ $E_P(H(1, msg)) \rightarrow$ verifies $E_{P(...)}$

- notation: msg = $C \parallel A \parallel B \parallel r_C \parallel r_S$; H is a hash function
- E_P symmetric cipher or MAC_P, key is derived from P
- × offline dictionary attack testing passwords offline using eavesdropped communication

EKE and DH-EKE

EKE (Encrypted Key Exchange) – general description

- Bellovin, Merritt (1992)
- first PAKE protocol
- ✓ prevents offline dictionary attack (and achieves previous goals as well)

C		S
generates (pk_C, sk_C)	$C, E_P(pk_C) \longrightarrow$	
	$\leftarrow E_P(E_{pk_C}(K))$	selects random <i>K</i>
decrypts <i>K</i>	. •	
selects random $r_{\mathcal{C}}$	$E_K(r_C) \longrightarrow$	decrypts r_C
verifies r_{C}	$\leftarrow E_K(r_C, r_S)$	select random $r_{\mathcal{S}}$
	$E_K(r_S) \longrightarrow$	verifies $r_{\mathcal{S}}$

- notation: (pk_C, sk_C) pair of keys for asymmetric encryption; E_{pk_C} public-key encryption, E_p symmetric encryption using a key derived from P; K session key

EKE remarks

- EKE is secure against offline dictionary attack, if all (or almost all) decryptions for distinct passwords yield
 - valid public keys for message in the first step
 - valid ciphertexts for message in the second step
- implementation problem choosing suitable encryption schemes (symmetric and public-key)

partition attack

- offline attack
- if decryption with P' yield an incorrect/impossible public key, then $P \neq P'$
- example: RSA ... n with small factors, even e
- multiple runs of the protocol \Rightarrow password is uniquely determined
- E_P should not leak information about P

DH-EKE

- variant of EKE with DH protocol for key agreement
- only modular groups (!)
- this variant follows the original proposal (Bellovin, Merritt, 1992):

\mathcal{C}		S
selects random a		
$A = g^a$	$C, E_P(A) \longrightarrow$	selects random b
		$B = g^b$
		$K = A^b = g^{ab}$
decrypts r_S	$\leftarrow E_P(B), E_K(r_S)$	selects random r_S
$K = B^a = g^{ab}$		
selects random $r_{\mathcal{C}}$	$E_K(r_C, r_S) \longrightarrow$	decrypts $r_{\mathcal{C}}$
		verifies r_{S}
verifies $r_{\mathcal{C}}$	$\leftarrow E_K(r_C)$	Ü

DH-EKE remarks

- more refined version of the protocol is EAP-EKE (RFC 6124):
 - separate keys are derived for the protocol itself and for the session
 - encryption with MAC used for messages containing nonces (here: r_C , r_S)
 - additional data are computed, using a key derived from the shared key and all messages up to given point – protects integrity of the negotiated parameters
 - explicit requirements for groups: g is a primitive element (generator) of the group; p is a "safe" prime, i.e., q = 2q' + 1 (where q' is a prime)
 - explicit list of suitable groups and their generators
- what if *g* is not a generator:
 - decrypt $E_{P'}(A)$ and $E_{P'}(B)$ using password P'
 - if a generator is obtained in any plaintext, then P' is incorrect
- there is $\approx 50\%$ generators in groups with safe prime modulus

Problems with EKE (DH-EKE, EAP-EKE)

- × server knows the password (plaintext)
 - ⇒ successful attack on server results in compromised passwords
- passwords should be stored "salted" (best practice, recommendation)
 - after a breach the offline dictionary attack is always possible an attacker can test passwords by recomputing the stored value, or by simulating the server side of the protocol
 - we don't want to make it easier by storing plaintext passwords
- DH constructions are hard to translate to elliptic curves
 - How to ensure that decryption with wrong password yields a point on elliptic curve?

SRP

Secure Remote Password protocol (SRP)

- PAKE protocol, server does not store password in plaintext
 - other properties are preserved (prevention of offline dictionary attack etc.)
- original proposal: Thomas Wu (1998)
- standardization:
 - RFC 2945 (2000) version SRP-3
 - using SRP-6 (2002) together with TLS: RFC 5054 (2007)
 - IEEE P1363.2, ISO IEC 11770-4
- 1Password Security Design (2025): We do not rely on traditional authentication mechanisms, but instead use Secure Remote Password (SRP) to avoid most of the problems of traditional authentication.
- Apple uses SRP in iCloud, according *Apple Platform Security* (2024): The HSM cluster verifies that a user knows their iCloud Security Code using Secure Remote Password protocol (SRP); the code itself isn't sent to Apple.

