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Introduction

▶ cryptographic protocols
▶ goals: secrecy, authentication, integrity, anonymity, unlinkability, . . .
▶ environment: untrusted channels, dishonest participants

▶ our focus: authentication and key agreement (session-key)
▶ session-key

▶ less data for cryptanalyis
▶ logical separation of data from different sessions
▶ using symmetric constructions for confidentiality and authenticity

▶ IPSec (IKE), TLS (handshake), SSH, WPA3 (SAE/Dragonfly), Noise
Protocol Framework, . . .

▶ prerequisite for secure communication
▶ various proposals (requirements, capabilities, environment)
▶ other protocols (not discussed here):

▶ voting, money, private information retrieval, multiparty computation, etc.
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Diffie-Hellman protocol

▶ two principals A, B
▶ shared group G of prime order q with generator g

▶ public, known to everyone (e.g. an attacker)

▶ goal: key agreement
▶ DH protocol:

1. A → B: ga, for random a ∈ Zq
2. B → A: gb, for random b ∈ Zq
▶ A computes K = (gb)a = gab, and B computes K = (ga)b = gab
▶ the shared secret can be used to derive a symmetric key(s)

▶ passive adversary: CDH problem ga, gb → gab
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MITM attack

▶ active adversary in DH protocol
▶ can intercept and change messages

▶ man-in-the-middle attack (M is an attacker):
1. A → M(B): ga
2. M(A) → B: gx

3. B → M(A): gb
4. M(B) → A: gy

▶ A computes KA = gay , B computes KB = gxb
▶ M can compute KA = (ga)y = gay as well as KB = (gb)x = gbx
▶ M can “translate” messages between A and B (or create his/her own)

▶ Can M enforce KA = KB in the MITM attack?
▶ if not, M should be there till the end or “simulate” a connection error
▶ gx = gy = 1⇒ KA = KB = 1
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Fixing DH protocol

▶ authenticate messages in the protocol
▶ additional assumptions – PKI (distribution of authentic public keys),

preshared secrets, etc.
▶ DH in various forms is a base for majority of key agreement protocols
▶ Station-to-Station protocol:

1. A → B: ga

2. B → A: gb, CertB, EK (SigB (gb, ga))
3. A → B: CertA, EK (SigA (ga, gb))
▶ key agreement and authentication of participants
▶ the shared secret K = gab
▶ SigU denotes signature produced by user U
▶ certificates contain public keys for verifying signatures
▶ E is symmetric encryption and “proves” the possession of K
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DH protocol without PKI or preshared secret – Signal

▶ safety number (QR code and 2 × 30-digit
numbers) per conversation

▶ hash of “stable identity” and “public key” (local
and remote party)

This allows users to check the privacy of their communication
with a contact and helps protect against any
attempted man-in-the-middle attacks.

If the safety number is identical then you can be sure that you
are communicating with the right person.
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DH protocol without PKI or preshared secret – Telegram

▶ End-to-End Encryption, Secret Chats
Secret chats are meant for people who want more secrecy than the average fella.

▶ DH in modular groups (2048-bit prime, computation in a subgroup)
▶ Key visualization (picture), hash of the initial shared key

Since all re-keying instances are carried over the secure channel established when
the secret chat is created, it is necessary for the user to confirm that no MITM
attack had taken place during the initial exchange.

▶ Notable detail:
Both clients are to check that g, g_a and g_b are greater than one and smaller than
p − 1. We recommend checking that g_a and g_b are between 22048−64 and
p − 22048−64 as well.

source and more info: https://core.telegram.org/api/end-to-end
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Interlock protocol

▶ idea: let’s force the MITM attacker to be “active” in the communication
▶ scenarios (possible MITM attack):

▶ after unauthenticated DH protocol
▶ after unauthenticated distribution of key using asymmetric encryption

▶ A/B wants to send a message mA/mB to B/A
▶ both encrypt their message and exchange halves of the ciphertexts

(cA/cB), and then the other halves:
1. A → B: cA1 (first half of cA)
2. B → A: cB1 (first half of cB)
3. A → B: cA2 (second half of cA)
4. B → A: cB2 (second half of cB)

▶ a half of the ciphertext should be useless for the recipient
▶ e.g. even/odd bits, encryption combined with MAC, . . .
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Interlock protocol (2)

▶ assume MITM attacker M and keys KA and KB used for A ↔ M and
M ↔ B communications, respectively

▶ M can send the original message to A or B but not both
▶ example (sending mB to A)

