Introduction to LWE

Martin Stanek

Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Motivation

LWE

definition
noise selection
example
concrete bit security reductions

Encryption scheme

Why Learning with Errors (LWE)

- introduced by O. Regev (2005)
- no efficient quantum algorithm is known for LWE
- versatile - a basis for various schemes, e.g.
- public-key encryption
- identity-based encryption
- fully homomorphic encryption
- signature schemes (mostly based on RLWE)
- variant for better efficiency: RLWE (Ring LWE)
- can be reduced to worst-case hardness of some problems on lattices
- notation:
- dimension $n \in \mathbb{Z}^{+}$(primary security parameter)
- integer q, usually $q=\operatorname{poly}(n)$ (sometimes q is a prime number)
- secret vector $\mathbf{s} \in \mathbb{Z}_{q}^{n}$
- matrix $\mathrm{A} \in \mathbb{Z}_{q}^{m \times n}$, chosen uniformly random
- error distribution χ on \mathbb{Z}_{q}
- for odd $q: \mathbb{Z}_{q}=\left\{-\frac{q-1}{2}, \ldots, \frac{q-1}{2}\right\}$, e.g. $\mathbb{Z}_{29}=\{-14, \ldots, 14\}$
- error vector $\mathbf{e}=\left(e_{1}, \ldots, e_{m}\right) \in \mathbb{Z}_{q}^{m}$, where $e_{i} \leftarrow \chi$ (independent) for all i
- $\mathbf{b}=\mathbf{A} \cdot \mathbf{s}+\mathbf{e}$, where $\mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{b} \in \mathbb{Z}_{q}^{m}$
- linear equations with some "noise"
- sometimes an oracle formulation for LWE:
- access to oracle O_{s} that produces $(\mathbf{a}, b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$
- $\mathbf{a} \in \mathbb{Z}_{q}^{n}$ (uniform random), $e \leftarrow \chi, b=\langle\mathbf{a}, \mathbf{s}\rangle+e$
- above: m - number of samples

LWE - problems and observations

- Search LWE: find s for given \mathbf{A}, \mathbf{b} (or access to O_{s})
- Decision LWE: distinguish access to O_{s} from access to an oracle that produces uniform random $(\mathbf{a}, b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$
- assumption: Search/Decision LWE is hard (for suitable parameters)
- without noise (e is zero) - system of linear equations
- can be solved easily (e.g. by Gaussian elimination)
- Gaussian elimination increases noise (up to the point where equations have no information on \mathbf{s})
- too much noise (χ uniform on \mathbb{Z}_{q})
- any \boldsymbol{s} is a plausible solution
- identical distributions for Decision LWE

LWE - noise selection

- usually discrete Gaussian distribution
- assumption in security proofs, reductions
- for $\sigma, c \in \mathbb{R}$ define $\rho_{\sigma, c}(x)=\exp \left(-(x-c)^{2} /\left(2 \sigma^{2}\right)\right)$
- (continuous) normal distribution (mean c, standard deviation σ):

$$
f_{\sigma, c}(x)=\frac{\rho_{\sigma, c}(x)}{\sigma \sqrt{2 \pi}}
$$

- discrete Gaussian distribution $D_{\sigma, c}$ on \mathbb{Z} probability density function for $x \in \mathbb{Z}$:

$$
f_{\sigma, c}(x)=\frac{\rho_{\sigma, c}(x)}{\sum_{k} \rho_{\sigma, c}(k)}
$$

- small noise for LWE: $c=0$ and small σ
- other noise distributions studied
- e.g. small uniform random (e.g. binary) errors for limited m (linear in n) (Micciancio, Peikert 2013)

Discrete Gaussian distr. - sampling in LWE instances

LWE - small example (1)

- $n=5, q=29, m=8$,
- $\sigma=0.95$

LWE - small example (2)

- solution:
$\underbrace{\left(\begin{array}{rrrrr}11 & 19 & 3 & 14 & 0 \\ 13 & 22 & 19 & 17 & 27 \\ 15 & 9 & 18 & 19 & 28 \\ 19 & 19 & 12 & 12 & 28 \\ 24 & 26 & 9 & 28 & 3 \\ 18 & 6 & 25 & 28 & 0 \\ 23 & 18 & 21 & 17 & 11 \\ 13 & 16 & 19 & 4 & 21\end{array}\right)}_{\mathbf{A}} \cdot \underbrace{\left(\begin{array}{r}23 \\ 0 \\ 6 \\ 6 \\ 16\end{array}\right)}_{\mathbf{s}}+\underbrace{\left(\begin{array}{r}-1 \\ 0 \\ -1 \\ 0 \\ -2 \\ 2 \\ 0 \\ 1\end{array}\right)}_{\mathbf{e}}=\underbrace{\left(\begin{array}{r}6 \\ 19 \\ 28 \\ 14 \\ 8 \\ 9 \\ 9 \\ 5 \\ 20\end{array}\right)}_{\mathbf{b}}(\bmod 29)$