Evolution of SRP: SRP-3

- protocol is slightly different in the RFC (we will follow the original proposal)
 - explicit choice of random u vs. derivation of u from B
 - construction of the first verification message M_1
- calculation in GF(n), where n is a large prime
 - both field operations are used ("+" and "·")
- notation:
 - g generator of (\mathbb{Z}_n^*, \cdot)
 - password P
 - random salt s
 - hash function H
- P is stored on server as a verifier $v = g^x$, where x = H(s, P)

SRP-3 – protocol

\mathcal{C}		S
selects random a		
$A = g^a$	$C, A \longrightarrow$	selects random b, u
	\leftarrow s, B, u	$B = v + g^b$
computes:		computes:
x = H(s, P)		$S = (Av^u)^b$
$S = (B - g^x)^{a + ux}$		K = H(S)
K = H(S)		
$M_1 = H(A, B, K)$	$M_1 \longrightarrow$	verifies M_1
verifies M_2	\leftarrow M_2	$M_2 = H(A, M_1, K)$

SRP-3 – protocol

<i>C</i>		S
selects random a		
$A = g^a$	$C, A \longrightarrow$	selects random b, u
	\leftarrow s, B, u	$B = v + g^b$
computes:		computes:
x = H(s, P)		$S = (Av^u)^b$
$S = (B - g^x)^{a + ux}$		K = H(S)
K = H(S)		
$M_1 = H(A, B, K)$	$M_1 \longrightarrow$	verifies M_1
verifies M_2	\leftarrow M_2	$M_2 = H(A, M_1, K)$

- computation of shared secret *S*:
 - client: $(B g^x)^{a+ux} = (g^x + g^b g^x)^{a+ux} = g^{ab+ubx}$
 - server: $(Av^u)^b = (g^a \cdot g^{xu})^b = g^{ab+ubx}$

SRP-3 – security goals

- assumption: active attacker with ability to eavesdrop and manipulate transmitted data
- What are the security goals of SRP?
 - confidentiality of P and x
 - confidentiality of K
 - security against offline dictionary attack

$\overline{\text{SRP-3}}$ – Why *B* depends on v?

- simpler alternative: $B = g^b$, C does not need to compute g^x , rest of the protocol intact
- attacker *E* asks the server for *s* and then impersonates the server
 - 1. $C \rightarrow E(S)$: $C, A = g^a$
 - 2. $E(S) \rightarrow C$: $s, B = g^b, u$, for randomly selected b, u
 - 3. $C \rightarrow E(S)$: $M_1 = H(A, B, K)$, where $S = B^{a+ux}$ and K = H(S)
- now *E* can perform this offline dictionary attack:
 - E computes x', v' for a password P' and then $S' = (Av'^u)^b$ and K' = H(S')
 - if P = P' then those values are equal to values computed by C
 - *E* verifies this with check $H(A, B, K') \stackrel{?}{=} M_1$
- "+v" prevents the attack the attacker can't use a single instance to test unlimited number of passwords (he must choose v' that C substracts)

SRP-3 – remarks

- Why is *u* random, instead of some constant?
 - attacker E can impersonate C
 - assumptions: E obtains v and s (knowing v requires access to server's data)
 - 1. $E(C) \rightarrow S: C, A = g^a \cdot v^{-u}$
 - 2. $S \rightarrow E(C)$: s, B, where $B = v + g^b$
 - 3. *E* computes: $S = (B v)^a = g^{ab}$ *S* computes: $S = (A \cdot v^u)^b = (g^a \cdot v^{-u} \cdot v^u)^b = g^{ab}$
 - therefore *u* must be unpredictable (unknown till *C* sends *A*)
- no proofs of security claims

SRP-3 – Two-for-one password guessing attack

- neither x nor v are known to attacker
- online password guessing using interaction with *C*:
 - attacker E (knows s) guesses P' and computes x' = H(s, P'), $v' = g^{x'}$
 - E impersonates the server using these values x', v'
 - if the protocol finishes successfully (M_1 is correct), then P' is correct

SRP-3 – Two-for-one password guessing attack

- neither *x* nor *v* are known to attacker
- online password guessing using interaction with C:
 - attacker E (knows s) guesses P' and computes $x' = H(s, P'), v' = g^{x'}$
 - E impersonates the server using these values x', v'
 - if the protocol finishes successfully (M_1 is correct), then P' is correct
- guessing two passwords simultaneously:
 - 1. E makes a guess P_1 , P_2 and computes corresponding x_1 , x_2 and v_1 , v_2
 - 2. $C \rightarrow E(S)$: C, A
 - 3. $E(S) \rightarrow C$: $s, B = g^{x_1} + g^{x_2}, u$
 - 4. $C \to E(S)$: $M_1 = H(A, B, K)$, where $K = H(S) = H((B g^x)^{a + ux})$

SRP-3 – Two-for-one password guessing attack (cont.)

