Code-based encryption schemes

Martin Stanek
Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Coding Theory
Linear codes
Generator matrix, Parity-check matrix

Cryptosystems
McEliece
Niederreiter's variant

Concluding remarks

Coding theory - basics

- motivation: detect and correct errors in data; compress data
- important classes of error-correcting codes
- linear codes
- convolution codes
- some problems in coding theory are hard
- possible use for cryptographic schemes
- some notation:
- \mathbf{F}_{q} - finite field with q elements $(\operatorname{GF}(q))$; often $q=2$
- Hamming weight of a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{F}_{q}^{n}$: $\mathrm{wt}(x)=\left|\left\{i ; x_{i} \neq 0,1 \leq i \leq n\right\}\right|$
- Hamming distance of two vectors $x, y \in \mathbf{F}_{q}^{n}$: $\operatorname{dist}(x, y)=\left|\left\{i ; x_{i} \neq y_{i}, 1 \leq i \leq n\right\}\right|$

Linear codes

A q-ary linear $[n, k]$ code C is a k-dimensional subspace of \mathbf{F}_{q}^{n}.

- n - length, k-dimension
- encoding/transforming k-tuple into n-tuple
- codewords - set of all elements in C
- generator matrix $G \in \mathbf{F}_{q}^{k \times n}$ of the code $C: C=\left\{x G ; x \in \mathbf{F}_{q}^{k}\right\}$
- G describes an encoder for C : given $x \in \mathbf{F}_{q}^{k}$, codeword is $x G$
- systematic (standard) form of generator matrix $G=\left(\mathbf{I}_{k} \mid R\right)$
- distance of a linear code: $d=\min \{\mathrm{wt}(c) ; c \in C \backslash\{0\}\}$ equivalently, $d=\min \{\operatorname{dist}(b, c) ; b, c \in C\}$
- $[n, k, d]$ code
- error $e \in \mathbf{F}_{n}^{k}: c \mapsto c+e$
- can detect any error with $\mathrm{wt}(e) \leq d-1$
- can correct any error with weight up to $\lfloor(d-1) / 2\rfloor$

Hamming $(7,4)$ code

- codeword length 7: 4 data bits, 3 parity bits
- linear code with with distance 3, i.e. it corrects any single-bit error
- generator matrix:

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- encoding examples:
- $(0,0,0,0) \mapsto(0,0,0,0,0,0,0)$
- (1,0,0,1) $\mapsto(1,0,0,1,1,0,0)$
- $(0,0,1,1) \mapsto(0,0,1,1,0,0,1)$

Parity-check matrix

- q-ary linear $[n, k]$ code C
- testing whether $c \in \mathbf{F}_{q}^{n}$ is a codeword of C (what linear relations must hold in the codeword)
- matrix $H \in \mathbf{F}_{q}^{(n-k) \times n}$, for any $c \in \mathbf{F}_{q}^{n}: c H^{\top}=0 \Leftrightarrow c \in C$
- H can be constructed easily from G given in a systematic form:

$$
G=\left(\mathbf{I}_{k} \mid R\right) \Rightarrow H=\left(-R^{\top} \mid \mathbf{I}_{n-k}\right)
$$

- we get: $G H^{\top}=-R+R=0$
- syndrome for any $x \in \mathbf{F}_{q}^{n}: s=x H^{\top}$
- $s=0 \Leftrightarrow c \in C$
- codeword c with an error $e: s=(c+e) H^{\top}=e H^{\top}$
- syndrome decoding by lookup table of syndromes for all (viable) errors

Hamming $(7,4)$ code

- parity-check matrix (one of many):

$$
H=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- syndromes:
- $(0,0,1,1,0,0,1) H^{\top}=(0,0,0)$
- $(1,0,1,1,0,0,1) H^{\top}=(1,0,0)$
- $(0,0,1,0,0,0,1) H^{\top}=(0,0,1)$
- $(0,0,1,1,0,1,1) H^{\top}=(0,1,1)$
- $(0,0,1,1,0,0,0) H^{\top}=(1,1,1)$

Binary BCH $(31,11)$ code

- codeword length 31: 11 bits of data, 20 checksum bits
- corrects up to 5 errors
- generator matrix (a cyclic code):

Some complexity problems

- random binary linear code
- defined by a random generator/parity-check matrix (chosen uniformly)
- (near) optimal properties
- decoding is hard
- decoding, i.e. for given H and syndrome s compute a minimum weight e such that $e H^{\top}=s$, is NP-hard
- computing distance of a code is NP-hard
- worst-case complexity
- codes used in practice must have an efficient decoding algorithm
- Reed-Solomon, Goppa, Reed-Muller, BCH, alternant, LDPC (Gallager), ...

