
KRACK and SAE
Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

KRACK

– Key Reinstallation Attacks (Vanhoef, Piessens, 2017)
▫︎ just an idea, details and paper available at www.krackattacks.com

– WPA (Wi-Fi Protected Access)
▫︎ WPA – 802.11i (draft D3.0); WPA2 – 802.11i (final version D9.0)
▫︎ two data confidentiality and integrity protocols: (WPA-)TKIP and (AES-)CCMP
▫︎ 802.11ad amendment: Galois/Counter Mode Protocol (GCMP)

– 4-way handshake protocol
▫︎ mutual authentication based on PMK (Pairwise Master Key)
▫︎ PMK derived from preshared secret (WPA-Personal) or negotiated in 802.1x (WPA-

Enterprise)
▫︎ establish a session key PTK (Pairwise Transient Key)

– supplicant/station (client) and authenticator (AP)

1 / 13

4-way handshake (simplified presentation)

1. AP → 𝑆: ANonce (now the supplicant can derive PTK)
2. 𝑆 → AP: SNonce, MICKCK (now the authenticator can derive PTK)
3. AP → 𝑆: GTK, MICKCK (GTK encrypted with KEK)
4. 𝑆 → AP: Ack, MICKCK (Ack)

– MIC (Message Integrity Check)

– GTK (Group Temporal Key … broadcast/multicast)

– PTK = PRF(PMK, APMac, 𝑆Mac, ANonce, SNonce), divided into
▫︎ KCK (EAPOL-Key Confirmation Key) – for MIC computation
▫︎ KEK (EAPOL-Key Encryption Key) – for encryption of GTK
▫︎ TK (Temporal Key) – for encryption of data frames
▫︎ TMK1, TMK2 (Temporal AP MIC Key) – keys for MIC computation (unicast), one for

each direction

2 / 13

KRACK – idea

– remark: offline dictionary attack (4th message), no forward secrecy

– the third (or the first) message can be retransmitted (multiple times)
▫︎ for example, if the authenticator does not receive message 4 (or 2)
▫︎ reinstall the PTK and reset initialization vector (nonce) for data encryption and

authentication
▫︎ according 802.11i “AP retransmits message 1 or 3 if it did not receive a reply”

– behavior of clients differs (depends on NIC and supplicant implementation)

– other variants: key reinstallation against group key handshake ldots

3 / 13

KRACK – impact

– CCMP – AES-CCM (CTR and CBC-MAC)
▫︎ key and IV are reused, i.e., keystream is reused
▫︎ attacker can decrypt (two-time pad problem)

– GCMP – AES-GCM
▫︎ keystream reuse
▫︎ authentication key can be recovered after nonce reuse … forbidden attack (Joux)
▫︎ attacker can decrypt and inject own data

– special weakness in Android and Linux:
▫︎ retransmitted message 3 causes all-zero key

– other variants of KRACK attack (2018)

4 / 13

Dragonfly (SAE)

– WPA3 (2018)
▫︎ mandatory new protocol:

Simultaneous Authentication of
Equals (SAE)

– original design – Harkins (2008)
▫︎ balanced PAKE protocol
▫︎ IEEE 802.11-2016
▫︎ RFC 7664 (Dragonfly Key Exchange)
▫︎ other variants:

• EAP-pwd (RFC 5931)
• IKEv2 Secure PSK Authentication

(RFC 6617)

– EAP-pwd: can be used in some
enterprise WiFi networks

– SAE is used to derive a new PMK for the
4-way handshake
▫︎ does not prevent KRACK per-se
▫︎ prevents offline dictionary attack
▫︎ ensures forward secrecy

– M. Vanhoef, E. Ronen: Dragonblood:

Attacking the Dragonfly Handshake of

WPA3 (2019) – weaknesses in SAE and
EAP-pwd

5 / 13

Dragonfly (SAE) – introduction

– simplified for presentation

– main goals and properties
▫︎ no fixed roles (such as initiator, client, server, …)
▫︎ both parties can initiate the protocol (simultaneously)
▫︎ forward secrecy
▫︎ resistance to offline dictionary attack (and other attacks)
▫︎ based on DLOG problem

– proposed for modular and elliptic curves groups
▫︎ parameters: primes 𝑝, 𝑞, where 𝑞 ∣ (𝑝 − 1)
▫︎ modular group: subgroup of order 𝑞 is used
▫︎ elliptic curve group over GF(𝑝): group order 𝑞, curve 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏mod𝑝

– 𝐻 – hash function (random oracle); KDF – key derivation function

6 / 13

Password element 𝑃

– map password pw to a group element 𝑃

hash to group:

for counter in range(1, 256):
seed = 𝐻(addr𝐴, addr𝐵, pw, counter)
𝑥 = KDF(seed, 𝑝)
if 𝑥 ≥ 𝑝: continue
𝑃 = 𝑥(𝑝−1)/𝑞mod𝑝
if 𝑃 > 1: return 𝑃

hash to curve:

base = pw, counter = 1
while counter++ < 40 or 𝑃 not found:

seed = 𝐻(addr𝐴, addr𝐵, base, counter)
𝑥 = KDF(seed, 𝑝)
if 𝑥 ≥ 𝑝: continue
if 𝑥3 + 𝑎𝑥 + 𝑏 ∈ QR𝑝 and 𝑃 not found:

𝑃 = (𝑥, sqrt(𝑥3 + 𝑎𝑥 + 𝑏)mod𝑝)
base = random()

return 𝑃

7 / 13

SAE – protocol (1)