1. A → M(B): cA1 (first half of cA)
2. M(A) → B: c′A1 (first half of c′A, for some made-up m′

A)
3. B → M(A): cB1 (first half of cB)
4. M(A) → B: c′A2 (second half of c′A)
5. B → M(A): cB2 (second half of cB, M can decrypt mB)
6. M(B) → A: c′B1 (first half of c′B, M encrypts mB with KA)
7. A → M(B): cA2 (second half of cA, M can decrypt mA)
8. M(B) → A: c′B2 (second half of c′B, A decrypts mB)

▶ Can we detect made-up messages?
▶ phones – reading aloud the messages from interlock protocol or

session-key checksum (voice synthesis ?)
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Dolev-Yao model

▶ the adversary controls the network completely
▶ eavesdrop, forge, delete, inject, replay, redirect messages
▶ perform any computation with data (and keys) learned or possessed

▶ very strong (but appropriate) model
▶ protocol secure in DY model will be secure also in a weaker model
▶ sometimes weaker model is assumed in practice:

▶ verification SMS sent to a mobile phone

▶ we will assume DY model in this lecture
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Assumptions

▶ ideal cryptography:
▶ perfect encryption, signatures, hash functions, message authentication

codes, random number generators etc.
▶ even more, e.g. encrypted messages cannot be manipulated without

detection, no info about message without a key, tuples with two or three
messages cannot be confused etc.

▶ flawless implementation (see history of problems in SSL/TLS)
▶ instantiation of crypto algorithms (e.g. oracle padding attacks (POODLE),

combination with compression (CRIME, BREACH))
▶ getting implementation right (e.g. Heartbleed, export versions of

algorithms, timing attacks, Bleichenbacher’s attack)

▶ even then the analysis is non-trivial
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What is wrong with this protocol?

▶ A generates a session-key K and sends it encrypted and signed to B
▶ one-way authentication and key distribution

1. A → B: EB (A,B,K ), SigA (EB (A,B,K ))
▶ assumptions: A knows the public key of B (for asymmetric encryption), B

knows the public key of A (for signature verification)
▶ B verifies the signature and decrypts K

▶ the problem: replay attack
▶ after K leaks the attacker can replay the message
▶ B is tricked into using K as a good key for communication with A
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Freshness of messages

▶ prevention of replay attacks: nonces and timestamps
▶ nonce

▶ usually sufficiently long random string/number (i.e. unpredictable);
(sometimes “unique” is sufficient)

▶ used just for a particular instance of the protocol
▶ unlikely to be present in some previous instances of the protocol
▶ usually the confidentiality is not needed
▶ examples: SSL/TLS, IKEv2

▶ timestamp
▶ sufficiently precise time information included into a message
▶ somewhat synchronized clocks are required
▶ clock manipulation should be prevented
▶ example: Kerberos
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Needham-Schroeder protocol

▶ the protocol uses trusted third party – server S
▶ S shares symmetric keys with participants (KU with participant U)

▶ participants A and B
▶ goals: authentication and distribution of a session-key KAB

▶ assumptions: NA/NB nonces generated by A/B,
▶ the protocol:

1. A → S: A,B,NA

2. S → A: {NA,KAB,B, {KAB,A}KB }KA

3. A → B: {KAB,A}KB

4. B → A: {NB}KAB

5. A → B: {NB − 1}KAB

▶ positives: S involved only once, stateless, . . .
▶ insecure!
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Attacking Needham-Schroeder protocol

▶ attack found by Denning and Sacco
▶ weakness: B cannot verify the freshness of KAB

▶ the attacker can force B to accept a compromised KAB (by cryptanalysis
or by leak)

▶ the attack (M knows KAB and thus (s)he can finish the protocol):
3. M(A) → B: {KAB,A}KB (replay of old message)
4. B → M(A): {N ′

B}KAB

5. M(A) → B: {N ′
B − 1}KAB

▶ How to fix the protocol?
▶ e.g. A requests NB from B at the beginning
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Modified Wide Mouth Frog protocol

▶ participants A and B, trusted third party (server S)
▶ timestamps (TU generated by U)
▶ S shares symmetric keys with participants
▶ goals: one-way authentication and distribution of the session-key K
▶ the protocol

1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,B,K }KB

▶ Original WMF:
1. A → S: A, {TA,B,K }KA

2. S → B: {TS ,A,K }KB

▶ Can you find a weakness?
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Attacks

▶ examples:
▶ Needham-Schroeder public-key protocol (1978) – attack, Lowe (1995)
▶ various weaknesses in real-world protocols: PPTP, SSL/TLS, . . .
▶ WPA 4-way handshake (802.11i, 2004) - attack, Vanhoef (2017)

▶ Weaknesses/attack types
▶ replay attacks
▶ imprecise description
▶ implementation issues
▶ symmetry of messages
▶ variable length of objects
▶ interaction of protocols, etc.