Trivial algorithm for Search LWE

- maximum likelihood approach
- try all $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ (i.e. q^{n} possibilities)
- small error $\mathbf{e}=\mathbf{b}-\mathbf{A} \cdot \mathbf{s}$ indicates a possible solution
- the smallest error \Rightarrow the most probable solution
- l_{2} norm computed in $\mathbb{R}:\|\mathbf{e}\|=\sqrt{e_{1}^{2}+\ldots+e_{n}^{2}}$
- $O(n)$ equations for unique solution
- running time $O\left(q^{n} \cdot n^{2}\right)$
- $\sim 2^{O(n \log n)}$ for typical q (polynomial in n)

Concrete bit security of LWE

n	q	σ	bit security
128	16411	11.809	$\mathbf{5 9}$
256	65537	25.532	$\mathbf{1 2 0}$
128	2053	2.705	$\mathbf{5 3}$
256	4099	3.346	$\mathbf{1 0 9}$
512	4099	2.900	$\mathbf{2 1 3}$
1024	8209	3.528	$\mathbf{3 8 6}$

Albrecht, Player and Scott: On the concrete hardness of Learning with Errors. Journal of Mathematical Cryptology 9(3):169-203. 2015 https://bitbucket.org/malb/lwe-estimator [estimated on 15 Nov 2016]

Decision LWE to Search LWE reduction

- trivial
- input: X - oracle access to O_{s} or uniform oracle for (\mathbf{a}, b) pairs

1. call Search LWE oracle, feeding it with pairs produced by X
2. if Search LWE oracle returns \mathbf{s} such that $e=b-\langle\mathbf{a}, \mathbf{s}\rangle$ is small for sufficiently many calls to X (producing a and b) then return "LWE"
3. otherwise return "random"

Search LWE to Decision LWE reduction (idea)

- input: access to O_{s}, and access to Decision LWE oracle
- main idea: guess and test the value of a coordinate
- testing if $s_{1}=s_{1}^{\prime} \in \mathbb{Z}_{q}$:

1. let (\mathbf{a}, b) be a sample from O_{s} let $\mathbf{a}^{\prime}=\mathbf{a}+(r, 0, \ldots, 0)^{T}$ for $r \in \mathbb{Z}_{q}$
2. we have $\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+e=b+r s_{1}$, for $r \in \mathbb{Z}_{q}$
3. for uniform random $r:\left(\mathbf{a}^{\prime}, b+r s_{1}^{\prime}\right)$ is

- LWE pair if $s_{1}=s_{1}^{\prime}$ (distributed accordingly, \mathbf{a}^{\prime} is uniform random)
- uniform random if $s_{1} \neq s_{1}^{\prime}$ (difference $r\left(s_{1}-s_{1}^{\prime}\right)$ is uniform ${ }^{(*)}$)
decide using Decision LWE oracle (iterating + Chernoff bound for negligible error)
- similarly for other coordinates
- running time: $O(n q)$ iterations (efficient for $q \leq \operatorname{poly}(n)^{(* *)}$)
- there is a reduction without assuming q being a prime number ${ }^{(*)}$ and at most polynomial in $n^{(* *)}$ (Brakerski et al. 2013)

Worst case to average case reduction (Search LWE)

- solving LWE for all \mathbf{s} if we can solve it for non-negligible fraction of \mathbb{Z}_{q}^{n}
- input: (A, b)
- iteration:

1. choose uniform random $\mathbf{t} \in \mathbb{Z}_{q}^{n}$
2. try solving LWE for $(\mathbf{A}, \mathbf{b}+\mathbf{A} \cdot \mathbf{t}) \mapsto \mathbf{s}^{\prime}$
if \mathbf{s} is solution for LWE instance (\mathbf{A}, \mathbf{b}) then $\mathbf{s}+\mathbf{t}$ is a solution for the transformed instance:

$$
\mathbf{A} \cdot(\mathbf{s}+\mathbf{t})=\mathbf{A} \cdot \mathbf{s}+\mathbf{A} \cdot \mathbf{t}=(\mathbf{b}+\mathbf{A} \cdot \mathbf{t})-\mathbf{e}
$$