- value $S = (B g^x)^{a+ux} = (g^{x_1} + g^{x_2} g^x)^{a+ux}$ • if $P = P_1$ (or $P = P_2$), then C computes $S_1 = g^{x_2(a+ux_1)}$ (or $S_2 = g^{x_1(a+ux_2)}$) • E can compute $S'_1 = (A \cdot v_1^u)^{x_2}$ and $S'_2 = (A \cdot v_2^u)^{x_1}$ • if $P = P_1$: $S'_1 = (g^a \cdot g^{x_1u})^{x_2} = g^{x_2(a+ux_1)} = S_1$ • if $P = P_2$: $S'_2 = (g^a \cdot g^{x_2u})^{x_1} = g^{x_1(a+ux_2)} = S_2$ • E can decide if any of those cases happened using M_1
- E does not have to choose u in a special way, the attack works even if u is computed as a truncated H(B) (RFC 2945)

SRP-6

- T. Wu (2002) improved version SRP-6
- motivation for new version:
 - 1. two-for-one attack (parameter k used as a multiplication factor for v)
 - 2. implementation issue with message order (when group parameters must be sent)
 - 1 additional round required
 - solution: parameters/group ID and B sent before A
 - A sent together with M_1
- parameter k
 - SRP-6: k = 3; SRP-6a: k = H(n, g)
 - without knowledge of $dlog_g k$ the two-for-one attack does not work
 - computation k = H(n, g) makes harder malicious choice n, g, where the attacker knows $\operatorname{dlog}_g k$

SRP-6 protocol (original message order)

C		S
selects random a		
$A = g^a$	$C, A \longrightarrow$	selects random b
	\leftarrow s, B	$B = kv + g^b$
computes:		computes:
u = H(A, B)		u = H(A, B)
x = H(s, P)		$S = (Av^u)^b$
$S = \left(B - kg^{x}\right)^{a + ux}$		K = H(S)
K = H(S)		

computation of shared secret S:

client:
$$(B - kg^x)^{a+ux} = (kg^x + g^b - kg^x)^{a+ux} = g^{ab+ubx}$$

• server: $(Av^u)^{\bar{b}} = (g^a \cdot g^{xu})^{\bar{b}} = g^{ab+ubx}$

SRP-6 protocol (cont.)

- additional messages for verifying *K* (equality on both ends):

SRP remarks (1)

- *S* send *s* to anyone
 - salt is not secret, however ...
 - * knowing *s* allows a pre-computation (before obtaining *v*), e.g., constructing TMTO tables \Rightarrow pre-computation attack
- protocol uses multiplication and addition
 - group operation is not enough
 - can't be translated to elliptic curves (less efficient)
- specific requirements for n and g ("safe prime" and generator)
 - direct use of some standardized parameters is not possible
 - RFC 5054 defines specific 1024, 1536 a 2048-bit primes and generators
 - larger primes are adopted from RFC 3526 (More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)), but with different generator g

SRP remarks (2)

- What if *g* is not a generator?
 - g generates a proper subgroup [g] of (\mathbb{Z}_n^*, \cdot)
 - □ if for some P' the value $B v' = B g^{H(s,P')} \notin [g]$, then P' is not correct password \Rightarrow partition attack

Conclusion

- many PAKE protocols exist
- balanced PAKE protocols (both parties know the password):
 - EKE, DH-EKE, Dragonfly (SAE), SPEKE, J-PAKE, ...
- augmented, or asymmetric PAKE protocols (client/server)
 - server does not store password-equivalent data, i.e., data that allow successful authentication as a client
 - SRP, Augmented-EKE, B-SPEKE, OPAQUE, ...
- the first protocol resistant to pre-computation attack: OPAQUE (2018)

OPAQUE

OPAQUE

- PAKE secure against pre-computation attack
- main idea:
 - combination of OPRF and AKE protocol, or
 - combination of OPRF and PAKE protocol
 - AKE and PAKE must have suitable properties (they can't be arbitrary)
- OPRF (Oblivious Pseudorandom Function)
 - pseudorandom function $F_k(x)$
 - OPRF is a protocol with two parties C (input x) and S (input k)
 - C learns $F_k(x)$ at the end, and nothing else
 - S learns nothing (in particular, nothing about x)

