TLS Introduction
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

SSL/TLS History

— SSL - Secure Socket Layer
— TLS - Transport Layer Security

- History:
= 1995 SSL 2.0 (Netscape Communications)
= 1996 SSL 3.0 (Netscape Communications)
= 1999 TLS 1.0 (RFC 2246, “SSL 3.1”)
= 2006 TLS 1.1 (RFC 4346)
= 2008 TLS 1.2 (RFC 5246), updated by 10 other RFCs
= 2018 TLS 1.3 (RFC 8446)

1/32

Goals of TLS

— According to TLS 1.2 (prioritized):
1. Cryptographic security - to establish a secure connection between two parties (data
confidentiality and integrity /authenticity)
2. Interoperability
3. Extensibility - to provide a framework into which new public key and bulk
encryption methods can be incorporated as necessary
4. Relative efficiency - optional session caching scheme, reducing network activity

— basic cryptographic components:
= Kkey agreement schemes (DH, RSA)
= server authentication (certificates), client authentication optional
= symmetric encryption: block/stream ciphers
= authenticating data: HMAC, AEAD (authenticated encryption with additional data)
= PRF (pseudorandom function)
= PRNG (pseudorandom number generator)

2 /32

Support: browsers and servers

— Browsers - default settings:
= Chrome (142), Firefox (145): TLS 1.2, 1.3
= removed/disabled by default - TLS 1.0 and 1.1

— Servers:

X11/2017 X/2020 VI/2025
TLS1.0 91.0% 51.5% 23.5%
TLS1.1 849% 585% 25.2%
TLS1.2 89.4% 99.0% 100%
TLS 1.3 39.8% 75.3%

source: SSL Pulse

3/32

https://www.ssllabs.com/ssl-pulse/

TLS applications

— TLS requires a reliable transport protocol (e.g. TCP)
= see DTLS (RFC 6347) for using TLS with datagram protocols

— almost transparent to higher level protocols

— various applications:
= web: HTTPS = HTTP + TLS (the most frequently used application), QUIC
= accessing mail: IMAP/POP3 + TLS
= transferring mail: SMTP + TLS
= building VPN over TLS, etc.

4 /32

Limitations of TLS

- no data non-repudiation

— depends on PKI
= certificate management (trust, distribution, revocation, etc.)

— TLS does not provide solution for web application vulnerabilities
= SQL injection, XSS, CSREF etc.

— TLS does not provide solution for weaknesses on user’s side
= weak passwords, accepting suspicious certificates, etc.

5/ 32

— client <= server (asymmetric communication)

— two layers, subprotocols

Alert

Handshake

HTTP, ...

I Application :

Record Layer

4"
Change
Cipher Spec
TLS
y______

6 /32

TLS Connection State (1)

— client and server maintain/update their connection states

= connection end (client/server)

= encryption algorithm (block, stream, AEAD)

= MAC algorithm

= compression algorithm

= PRF function

= master secret (shared secret, 48 B)

= client random (32 B)

= server random (32 B)

= sequence number (starting at 0, less than 2°%, does not wrap, incremented after
each record)

— other data required for the state:
= compression state, cipher state (e.g. scheduled key /stream cipher’s state)

7 /32

TLS Connection State (2)

— all required keys and initialization vectors are derived from master secret, client
random and server random values
= client write [MAC key | encryption key | IV]
= server write [MAC key | encryption key | IV]

— 4 states for each connection end:
= current [read | write] state
= pending [read | write] state

— initial state: ciphersuite TLS NULL WITH NULL NULL
= transformation of data = identity (no MAC, no encryption, no compression)

8 /32

TLS Record Protocol

— record layer processes data from higher layers:
= fragmentation (< 21* bytes)
= compression (NULL)
= MAC computation and encryption, or AEAD encryption

— content: [type, version, length, fragment data]
= type - 20 (ChangeCipher), 21 (Alert), 22 (Handshake), 23 (Application)
= version - 3.0 (SSL 3.0), 3.1 (TLS 1.0), 3.2 (TLS 1.1), 3.3 (TLS 1.2)
= length - length of the fragment data
= fragment data - processed data (MAC and encryption, or AEAD)

- MAC-then-Encrypt
= MAC is computed from concatenated sequence number, type, version, length and
data

9 /32

Application Data

— processed transparently by record layer (fragmented, encrypted etc.)

— processing based on the connection state

10/ 32

Change Cipher Spec Protocol

— single message (single byte containing value 1)
— signals a change in cryptographic state
— switch to pending write state immediately after sending

— switch to pending read state immediately after receiving

11/ 32

Alert Protocol

- information about error state, connection closure

- message (2 bytes):
= level - 01 (warning), 02 (fatal)
= code (25 overall) - close notify, bad record MAC, unknown_ca, record_overflow,
protocol_version etc.

— fatal = terminate the connection immediately

12 /32

Handshake Protocol - overview (1)

1. Exchange hello messages, agree on algorithms, exchange random values (nonces),
check for session resumption.

2. Exchange certificates to authenticate server (mandatory) and client (optional).
3. Exchange parameters and values to agree on a pre-master secret.

