Secret sharing schemes

Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Secret sharing schemes - introduction

- secret sharing schemes
 - distribute a secret (a key) among some group of participants (users, servers)
 - rules what group can reconstruct the secret
 - share secret piece of information owned by an individual participant
- a scheme consists of two algorithms/protocols:
 - producing and distributing the shares (usually a trusted dealer is used)
 - reconstructing the shared secret
- motivation
 - Can you trust a single authority (admin or server)?
 - basis for other constructions threshold cryptography, distributing computation among group of trusted servers, multi-party secure computation, voting, ...

Secret sharing schemes

- n participants $\mathcal{P} = \{P_1, P_2, ..., P_n\}$
- shared secret s
- shares: $P_i \leftarrow s_i$
- access structure $\mathcal{A} \subseteq 2^{\mathcal{P}}$ (power set): $A \subseteq \mathcal{P}$ can reconstruct $s \Leftrightarrow A \in \mathcal{A}$
 - usually a monotone access structure: $\forall A, B \subseteq \mathcal{P} : A \subseteq B \& A \in \mathcal{A} \implies B \in \mathcal{A}$
 - (t,n) threshold access structure, for $1 \le t \le n$: $\{A \mid A \subseteq \mathcal{P} \& |A| \ge t\}$

Simple examples

- -(1, n) threshold
 - distribute the secret as individual shares: $s_i = s$
- -(n, n) threshold -1st attempt
 - let $s \in \{0, 1\}^l$
 - divide s into n shares $s_1, ..., s_n$ of length $\approx l/n$ bits
 - reconstruction: $s = s_1 \parallel ... \parallel s_n$
 - n-1 participants reconstruct a large part of s, approx. l(n-1)/n bits

Simple examples

- -(1, n) threshold
 - distribute the secret as individual shares: $s_i = s$
- -(n, n) threshold -1st attempt
 - let $s \in \{0, 1\}^l$
 - divide s into n shares $s_1, ..., s_n$ of length $\approx l/n$ bits
 - reconstruction: $s = s_1 \parallel ... \parallel s_n$
 - n-1 participants reconstruct a large part of s, approx. l(n-1)/n bits
- -(n,n) threshold
 - let $s \in \{0, 1\}^l$
 - let $s_i \in_R \{0,1\}^l$ for i = 1, ..., n-1, and $s_n = s \oplus s_1 \oplus ... \oplus s_{n-1}$
 - reconstruction: $s = s_1 \oplus ... \oplus s_n$
 - security: any n-1 (or less) participants learn nothing about s
 - perfect scheme

Shamir's secret sharing scheme

- idea: t points uniquely determine some polynomial of degree t-1
- finite field \mathbb{Z}_p , for a prime p > n
- shared secret $s \in \mathbb{Z}_p$
 - let us assume $s \in_R \mathbb{Z}_p$

Shares

- choose a random polynomial
 - $f(x) = s + a_1 x + ... + a_{t-1} x^{t-1},$ where $a_i \in_R \mathbb{Z}_p$ for i = 1, ..., t-1
- share for P_i : (i, s_i) , where $s_i = f(i)$
- notice that f(0) = s

Shamir's secret sharing scheme

- idea: t points uniquely determine some polynomial of degree t-1
- finite field \mathbb{Z}_p , for a prime p > n
- shared secret $s \in \mathbb{Z}_p$
 - let us assume $s \in_R \mathbb{Z}_p$

Shares

- choose a random polynomial $f(x) = s + a_1 x + ... + a_{t-1} x^{t-1},$ where $a_i \in_R \mathbb{Z}_p$ for i = 1, ..., t-1
- share for P_i : (i, s_i) , where $s_i = f(i)$
- notice that f(0) = s

Reconstruction

- t participants P_1 , ..., P_t (WLOG)
- Lagrange interpolation in \mathbb{Z}_p using (i, s_i) for i = 1, ..., t:

$$f(x) = \sum_{i=1}^{t} \underbrace{f(i)}_{S_i} \cdot \prod_{\substack{1 \le j \le t \\ i \ne i}} \frac{x-j}{i-j}$$