Example: DH-OPRF

- *l* security parameter
- group *G* of prime order *q* (where |q| = l)
- hash functions $H': \{0,1\}^l \to G$ $H \text{ with range } \{0,1\}^l$
- PRF $F : \mathbb{Z}_q \times \{0, 1\}^l \to \{0, 1\}^l$:

$$F_k(x) = H(x, H'(x)^k)$$

OPRF protocol

- 1. $C \to S$: $a = H'(x)^r$, for $r \in_R \mathbb{Z}_q$
- 2. $S \rightarrow C$: $b = a^k$
- 3. C computes $H(x, b^{1/r})$
- correctness: $b^{1/r} = (H'(x)^r)^{k/r} = H'(x)^k$
- security:
 - ROM (for hash function) and "one more DH" assumption

Idea: combining OPRF and PAKE

- S stores k and H(R) for a client C

$$\begin{array}{ccc} C & S \\ & \text{password } P & \leftarrow \text{OPRF} \rightarrow & k \\ & \text{output } R = F_k(P) & \\ \hline R & \leftarrow \text{PAKE} \rightarrow & H(R) \\ & \text{session key } K & & \text{session key } K \end{array}$$

- pre-computation attack is impossible, since *R* is random to the attacker
- attacker learns k and H(R) only after S is compromised

Idea: combining OPRF and AKE

- assumptions for AKE:
 - C's public/private key: pk_C/sk_C
 - S's public/private key: pk_S/sk_S
- AuthEnc authenticated encryption $c = \text{AuthEnc}_R(pk_C, sk_C, pk_S)$
 - S stores k, c, pk_C for C

\mathcal{C}		S
password P	\leftarrow OPRF \rightarrow	k
output $R = F_k(P)$		
decrypts and verifies	\leftarrow c	С
$pk_{\mathcal{C}}, sk_{\mathcal{C}}, pk_{\mathcal{S}}$	\leftarrow AKE \rightarrow	$pk_{\mathcal{S}}$, $sk_{\mathcal{S}}$, $pk_{\mathcal{C}}$
session key <i>K</i>		session key K

AKE example - HMQV

- HMQV: variant of DH protocol with implicit authentication of K
- modifiable for arbitrary finite groups, such as elliptic curves
- multiple variants of MQV (Menezes-Qu-Vanstone) / HMQV (hash MQV)
- private and public key for participant A: $pk_A = g^{sk_A}$

$$C$$

$$\text{selects random } x_C$$

$$K = KE(sk_C, x_C, pk_S, X_S)$$

$$\text{session key } K$$

$$X_C = g^{x_C} \rightarrow \text{selects random } s_S$$

$$K = KE(sk_C, x_C, pk_S, X_S)$$

$$K = KE(sk_S, x_S, pk_C, X_C)$$

$$\text{session key } K$$

Computation (parameters $e_C = H(X_C, S)$ and $e_S = H(X_S, C)$):

U: KE(sk_C,
$$x_C$$
, pk_S, X_S) = $H((X_S \cdot pk_S^{e_S})^{x_C + sk_C \cdot e_C}) = H(g^{(x_S + sk_S \cdot e_S)(x_C + e_C \cdot sk_C)})$
S: KE(sk_S, x_S , pk_C, X_C) = $H((X_C \cdot pk_C^{e_C})^{(x_S + sk_S \cdot e_S)}) = H(g^{(x_C + e_C \cdot sk_C)(x_S + sk_S \cdot e_S)})$

Remark – small group confinement

- potential problem in DH-like schemes or schemes with security related to DLOG
 - unauthenticated data group element
 - existence of small subgroups

Example: DH protocol in (\mathbb{Z}_p^*, \cdot) with generator g

- let $w \mid (p-1)$ be a small prime
- $\, \operatorname{let} k = (p-1)/w$
- attack:
 - 1. $A \rightarrow E(B)$: $A = g^a$
 - 2. $E(A) \rightarrow B: A^k$
 - 3. $B \rightarrow E(A)$: $B = g^b$
 - 4. $E(B) \rightarrow A: B^k$
- A and B compute shared secret g^{kab}

- E can find this secret searching in small subgroup $[g^k]$ (order w)

$$g^{k})^{w} = g^{(p-1)w/w} = g^{p-1} = 1$$

choose suitable groups and check parameters

Exercises

- 1. Discuss all checks you can perform in EKE protocol when ElGamal on a modular group is used for asymmetric encryption.
- 2. SRP-3: What is wrong with this modification?
 - use $B = v \cdot g^b$ and C computes $S = (B/g^x)^{a+ux}$
 - advantage: we work only in the group (\mathbb{Z}_n^*, \cdot)