3. if successful, compute $\mathbf{s}=\mathbf{s}^{\prime}-\mathbf{t}$

- use multiple iterations to reduce failure probability
- polynomial if success probability is non-negligible
- similar approach for Decision LWE

Encryption scheme

- Regev (2005)
- private key: $\mathbf{s} \in \mathbb{Z}_{q}^{n}$
- public key: LWE instance (\mathbf{A}, \mathbf{b}), where $\mathbf{b}=\mathbf{A s}+\mathbf{e}$
- possible parameters: q between n^{2} and $2 n^{2}, m=1.1 \cdot n \lg q$
- $\alpha=1 /\left(\sqrt{n} \cdot(\lg n)^{2}\right), \sigma=\alpha q / \sqrt{2 \pi}$
- bit encryption $(\mu \in\{0,1\})$:

1. choose uniform random $\mathbf{r} \in\{0,1\}^{m}$
2. ciphertext: $\left(\mathbf{r}^{T} \mathbf{A},\langle\mathbf{b}, \mathbf{r}\rangle+\mu \cdot\lfloor q / 2\rfloor\right)$

- decryption (ciphertext (\mathbf{a}, b)):

$$
\begin{aligned}
b-\mathbf{a s} & =\langle\mathbf{b}, \mathbf{r}\rangle+\mu \cdot\lfloor q / 2\rfloor-\mathbf{r}^{T} \mathbf{A} \mathbf{s} \\
& =\langle\mathbf{A s}+\mathbf{e}, \mathbf{r}\rangle+\mu \cdot\lfloor q / 2\rfloor-\mathbf{r}^{T} \mathbf{A} \mathbf{s} \\
& =\mathbf{r}^{T}(\mathbf{A s}+\mathbf{e})+\mu \cdot\lfloor q / 2\rfloor-\mathbf{r}^{T} \mathbf{A} \mathbf{s}=\mathbf{r}^{T} \mathbf{e}+\mu \cdot\lfloor q / 2\rfloor
\end{aligned}
$$

if the result is close to 0 output $\mu=0$ (close to $q / 2$, output $\mu=1$)

Correctness and security

- very simple encryption and decryption
- correctness:
- we need $\left|\mathbf{r}^{T} \mathbf{e}\right|<q / 4$
- choose parameters q, σ such that above condition is not satisfied with negligible probability
- IND-CPA secure
- not IND-CCA secure

PQC, FrodoKEM

- FrodoKEM: standard LWE (round 3 "alternate" algorithm for encryption/KEM)
- not a finalist
- computation in ring $\bmod q=2^{15}$ for 128 -bit security level, and $q=2^{16}$ for 192 and 256-bit security levels
- public-key matrix generated pseudorandomly from a public-key seed, ...
- sizes of various parameters (in bytes):

level	private key	public key	ciphertext	
128	19888	9616	9720	FrodoKEM-640
192	31296	15632	15744	FrodoKEM-976
256	43088	21520	21632	FrodoKEM-1344

- more size-efficient schemes - algebraic lattices (structured), e.g. Ring-LWE, Module-LWE

Remarks on FrodoKEM

- NIST Status Report on the 2nd Round:

Plain LWE itself is among the most studied and analyzed cryptographic problems in existence today. The resulting potential security advantages of FrodoKEM are paid for with far worse performance in all metrics than other lattice schemes. ... Use of FrodoKEM would have a noticeable performance impact on high traffic TLS servers ...

FrodoKEM may be suitable for use cases where the high confidence in the security of unstructured lattice-based schemes is much more important than performance.

- single selected algorithm for encryption/KEM: Crystals-Kyber
- learning-with-errors (LWE) problem over module lattices

Some performance numbers

Algorithm	Public key (bytes)	Ciphertext $($ bytes $)$	Key gen. (ms)	Encaps. (ms)	Decaps. (ms)
ECDH NIST P-256	64	64	0.072	0.072	0.072
SIKE p434	330	346	13.763	22.120	23.734
Kyber512-90s	800	736	0.007	0.009	0.006
FrodoKEM-640-AES	9,616	9,720	1.929	1.048	1.064

Table 1: Key exchange algorithm communication size and runtime

Algorithm	Public key (bytes)	Signature (bytes)	Sign (ms)	Verify (ms)
ECDSA NIST P-256	64	64	0.031	0.096
Dilithium2	1,184	2,044	0.050	0.036
qTESLA-P-I	14,880	2,592	1.055	0.312
Picnic-L1-FS	33	34,036	3.429	2.584