- compute s = f(0)

Shamir's secret sharing scheme – security

- consider group of t-1 participants (WLOG $P_1, ..., P_{t-1}$)
- the shared secret can be anything:
 - □ combine the shares and point (0, s') for an arbitrary $s' \in \mathbb{Z}_p$
 - t points \Rightarrow unique polynomial f'
 - f' is consistent with shares of P_1 , ..., P_{t-1}
- P_1 , ..., P_{t-1} are in the same position as someone without any share
 - probability of finding s is 1/p (guessing)
- perfect secret sharing scheme

Linear equations perspective

- unknown polynomial f (its coefficients)
- a share (i, s_i) forms a linear equation: $s_i = a_0 + a_1 i + ... + a_{t-1} i^{t-1}$
- t cooperating participants the system of t equations with t variables
 - square Vandermonde matrix with distinct elements (i.e., a non-zero determinant)
 - the system has a unique solution
- t-1 cooperating participants the system of t-1 equations with t variables
 - add an additional equation: $s' = a_0$
 - square Vandermonde matrix with distinct elements (because any $i \neq 0$)
 - the system has a unique solution for any s' ... perfect scheme

Remarks

- reconstruction is just a linear combination of shares (for $S \subseteq \{1, ..., n\}, |S| = t$):

$$f(0) = \sum_{i \in S} s_i \cdot \lambda_i$$
, where $\lambda_i = \prod_{j \in S \setminus \{i\}} \frac{-j}{i-j}$

- any points $(x_i, f(x_i))$ for distinct non-zero $x_1, ..., x_n$ can be used as shares
- homomorphic property with respect to addition:
 - two (t, n) threshold schemes defined by polynomials f and g
 - adding shares: $(i, f(i)), (i, g(i)) \mapsto (i, f(i) + g(i))$
 - polynomial (the shared secret is the addition of shared secrets $a_0 + a'_0$):

$$f(x) + g(x) = \sum_{i=0}^{t-1} a_i x^i + \sum_{i=0}^{t-1} a_i' x^i = \sum_{i=0}^{t-1} (a_i + a_i') x^i$$

Remarks (2)

- efficiency
 - polynomial time
 - long s can be divided into shorter pieces and shared by independent schemes (or encrypt s and share the encryption key)
- trusted dealer generates the polynomial and distributes the shares
- one-time scheme?
 - secret revealed after reconstruction vs. black-box reconstruction
- cheating in reconstruction:
 - for example P_1 , ..., P_t try to reconstruct s
 - P_1 cheats and reveals an incorrect share $(1, s'_1)$
 - the participants compute: $s' = s + s_1'\lambda_1 s_1\lambda_1$... and P_1 can easily compute s from s'

Information rate

- the size of share(s) vs. the size of the shared secret
- notation
 - S set of secrets
 - $K(P_i)$ set of all possible shares for P_i
 - random variables
- information rate for P_i : $\rho_i = H(S)/H(K(P_i))$
- information rate of the scheme: $\rho = \min_i \rho_i$
- uniform probability case: $\rho = \min_i \lg |S| / \lg |K(P_i)|$

Information rate (2)

- information rate for Shamir's scheme: $\rho = 1$
- perfect secret sharing scheme $\Rightarrow \rho \leq 1$
 - let us assume that $\rho > 1 \Rightarrow \forall i : \rho_i > 1$
 - for all i: $\lg |S| / \lg |K(P_i)| > 1 \Rightarrow |S| > |K(P_i)|$
 - there exists $A \subseteq \mathcal{P}$: $P_i \notin A$, $A \notin \mathcal{A}$, and $A \cup \{P_i\} \in \mathcal{A}$
 - take all shares from participants in A and all candidate shares from $K(P_i)$
 - compute all possible values of the shared secret ... less than |S|
 - the scheme cannot be perfect (we can exclude some "impossible" secrets)
- a perfect secret sharing scheme with ho=1 is called ideal