1. Commit Exchange (presentation uses elliptic curves)

– 𝐴 selects random 𝑟𝐴, 𝑚𝐴 ∈ ℤ∗𝑞;
𝐴 computes 𝑠𝐴 = (𝑟𝐴 +𝑚𝐴)mod 𝑞, and 𝐸𝐴 = −𝑚𝐴 ⋅ 𝑃

– 𝐵 selects random 𝑟𝐵, 𝑚𝐵 ∈ ℤ∗𝑞;
𝐵 computes 𝑠𝐵 = (𝑟𝐵 +𝑚𝐵)mod 𝑞, and 𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃
𝐴 → 𝐵 : 𝑠𝐴, 𝐸𝐴
𝐵 → 𝐴 : 𝑠𝐵, 𝐸𝐵

– check validity of 𝑠𝑋, check that 𝐸𝑋 is on the curve

– shared secret element 𝐾 is computed:
𝐴 : 𝐾 = 𝑟𝐴 ⋅ (𝑠𝐵 ⋅ 𝑃 + 𝐸𝐵) = 𝑟𝐴 ⋅ ((𝑟𝐵 +𝑚𝐵) ⋅ 𝑃 − 𝑚𝐵 ⋅ 𝑃) = (𝑟𝐴𝑟𝐵) ⋅ 𝑃
𝐵 : 𝐾 = 𝑟𝐵 ⋅ (𝑠𝐴 ⋅ 𝑃 + 𝐸𝐴) = 𝑟𝐵 ⋅ ((𝑟𝐴 +𝑚𝐴) ⋅ 𝑃 − 𝑚𝐴 ⋅ 𝑃) = (𝑟𝐴𝑟𝐵) ⋅ 𝑃

– shared key 𝑘 = 𝐻(𝐾)

8 / 13

SAE – protocol (2)

2. Confirmation Exchange
– verify 𝑘 and transcript of the protocol:
𝐴 → 𝐵 : 𝑐𝐴 = HMAC𝑘(𝑠𝐴, 𝐸𝐴, 𝑠𝐵, 𝐸𝐵)
𝐵 → 𝐴 : 𝑐𝐵 = HMAC𝑘(𝑠𝐵, 𝐸𝐵, 𝑠𝐴, 𝐸𝐴)

– variants of Dragonfly differ in
▫︎ computation of password element
▫︎ computation of confirmation messages
▫︎ key derivation and usage (for example multiple keys are derived), …

9 / 13

SAE – some earlier results

– D. Clarke, F. Hao: Cryptanalysis of the Dragonfly Key Exchange Protocol (2013)
▫︎ offline dictionary attack for small subgroups
▫︎ importance of checks in “Commit Exchange” step (validity of 𝐸𝑋 and 𝑠𝑋)

– J. Lancrenon, M. Škrobot: On the Provable Security of the Dragonfly Protocol (2015)
▫︎ security proof in model by Bellare, Pointcheval and Rogaway (other models exist)
▫︎ assumptions: random oracle model (for 𝐻), CDH, DIDH (Decisional Inverted-

Additive Diffie-Hellman)
▫︎ DIDH: hard to distinguish 𝑔1/(𝑥+𝑦) and a random 𝑔1/𝑧 when given 𝑔1/𝑥 and 𝑔1/𝑦.

10 / 13

Timing attacks – MODP groups

– hash to group – the number of iterations depends on password
▫︎ KDF returns bit string of length |𝑝|
▫︎ probability that 𝑥 ≥ 𝑝 is not negligible for some groups
▫︎ RFC 5114 – group 22 (30.84%), group 23 (32.40%), group 24 (47.01%)
▫︎ Is the difference between 𝑟 and 𝑟 + 1 iterations measurable?

Yes (see the experiments in the Dragonblood paper)
for example: for group 22 ≈ 75 measurements were enough to identify 𝑟

▫︎ number of iteration depends on MAC addresses as well
▫︎ spoofing MAC, measuring iterations … building a password “profile”
▫︎ offline dictionary/brute-force attack

11 / 13

Timing attacks – elliptic curves

– hash to curve for EAP-pwd
▫︎ iterate until P is on the curve
▫︎ similar timing leak as for hash to group

– hash to curve for SAE – timing attacks countermeasures already present
▫︎ 𝑥 ≥ 𝑝 is not negligible for Brainpool curves (RFC 6932)
▫︎ multiple measurements for a MAC:

more iteration with real password yield lower variance
average time depends on real iterations and number of 𝑥 ≥ 𝑝 results
(see the experiments in the Dragonblood paper)

12 / 13

Other issues and observations

– AP must store the password in plaintext

– WPA3 Transition Mode – AP accepts
WPA3-SAE and WPA2 with the same
password
▫︎ compatibility with old clients
▫︎ downgrade attack are detected,

thanks to properties of 4-way
handshake

▫︎ attack has enough data for offline
dictionary attacks

▫︎ countermeasure: remember if the
network supports WPA3-SAE
(“pinning”)

– high overhead of hash to curve
▫︎ timing attacks defense (40 iterations)

is costly for lightweight devices
▫︎ existing DoS countermeasures can be

defeated
▫︎ example: experiment with 8

connections/s ↦ AP’s CPU saturated

– fatal impact of bad PRNG
▫︎ attacker reconstructs 𝑃 and 𝐾
▫︎ impact worse than bad PRNG in

WPA2

– update to WPA3?

13 / 13

	KRACK
	4-way handshake (simplified presentation)
	KRACK – idea
	KRACK – impact
	Dragonfly (SAE)
	Dragonfly (SAE) – introduction
	Password element P
	SAE – protocol (1)
	SAE – protocol (2)
	SAE – some earlier results
	Timing attacks – MODP groups
	Timing attacks – elliptic curves
	Other issues and observations