▶ usually a combination of weaknesses and attack techniques
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Replay attack

▶ “classic” example: Needham-Schroeder protocol
▶ Wide mouth frog protocol

1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

▶ notation and assumptions:
▶ T – trusted third party / server
▶ KA / KB – symmetric key shared between A and T or B and T
▶ TA / TT – time-stamp produced by A and T , respectively

▶ objectives:
▶ distribution of session-key K
▶ authentication of A (B is authenticated after the use of K )
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Attacking WMF
▶ attack – repeating messages, employing their symmetry, and using T as

an oracle:
1. A → T : A, {TA,B,K }KA

2. T → B : {TT ,A,K }KB

3. E (B) → T : B, {TT ,A,K }KB

4. T → E (A) : {T ′
T ,B,K }KA

5. E (A) → T : A, {T ′
T ,B,K }KA

6. T → E (B) : {T ′′
T ,A,K }KB

…
refreshing the time-stamp
after obtaining K (leak, cryptanalysis):
1’. E (A) → T : A, {T ∗

T ,B,K }KA

2’. T → B : {T ∗∗
T ,A,K }KB

▶ fix: break the symmetry, e.g. add sender’s identifier (or message
number) into the second message
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NSPK

▶ Needham-Schroeder public-key protocol (1978)
1. A → B : {A,NA}KB

2. B → A : {NA,NB}KA

3. A → B : {NB}KB

▶ notation and assumptions:
▶ KA / KB – A’s / B’s public key
▶ NA / NB – nonce produced by A / B

▶ objectives:
▶ mutual (two-way) authentication of A and B
▶ NA and NB can be used for session-key construction
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Attacking NSPK

▶ attack – after initial message from A, E starts a session with B
pretending to be A (both instances complete successfully):

1. A → E : {A,NA}KE

1’. E (A) → B : {A,NA}KB

2’. B → E (A) : {NA,NB}KA

2. E → A : {NA,NB}KA

3. A → E : {NB}KE

3’. E (A) → B : {NB}KB

▶ fix: e.g. adding an identifier of B into the second message:

1. A → B : {A,NA}KB

2. B → A : {NA,NB,B}KA

3. A → B : {NB}KB
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Otway-Rees protocol

▶ Otway, Rees (1987)
1. A → B : M,A,B, {NA,M,A,B}KA

2. B → T : M,A,B, {NA,M,A,B}KA , {NB,M,A,B}KB

3. T → B : M, {NA,K }KA , {NB,K }KB

4. B → A : M, {NA,K }KA

▶ notation and assumptions:
▶ T – trusted server
▶ KA / KB – symmetric key shared between A / B and T
▶ NA / NB – nonce produced by A / B
▶ M – randomly chosen identifier of this protocol run

▶ objectives:
▶ distribution of session-key K
▶ authentication of A (B is authenticated after the use of K )
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Attacking Otway-Rees protocol – attack 1

▶ implementation issue
▶ attack: improper block cipher mode – ECB:

▶ let |NB | be a multiply of block length
▶ encrypted nonce can be replaced in {NB,K }KB

▶ result: old session-key can be forced for use in a new session
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Attacking Otway-Rees protocol – attack 2

again an implementation issue
attack: improper block cipher mode – CBC:

▶ assumption: the plaintext NB,M,A,B fits into 3 blocks:

P1 = NB, P2 = M, P3 = A,B.

▶ CBC: random IV , encrypted and prepended as the first block of
ciphertext

▶ attacker E starts the first protocol instance with B:

1. E → B : M′, E ,B, {NE ,M′, E ,B}KE

2. B → E (T ) : M′, E ,B, {NE ,M′, E ,B}KE , {N ′
B,M

′, E ,B}KB

▶ {N ′
B,M

′, E ,B}KB = {IV ′}KB ,C
′
1,C

′
2,C

′
3
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. . . attack 2 continues

▶ E starts the second instance with B, pretending to be A:

1’. E (A) → B : M,A,B, {NE ,M, E ,B}KE

2’. B → E (T ) : M,A,B, {NE ,M, E ,B}KE , {NB,M,A,B}KB

▶ let {NB,M,A,B}KB = {IV }KB ,C1,C2,C3

▶ E modifies the intercepted message and sends to T :

3’. E (B) → T : S, E ,B, {NE , S, E ,B}KE ,X

where X = {IV }KB ,C1,C′
2,C

′
3
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. . . attack 2 continues

▶ decrypting X :

DKB (X ) = NB,C1 ⊕ DKB (C′
2),C′

2 ⊕ DKB (C′
3)

= NB,C1 ⊕ M′ ⊕ C′
1, E ,B.