Verifiable secret sharing

- secret sharing that allows participants to verify the correctness of their shares
- Feldman's scheme ≈ Shamir's scheme + commitments of coefficients
 - (t,n) threshold access structure
- $f(x) = s + a_1 x + ... + a_{t-1} x^{t-1}$ over \mathbb{Z}_p
 - let g be a generator of a subgroup $G \subseteq (\mathbb{Z}_p^*, \cdot)$ of prime order $q (q \mid p-1)$
 - the dealer creates (public) commitments $c_i = g^{a_i}$, for i = 0, ..., t 1
 - P_i can verify the share (i, s_i) :

$$c_0 \cdot c_1^i \cdot c_2^{i^2} \cdot \dots \cdot c_{t-1}^{i^{t-1}} = \prod_{j=0}^{t-1} g^{a_j \cdot i^j} = g^{f(i)} = g^{s_i}$$

- a problem: secrecy of s depends on dlog problem (not perfect anymore)
 - improved schemes exist

Applications

Threshold cryptography

- threshold cryptography: sharing a secret key, such that
 - 1. any group of size t or more can perform a cryptographic operation, and
 - 2. any group of size t-1 or less cannot perform the operation
- adversary can compromise up to t-1 parties
- cryptographic operation: signing, decrypting, etc.
 - signing:
 - 1st property means *robustness* (DoS prevention)
 - 2nd property means *unforgeability*
- key distribution:
 - trusted dealer or distributed key generation (DKG)

Schnorr signature with threshold signing

Schnorr signature scheme:

- group *G* of prime order *p*,generator *g*
- private/secret key sk = $x \in_R \mathbb{Z}_p$
- public key $pk = y = g^x$
- $\operatorname{Sig}_{\operatorname{sk}}(m) = (R, s) \in G \times \mathbb{Z}_p$
 - $R = g^k \text{ for } k \in_R \mathbb{Z}_p$
 - $c = H(R \parallel y \parallel m)$
 - s = k + xc
- $\operatorname{Vrf}_{pk}(m, (R, s)): g^s \stackrel{?}{=} R \cdot y^c$, where $c = H(R \parallel y \parallel m)$

- threshold Schnorr signatures
 - redundancy (if someone is unavailable)
 - not a single person should be authorized to sign
- some desired properties:
 - result is a regular signature
 - private key is **not** revealed in the process
- signature aggregator (SA)
 - some participant or independent subject
 - can prevent signature creation but does
 not learn anything about the private key
 - simplifies the presentation

Threshold Schnorr signatures – simple approach

- Stinson, Strobl (2001)
- private key *x* is shared in a secret sharing scheme (trusted dealer):
 - $f(z) = x + \sum_{j=1}^{t-1} a_j z^j$, public key $y = g^x$
 - P_i gets his share $x_i = f(i)$, for i = 1, ..., n, together with the public key y
- P_1 , ..., P_t want to sign m:
 - 1. $P_i \to SA$: $R_i = g^{k_i}$, where $k_i \in_R \mathbb{Z}_p$
 - 2. SA $\rightarrow P_i$: R, m, where $R = \prod_{i=1}^t R_i$
 - 3. $P_i \rightarrow SA$: $s_i = k_i + x_i \cdot c \cdot \lambda_i$, where $c = H(R \parallel y \parallel m)$, and λ_i is the Lagrange coefficient
 - 4. SA computes $s = \sum_{i=1}^{t} s_i$, and outputs the signature (R, s)
- correctness: $g^s = g^{\sum_i s_i} = \prod_i g^{s_i} = \prod_i R_i \cdot g^{x_i c \lambda_i} = R \cdot \left(\prod_i g^{x_i \lambda_i}\right)^c = R \cdot (g^x)^c = R \cdot y^c$