Table 2: Signature scheme communication size and runtime
Paquin et al.: Benchmarking Post-Quantum Cryptography in TLS, 2019 https://eprint.iacr.org/2019/1447.pdf

Encryption scheme (inspired by FrodoKEM)

- IND-CPA secure scheme
- $q=2^{D}$ for some $D \leq 16$ (e.g. $D=15$ for Frodo-640)
- $0 \leq B<D$ (e.g. $B=2$), $n=640, n^{\prime}=8$
- support of $\chi=\{-12, \ldots, 12\}, \sigma=2.8$ for sampling error matrices
- generate an instance:
- pseudorandom matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times n}$ generated from a random seed_{A}
- sample error matrices $\mathbf{S}, \mathbf{E}\left(n \times n^{\prime}\right)$
- compute $\mathbf{B}=\mathbf{A B}+\mathbf{E}\left(n \times n^{\prime}\right)$
- public key: $\left(\operatorname{seed}_{A}, \mathbf{B}\right)$
- private key: S

Encryption and encode function

Encryption (plaintext $\mu=\{0,1\}^{B \cdot n^{\prime} \cdot n^{\prime}}$, 128-bit string for our parameters):

1. compute \mathbf{A} from seed ${ }_{A}$
2. sample error matrices: \mathbf{S}^{\prime} and $\mathbf{E}^{\prime}\left(n^{\prime} \times n\right)$, and $\mathbf{E}^{\prime \prime}\left(n^{\prime} \times n^{\prime}\right)$
3. compute $\mathbf{B}^{\prime}=\mathbf{S}^{\prime} \mathbf{A}+\mathbf{E}^{\prime}\left(n^{\prime} \times n\right), \mathbf{V}=\mathbf{S}^{\prime} \mathbf{B}+\mathbf{E}^{\prime \prime}\left(n^{\prime} \times n^{\prime}\right)$
4. ciphertext: $\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)=\left(\mathbf{B}^{\prime}, \mathbf{V}+\operatorname{Encode}(\mu)\right)$

Encode (transform $\{0,1\}^{B \cdot n^{\prime} \cdot n^{\prime}}$ into an $n^{\prime} \times n^{\prime}$ matrix):

1. each B-bit chunk k is transformed into $k \cdot 2^{D-B} \in \mathbb{Z}_{q}$ (set the most significant bits)
2. return $n^{\prime} \times n^{\prime}$ matrix comprised of these elements

Decryption

Decryption (two matrices $\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$):

1. compute $\mathbf{M}=\mathbf{C}_{2}-\mathbf{C}_{1} \mathbf{S}\left(n^{\prime} \times n^{\prime}\right)$
2. decode: for each element c of \boldsymbol{M} decode B bits as follows:

$$
\left\lfloor c \cdot 2^{B-D}\right\rceil \bmod 2^{B} \quad\left(\text { divided by } q / 2^{B} \text { and rounded }\right)
$$

Correctness:

$$
\begin{aligned}
\mathbf{M} & =\mathbf{C}_{2}-\mathbf{C}_{1} \mathbf{S}=\mathbf{V}+\operatorname{Encode}(\mu)-\mathbf{B}^{\prime} \mathbf{S} \\
& =\mathbf{S}^{\prime} \mathbf{B}+\mathbf{E}^{\prime \prime}+\operatorname{Encode}(\mu)-\left(\mathbf{S}^{\prime} \mathbf{A}+\mathbf{E}^{\prime}\right) \mathbf{S} \\
& =\operatorname{Encode}(\mu)+\mathbf{S}^{\prime}(\mathbf{A} \mathbf{S}+\mathbf{E})+\mathbf{E}^{\prime \prime}-\left(\mathbf{S}^{\prime} \mathbf{A}+\mathbf{E}^{\prime}\right) \mathbf{S} \\
& =\operatorname{Encode}(\mu)+\mathbf{S}^{\prime} \mathbf{E}+\mathbf{E}^{\prime \prime}-\mathbf{E}^{\prime} \mathbf{S} \\
& =\operatorname{Encode}(\mu)+\mathbf{E}^{\prime \prime \prime} \quad \text { where } \mathbf{E}^{\prime \prime \prime} \text { should be small }
\end{aligned}
$$

Remarks

- failure rate (wrong decryption) for presented parameters: $2^{-138.7}$
- LWE security (in bits): classical 145, quantum 104
- the scheme can be transformed into IND-CCA KEM scheme
- various transforms exist
- FrodoKEM uses Fujisaki-Okamoto transform