4. Calculate master secret from the pre-master secret and random values. Calculate
necessary keys and other parameters.

5. Switch to agreed algorithms and keys.

6. Verify that the other communication end calculated the same parameters.

13 /32

Handshake Protocol - overview (2)

ClientHello >
ServerHello
Certificate 1
ServerKeyExchangeW

CertificateRequest 1

< ServerHelloDone
Certificate 1
ClientKeyExchange N (opt.)
CertificateVerify 1 D (enc.)

ChangeCipherSpec

Finished >

ChangeCipherSpec

- Finished

14 / 32

ClientHello

— extension examples:

= server_name (SNI): which hostname
the client is attempting to connect to

= elliptic_curves: set of elliptic curves
supported by the client

= TLS session ticket: encrypted session
state sent to client (later used for
session resumption)

= signature_algorithms: indicates
supported combinations of algorithm
and hash function for digital
signatures

— structure:

= TLS version

= client_random (4B seconds from
1.1.1970; 28B random bytes)

= session ID: allows reusing the
parameters from previous or
simultaneous connection

= supported cipher suites (sorted by
client’s preference)

= compression methods

= extensions (optional)

15/ 32

List of supported cipher suites - example

User Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:145.0) Gecko/20100101
Firefox/145.0

client-preferred order:

TLS AES 128 GCM SHA256 TLS ECDHE ECDSA WITH AES 256 CBC_SHA
TLS CHACHA20 POLY1305 SHA256 TLS ECDHE ECDSA WITH AES 128 CBC_SHA
TLS AES 256 GCM SHA384 TLS ECDHE RSA WITH AES 128 CBC SHA
TLS ECDHE_ECDSA WITH AES 128 GCM_SHA256 TLS ECDHE RSA WITH AES 256 CBC_SHA
TLS ECDHE RSA WITH AES 128 GCM SHA256 TLS RSA WITH AES 128 GCM SHA256

TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256 TLS RSA WITH AES 256 GCM SHA384
TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 TLS RSA WITH AES 128 CBC SHA
TLS ECDHE _ECDSA WITH AES 256 GCM SHA384 TLS RSA WITH AES 256 CBC SHA
TLS ECDHE RSA WITH AES 256 GCM SHA384

16 / 32

List of supported signatures and curves - example

Firefox/145.0

— signature algorithms:
SHA256/ECDSA, SHA384 /ECDSA, SHA512/ECDSA, RSA_PSS_SHA256,
RSA_PSS_SHA384, RSA_PSS_SHA512, SHA256/RSA, SHA384 /RSA, SHA512 /RSA, SHA1/
ECDSA, SHA1/RSA, SHA384/RSA, SHA512 /RSA, SHA1/ECDSA, SHA1/RSA
(*) PSS schemes defined in TLS 1.3

- named groups:
X25519MLKEM768, x25519, secp256r1, secp384r1, secp521rl, ffdhe2048, ffdhe3072

- X25519MLKEM768: combining X25519 ECDH with ML-KEM-768

17 / 32

ServerHello

— structure:
= TLS version
= server_random (4B seconds from 1.1.1970; 28B random bytes)
= session ID: identification of the session
session ID from ClientHello found in session cache = session resumption, proceed
to Finished message
non-empty (different value): new session ID
empty: session will not be cached
= selected cipher suite (from the client’s list)
= selected compression method
= extensions (optional, subset of extensions offered by client)

18/ 32

(Server) Certificate

— server'’s certificate chain (X.509v3 certificates)
- self-signed certificate of root CA distributed independently
- required if key exchange methods use it for authentication (all except DH_anon)

— server’s certificate type must by suitable for selected key exchange method, e.g.
= RSA method requires RSA public key certificate that allows the key to be used for
encryption
= ECDHE_RSA method requires RSA public key that allows selected digital signature
scheme and hash algorithm

19 /32

Key exchange methods

- RSA
= client generates a pre-master secret (48B)
= client encrypts the pre-master secret using RSA public key of the server

= server decrypts using its private key
= remark: RSA encryption - PKCS#1 v 1.5 (no RSA-OAEP for TLS 1.2)

— Diffie-Hellman protocol
= fixed DH - public parameters are part of the server’s certificate
= ephemeral DH - public parameters specified by the server, signed (RSA, DSA,
ECDSA) and sent to the client in a message
= anonymous DH - no authentication, MITM possible

20/ 32

ServerKeyExchange

— if server needs to send parameters required for key exchange method
= typical use cases: (EC)DHE_[DSS|RSA]
= DH anon

— DH parameters:
= DHE: p, g, server’s public “key” and their signature
= ECDHE: usually ID of a named curve (e.g. 0x0017 - P-256, generator is then fixed
implicitly), public “key” and their signature

— signatures:
= client used the signature_algorithm extension = server selects accordingly
= client did not use the extension = server uses appropriate default (depending on

cipher suite)
= remark: RSA signatures - PKCS#1 v 1.5 (no RSA-PSS for TLS 1.2)