(In)security in parallel setting

- the scheme is secure in sequential setting
- concurrent (parallel) insecurity / parallel composition
 - t-1 malicious parties (including the SA)
 - single honest participant (let it be P_1)
 - attacking "group" can participate in multiple signing sessions simultaneously
- P_1 will sign $(R^{(1)}, m^{(1)}), (R^{(2)}, m^{(2)}), ..., (R^{(l)}, m^{(l)})$, i.e., P_1 produces l values $s_1^{(j)} = k_1^{(j)} + x_1 \cdot c^{(j)} \cdot \lambda_1$, where $c^{(j)} = H(R^{(j)} || y || m^{(j)})$
- assume, that we can find $(R^{(j)}, m^{(j)})_{j=1}^l$ and (R^*, m^*) , such that $\sum_{j=1}^l c^{(j)} = c^* = H(R^* \parallel y \parallel m^*)$
- compute $s_1^* = \sum_{j=1}^l s_1^{(j)} = \sum_{j=1}^l k_1^{(j)} + x_1 \cdot \lambda_1 \cdot \sum_{j=1}^l c^{(j)} = k^* + x_1 \cdot \lambda_1 \cdot c^*$
 - the attacking group can calculate P_1 's contribution, and finish signing of m^*

Remarks

- ROS problem: Random inhomogeneities in an Overdetermined Solvable system
 - allows to find required $(R^{(j)}, m^{(j)})_{j=1}^{l}$ and (R^*, m^*)
 - Wagner (2002): subexponential time
 - Benhamouda et al. (2020): polynomial time for $l > \lg p$
- there are schemes that address this problem
 - Sparkle+, FROST/2/3, etc.

Threshold ElGamal Encryption

ElGamal encryption scheme:

- group *G* of prime order *p*,generator *g*
- private/secret key sk = x ∈ $_R$ \mathbb{Z}_p
- public key $pk = y = g^x$
- $\operatorname{Enc}_{\mathsf{pk}}(m)$: $(r,s) = (g^k, m \oplus H(y^k))$
 - $k \in_R \mathbb{Z}_p$
 - message space $\{0,1\}^l$
 - $H: G \to \{0, 1\}^l$
- $\operatorname{Dec}_{\operatorname{sk}}(r,s)$: $m = s \oplus H(r^x)$

- public key y is known
- x is distributed in a threshold scheme: $f(z) = x + \sum_{i=1}^{t-1} a_i z^i$
- P_i gets a share $x_i = f(i)$
- a client C wants to decrypt a ciphertext (r, s):
 - assume $P_1, ..., P_t$ will assist
 - $P_i \to C: d_i = r^{x_i}$
 - *C* computes:

$$H\left(\prod_{i=1}^t d_i^{\lambda_i}\right) \oplus s = H\left(\prod_{i=1}^t r^{x_i \lambda_i}\right) \oplus s$$

$$= H\left(r^{\sum_{i=1}^{t} x_i \lambda_i}\right) \oplus s = H(r^x) \oplus s = m$$

Remarks

- non-interactive, P_1 , ..., P_t do not need to communicate with each other
- we can publish "per party public keys": $y_i = g^{x_i}$
 - ... and verify the validity of partial decryptions
 - otherwise incorrect decryption caused by a malicious party
 - P_i proves the equality of discrete logarithms: $dlog_r d_i = dlog_g y_i$, without disclosing the discrete log itself (x_i) , and preferably do it non-interactively
- it is OK for static security
 - adversary corrupts a static set of at most t-1 parties ≈ adversary knows the secret keys from the beginning
- adaptive security: adversary can adaptively corrupt up to t-1 parties
 - any moment in the computation a party can be corrupted
 - more involved schemes were proposed for this setting

Exercises

- 1. Discuss a modification of Shamir's scheme, where the polynomial f(x) must be of degree t-1, i.e., $a_{t-1} \in_R \mathbb{Z}_p \setminus \{0\}$. Is the scheme perfect? Explain.
- 2. Design a perfect secret sharing scheme for participants $\{A, B, C, D\}$ with the following access structure:
 - a) "at least two participants, but not A together with B"
 - b) "at least two participants, but not A together with B or C"
- 3. Try to simplify the threshold ElGamal encryption scheme when we are interested in (n,n)-threshold scheme only.