▶ E sets S = C1 ⊕ M′ ⊕ C′
1

▶ 3’ is a legitimate message from T ’s point of view

4’. T → E (B) : S, {NE ,K }KE , {NB,K }KB

5’. E (T ) → B : M, {NE ,K }KE , {NB,K }KB

6’. B → E (A) : M, {NE ,K }KE

▶ result: B thinks (s)he communicates with A; E knows the key K

fix: add some redundant data into encrypted message (e.g. hash); use MAC,
authenticated encryption etc.
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Imprecise description of protocol – attack 3

▶ let’s assume that T does not check the consistence of plaintext and
encrypted data

▶ attack:
1’. A → B : M,A,B, {NA,M,A,B}KA

2’. B → E (T ) : M,A,B, {NA,M,A,B}KA , {NB,M,A,B}KB

3’. E → T : M,A, E , {NA,M,A,B}KA , {NE ,M,A,B}KE

4’. T → E : M, {NA,K }KA , {NE ,K }KE

5’. E (B) → A : M, {NA,K }KA

▶ result:
▶ A assumes to be communicating with B
▶ E impersonates B and E knows the session-key K
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Improper length of objects – attack 4

▶ let |K | = |M,A,B|
1’. A → E (B) : M,A,B, {NA,M,A,B}KA

4’. E (B) → A : M, {NA,M,A,B}KA

▶ result:
▶ A assumes the communication with B
▶ E impersonates B and E knows the “session-key” (regardless of mode

used for encryption)

▶ general observation: messages should bounded to the particular step of
the protocol
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Symmetry of messages

▶ examples: NSPK protocol, WMF protocol
▶ usually multiple simultaneous protocol instances
▶ protocol for mutual authentication:

1. A → B : NA

2. B → A : {NA,NB}K
3. A → B : NB

▶ notation and assumptions:
▶ K – symmetric key shared between A and B
▶ NA / NB – nonce generated by A and B, respectively
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Attack employing the symmetry

1. A → E (B) : NA

1’. E (B) → A : NA

2’. A → E (B) : {NA,N ′
A}K

2. E (B) → A : {NA,N ′
A}K

3. A → E (B) : N ′
A

3’. E (B) → A : N ′
A

▶ result: A believes that (s)he communicates with B
▶ fix:

▶ restrict the number of parallel runs or keeping track of recent nones (not a
good solution)

▶ break the symmetry, e.g. insert participant’s identifier into encrypted
message
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Denning-Sacco protocol

▶ Denning, Sacco (1981)
1. A → T : A,B
2. T → A : CA,CB

3. A → B : CA,CB, {{K , TA}K−1
A
}KB

▶ notation and assumption:
▶ CA / CB – public-key certificate of A / B
▶ TA – time-stamp produced by A
▶ K – session-key generated by A
▶ {X }K−1

A
– message X signed by A

▶ objectives:
▶ distribution of session-key K
▶ one-way authentication of A
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Attacking Denning-Sacco protocol

Abadi (1994):

1. A → T : A, E
2. T → A : CA,CE

3. A → E : CA,CE , {{K , TA}K−1
A
}KE

3’. E (A) → B : CA,CB, {{K , TA}K−1
A
}KB

▶ result: E authenticates as A for B with known session-key K
▶ fix: e.g. insert recipient identifier into the signed data
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Protection of predictable data

▶ requesting a current time:
1. A → S : A,NA

2. S → A : {TS ,NA}KA

▶ if NA is predictable:
1. E (A) → S : A,NA

2. S → E (A) : {TS ,NA}KA (this can be use as a reply for A’s request later)

▶ fix (doesn’t work if NA is a constant):
1. A → S : A, {NA}KA

2. S → A : {TS , {NA}KA }KA
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Formal methods for protocol security?

▶ formal methods and tools for reasoning about the security of
cryptographic protocols
▶ ProVerif, Scyther, OFMC, Tamarin, Verifpal . . .

▶ . . . they help to increase our trust in protocol’s security
▶ what is modeled?
▶ the implementation can change everything

▶ various protocols were analyzed formally – with some vulnerabilities
found later (WPA 4-way handshake, TLS 1.3, . . . )
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