KRACK and SAE
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

KRACK

- Key Reinstallation Attacks (Vanhoef, Piessens, 2017)
= just an idea, details and paper available at www.krackattacks.com

— WPA (Wi-Fi Protected Access)
= WPA - 802.11i (draft D3.0); WPA2 - 802.11i (final version D9.0)
= two data confidentiality and integrity protocols: (WPA-)TKIP and (AES-)CCMP
= 802.11ad amendment: Galois/Counter Mode Protocol (GCMP)

- 4-way handshake protocol
= mutual authentication based on PMK (Pairwise Master Key)
= PMK derived from preshared secret (WPA-Personal) or negotiated in 802.1x (WPA-
Enterprise)
= establish a session key PTK (Pairwise Transient Key)

— supplicant/station (client) and authenticator (AP)

1/13

4-way handshake (simplified presentation)

1. AP — S§: ANonce (now the supplicant can derive PTK)

2. S - AP: SNonce, MICkck (now the authenticator can derive PTK)
3. AP — S: GTK, MICgck (GTK encrypted with KEK)

4. S - AP: Ack, MICyck (Ack)

— MIC (Message Integrity Check)

GTK (Group Temporal Key ... broadcast/multicast)

PTK = PRF(PMK, APy4¢, Smac, ANonce, SNonce), divided into

= KCK (EAPOL-Key Confirmation Key) - for MIC computation

= KEK (EAPOL-Key Encryption Key) - for encryption of GTK

= TK (Temporal Key) - for encryption of data frames

= TMK1, TMK2 (Temporal AP MIC Key) - keys for MIC computation (unicast), one for
each direction

2 /13

KRACK -idea

- remark: offline dictionary attack (4th message), no forward secrecy

— the third (or the first) message can be retransmitted (multiple times)
= for example, if the authenticator does not receive message 4 (or 2)
= reinstall the PTK and reset initialization vector (nonce) for data encryption and
authentication
= according 802.11i “AP retransmits message 1 or 3 if it did not receive a reply”

— behavior of clients differs (depends on NIC and supplicant implementation)

— other variants: key reinstallation against group key handshake ldots

3/13

KRACK - impact

— CCMP - AES-CCM (CTR and CBC-MAC)
= key and IV are reused, i.e., keystream is reused
= attacker can decrypt (two-time pad problem)

- GCMP - AES-GCM
= Keystream reuse
= authentication key can be recovered after nonce reuse ... forbidden attack (Joux)
= attacker can decrypt and inject own data

— special weakness in Android and Linux:
= retransmitted message 3 causes all-zero key

— other variants of KRACK attack (2018)

4 /13

Dragonfly (SAE)

- WPA3 (2018)
= mandatory new protocol:

Simultaneous Authentication of
Equals (SAE) — SAE is used to derive a new PMK for the

4-way handshake

= does not prevent KRACK per-se

= prevents offline dictionary attack
= ensures forward secrecy

— EAP-pwd: can be used in some
enterprise WiFi networks

— original design — Harkins (2008)
= balanced PAKE protocol
= [EEE 802.11-2016
= RFC 7664 (Dragonfly Key Exchange)

= other variants: — M. Vanhoef, E. Ronen: Dragonblood:
e EAP-pwd (RFC 5931) Attacking the Dragonfly Handshake of
e IKEv2 Secure PSK Authentication WPA3 (2019) - weaknesses in SAE and
(RFC 6617) EAP-pwd

5/13

Dragonfly (SAE) - introduction

— simplified for presentation

— main goals and properties
= no fixed roles (such as initiator, client, server, ...)
= both parties can initiate the protocol (simultaneously)
= forward secrecy
= resistance to offline dictionary attack (and other attacks)
= based on DLOG problem

— proposed for modular and elliptic curves groups
= parameters: primes p, q, whereq | (p — 1)
= modular group: subgroup of order q is used
= elliptic curve group over GF(p): group order g, curve y? = x3 + ax? + bmodp

— H - hash function (random oracle); KDF - key derivation function

6/13

Password element P

— map password pw to a group element P

hash to group: hash to curve:
for counter in range(1, 256): base = pw, counter = 1
seed = H(addrg4, addrg, pw, counter) while counter++ < 40 or P not found:
x = KDF(seed, p) seed = H(addr,, addrg, base, counter)
if x > p: continue x = KDF(seed, p)
P = x®~V/qd modp if x = p: continue
if P > 1: return P if x> + ax + b € QR,, and P not found:

P = (x,sqrt(x3 + ax + b) mod p)
base = random()
return P

7 /13

SAE - protocol (1)

1. Commit Exchange (presentation uses elliptic curves)

— A selects random ry, my, € Z’g,;
A computes sy, = (1 + my) modqg,and E;, = —my, - P

— B selects random 15, mp € Zg;
B computes sz = (13 + mg) mod g, and Egz = —mg - P
A—> B: sy Ey4
B—->A: sgEjp

— check validity of sy, check that Ey is on the curve

— shared secret element K is computed:
A: K=ry-(sg-P+Eg)=14-((rg +mg)-P—mg:P) = (ry15) P
B: K=1g5:-(s4-P+Ey) =1rg-((ry+my)-P—my-P)=(ryr5) P

— shared key k = H(K)

8 /13

SAE - protocol (2)

2. Confirmation Exchange
— verify k and transcript of the protocol:
A—- B: ¢4 =HMAC,(Sy,E4 Sp, Eg)
B—-A: cg =HMAC,(sg, Eg,S4, Es)

— variants of Dragonfly differ in
= computation of password element
= computation of confirmation messages
= Kkey derivation and usage (for example multiple keys are derived), ...

9/13

SAE - some earlier results

— D. Clarke, F. Hao: Cryptanalysis of the Dragonfly Key Exchange Protocol (2013)

= offline dictionary attack for small subgroups
= importance of checks in “Commit Exchange” step (validity of Ey and sy)

— J. Lancrenon, M. Skrobot: On the Provable Security of the Dragonfly Protocol (2015)
= security proof in model by Bellare, Pointcheval and Rogaway (other models exist)
= assumptions: random oracle model (for H), CDH, DIDH (Decisional Inverted-

Additive Diffie-Hellman)
= DIDH: hard to distinguish g%/®**¥) and a random g'/# when given g/* and g/7.

10/ 13

Timing attacks - MODP groups

— hash to group - the number of iterations depends on password
= KDF returns bit string of length |p|
= probability that x > p is not negligible for some groups
= RFC 5114 - group 22 (30.84%), group 23 (32.40%), group 24 (47.01%)
= [s the difference between r and r + 1 iterations measurable?
Yes (see the experiments in the Dragonblood paper)
for example: for group 22 = 75 measurements were enough to identify r
= number of iteration depends on MAC addresses as well
= spoofing MAC, measuring iterations ... building a password “profile”
= offline dictionary/brute-force attack

11/13

Timing attacks - elliptic curves

— hash to curve for EAP-pwd
= jterate until P is on the curve
= similar timing leak as for hash to group

— hash to curve for SAE - timing attacks countermeasures already present
= X = p is not negligible for Brainpool curves (RFC 6932)
= multiple measurements for a MAC:
more iteration with real password yield lower variance
average time depends on real iterations and number of x > p results
(see the experiments in the Dragonblood paper)

12 /13

Other issues and observations

— AP must store the password in plaintext _ high overhead of hash to curve

— WPA3 Transition Mode - AP accepts = timing attacks defense (40 iterations)
WPA3-SAE and WPA?2 with the same is costly for lightweight devices
password = existing DoS countermeasures can be

= compatibility with old clients defeated

= downgrade attack are detected, ° example: experiment with 8
thanks to properties of 4-way connections/s = AP’s CPU saturated
handshake — fatal impact of bad PRNG

= attack has enough data for offline
dictionary attacks

o attacker reconstructs P and K
= impact worse than bad PRNG in

= countermeasure: remember if the WPA?2
network supports WPA3-SAE
(“pinning”) — update to WPA3?

13 /13

	KRACK
	4-way handshake (simplified presentation)
	KRACK – idea
	KRACK – impact
	Dragonfly (SAE)
	Dragonfly (SAE) – introduction
	Password element P
	SAE – protocol (1)
	SAE – protocol (2)
	SAE – some earlier results
	Timing attacks – MODP groups
	Timing attacks – elliptic curves
	Other issues and observations