21/ 32

List of supported cipher suits - example

www.uniba.sk (November 2025), server-preferred order for TLS 1.2

TLS 1.2 (suites in server-preferred order)
TLS _RSA WITH_AES 128 CBC_SHA (ex2f) WEAK
TLS DHE_RSA WITH _AES 128 CBC_SHA (6x33) DH2048bits FS WEAK

TLS_DHE_RSA WITH_CAMELLIA 128 CBC_SHA (0x45) DH 2048 bits FS WEAK

22 /32

CertificateRequest and ServerHelloDone

— if client authentication is required (rarely)
= only non-anonymous server can request client authentication

— structure:
=]ist of accepted certificate types (such as rsa_sign, dss_sign)
= list of supported signature and hash algorithm pairs
=]ist of distinguished names of acceptable CAs

— ServerHelloDone
= signaling the end of server’s messages

23 /32

ClientKeyExchange

— structure and content depend on key exchange method
- RSA:

= client generates pre-master_secret (48B):
preMS = TLS version from ClientHello || random value (46B)

= client encrypts preMS using server’s RSA public key
- DH:
= client’s public “key” (not signed)

= empty content if static DH exponent (in certificate) is used
preMS = key obtained from DH exchange

24 /32

Computing keys from pre-master secret

- computing master_secret (length 48B):
MS = PRF(pre-master secret, master secret’, client_random || server_random)

— key material computed in defined order by partitioning sufficiently long output from
PRF(MS, “key expansion”, client_random || server_random)

order (remark: IV values are used only for AEAD modes):
= client_write_MAC_key

= server_write_MAC_key

= client_write_key

= server_write_key

= client write_ [V

= server_write_[V

25 / 32

CertificateVerify, ChangeCipherSpec

— explicit verification of a client certificate
= client’s certificate must be suitable for digital signatures

— content: digital signature of all handshake messages sent and received up to this point

— ChangeCipherSpec - switch pending write state
= all subsequent messages/data are protected

26 /32

— transmitted after ChangeCipherSpec
— verification that key exchange and authentication were successful

— content (length 12B, if cipher suite does not specify longer):
PRF(MS, label, H(msgs))

= label = “client finished” / “server finished”
= H - hash function used in PRF construction
= msgs = all messages in handshake protocol up to this point

— server and client verify Finished messages once received
= Handshake protocols ends successfully only after verifying these messages

27 / 32

Some cryptographic details

— MAC (in case of non-AEAD cipher): HMAC based on selected hash function
= other MAC construction can be used, e.g., Poly1305 (using stream cipher ChaCha20
inside, RFC 7539)

- Mandatory implemented cipher suite: TLS_RSA_WITH_AES_128_CBC_SHA

— CBC mode for block ciphers:
= explicit IV, (should be) random, (must be) unpredictable
= padding examples: (incomplete last block || 00), (incomplete last block || 02 02 02)

28 /32

PRF construction

- computing PRF(secret, label, seed) = P_hash(secret, label || seed)
— hash is SHA256 for TLS 1.2 (default)
— P_hash(secret, seed) - data expansion function:

P_hash(secret, seed) = HMAC_hash(secret, A(1) || seed)
HMAC_hash(secret, A(2) || seed)
HMAC_hash(secret, A(3) || seed)
A(0) = seed
A(i) = HMAC_hash(secret, A(i-1))

29 /32

Handshake Protocol - session resumption

ClientHello >

ServerHello

ChangeCipherSpec

- Finished

ChangeCipherSpec

Finished >

D (enc.)

— Session ID, state stored (cached) by client and server
— alternative: Session tickets (state stored by client)

30 /32

Forward Secrecy (FS)

— FS: previous session keys are not compromised even if the long term keys are
= desirable property of key agreement/distribution protocols

- TLS 1.2:
= RSA: obtaining server’s RSA private key reveals all previous and future pre-master

secrets (all keys can be recomputed from pre-master secret)
= ephemeral non-anonymous DH (DHE, ECDHE): FS

31/ 32

Exercises

1. Choose a public web server and analyze the results provided by SSL Server Test (what
information is available by this test).

2. Try testssl.sh tool for TLS server assessment and analyze the results.

3. Find what extensions are included in ClientHello message sent by your web browser (use
wireshark or other network protocol analyzer). Compare with curl command.

32 /32

https://www.ssllabs.com/ssltest/
https://testssl.sh/

	SSL/TLS History
	Goals of TLS
	Support: browsers and servers
	TLS applications
	Limitations of TLS
	Structure
	TLS Connection State (1)
	TLS Connection State (2)
	TLS Record Protocol
	Application Data
	Change Cipher Spec Protocol
	Alert Protocol
	Handshake Protocol – overview (1)
	Handshake Protocol – overview (2)
	ClientHello
	List of supported cipher suites – example
	List of supported signatures and curves – example
	ServerHello
	(Server) Certificate
	Key exchange methods
	ServerKeyExchange
	List of supported cipher suits – example
	CertificateRequest and ServerHelloDone
	ClientKeyExchange
	Computing keys from pre-master secret
	CertificateVerify, ChangeCipherSpec
	Finished
	Some cryptographic details
	PRF construction
	Handshake Protocol – session resumption
	Forward Secrecy (FS)
	Exercises