McEliece cryptosystem

- Robert McEliece, 1978
- originally proposed with irreducible binary Goppa codes
- other codes can be used (be very careful - lots of broken proposals)
- initialization:

1. select random binary linear $[n, k]$ code C that corrects up to t errors; let G be a generator matrix for C
(C must have an efficient decoder $\mathcal{D}: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{k}$)
2. select random $n \times n$ permutation matrix P
3. select random $k \times k$ non-singular binary matrix S
4. compute $G^{\prime}=S G P$
private key: (G, S, P, \mathcal{D})
public key: $\left(G^{\prime}, t\right)$

McEliece cryptosystem - encryption and decryption

- encryption of plaintext $m \in \mathbf{F}_{2}^{k}$:

1. choose random $e \in \mathbf{F}_{2}^{n}$ such that $\mathrm{wt}(e)=t$
2. ciphertext: $c=m G^{\prime}+e$

- decryption of ciphertext $c: m=\mathcal{D}\left(c P^{-1}\right) S^{-1}$
- for permutation matrix $P^{-1}=P^{T}$
- efficient computation of $c P^{-1}$ just rearranges the ciphertext vector (the permutation is fixed)
- correctness:
- $c P^{-1}=(m S G P+e) P^{-1}=m S G+e P^{-1}$
- $\mathrm{wt}\left(e P^{-1}\right)=t \quad(P$ is a permutation matrix $)$
- $\quad(m S) G$ is a codeword, and \mathcal{D} can correct up to t errors, therefore $\mathcal{D}\left(c P^{-1}\right)=m S$
- finally, $(m S) S^{-1}=m$

Niederreiter's variant

- Harald Niederreiter, 1986
- variant of McEliece cryptosystem
- equivalent security
- faster decryption
- smaller public key
- syndrome decoder computes e for given syndrome $\mathrm{eH}^{\top}(\mathrm{wt}(e) \leq t)$
- initialization:

1. select random binary linear $[n, k]$ code C that corrects up to t errors; let H be a parity-check matrix for C
(C has an efficient syndrome decoder $\mathcal{D}: \mathbf{F}_{2}^{n-k} \rightarrow \mathbf{F}_{2}^{n}$)
2. select random $n \times n$ permutation matrix P
3. select random $(n-k) \times(n-k)$ non-singular binary matrix S
4. compute $H^{\prime}=S H P$
private key: (H, S, P, \mathcal{D})
public key: $\left(H^{\prime}, t\right)$

Niederreiter's variant - encryption and decryption

- plaintexts: $\left\{e \in \mathbf{F}_{2}^{n} ; \mathrm{wt}(e)=t\right\}$
- encryption of plaintext $e \in \mathbf{F}_{2}^{n}: c=H^{\prime} e^{\top}$
- decryption of ciphertext $c: e=\mathcal{D}\left(\left(S^{-1} c\right)^{\top}\right) \cdot\left(P^{\boldsymbol{T}}\right)^{-1}$
- correctness:
- $\left(S^{-1} c\right)^{\mathrm{T}}=\left(S^{-1} H^{\prime} e^{\mathrm{T}}\right)^{\mathrm{T}}=\left(H\left(P e^{\mathrm{T}}\right)\right)^{\mathrm{T}}=\left(e P^{\mathrm{T}}\right) H^{\mathrm{T}}$
- $\mathrm{wt}\left(e P^{\mathrm{T}}\right)=t \quad(P$ is a permutation matrix)
- \mathcal{D} computes $e P^{\top}$, and e can be recovered: $e P^{\top} \cdot P$ (recall, $P^{-1}=P^{T}$)
- symmetric key transfer:
- generate random e with $\mathrm{wt}(e)=t$
- symmetric key for encryption/authentication computed by hashing e

McEliece/Niederreiter - remarks

- very fast encryption (vector-matrix multiplication)
- fast decryption possible (e.g. McBits, binary.cr.yp.to/mcbits.html)
- two types of attacks:
- generic attacks, e.g. information-set decoding
- structural attacks (specific structure of the code)
- the main problem of these systems: key size
- codes with shorter representation, e.g. Quasi-cyclic Moderate-Density Parity-Check (QC-MDPC) code

PQC Competition

- round 4 (2022): extra round for Encryption/KEM category
- 4 algorithms, SIKE already broken!
- Classic McEliece - binary Goppa codes, Niederreiter variant
- merger of Classic McEliece and NTS-KEM
- Parameters for some of the proposed Classic McEliece instances:

security	n	m	$k=n-m t$	t	
128	3488	12	2720	64	mceliece348864
192	4608	13	3360	96	mceliece 460896
256	6688	13	5024	128	mceliece 6688128

- Sizes of parameters for some of the proposed Classic McEliece instances (bytes):

security	public key	private key	ciphertext	
128	261120	6452	128	mceliece348864
192	524160	13568	188	mceliece460896
256	1044992	13892	240	mceliece 6688128

Classic McEliece - remarks

- NIST Status Report on the 3nd Round:

Classic McEliece has a very large public key size and fairly slow key generation. Confidence in the security of the 1978 scheme is mostly established based on the scheme's long history of surviving cryptanalysis with only minor changes in the complexity of the best-known attack
NIST is confident in the security of Classic McEliece and would be comfortable standardizing the submitted parameter sets (under a different claimed security strength in some cases).

Key encapsulation in Classic McEliece

- ... and OW-CPA \mapsto IND-CCA2 transformation
- H is a hash function
- Encapsulation and session key:
- e is random with wt $(e)=t$
- ciphertext $C=\left(C_{0}, C_{1}\right)$, where C_{0} is the public-key encryption of e, and $C_{1}=H(2, e)$
- session key $K=H(1, e, C)$
- Decapsulation for $\left(C_{0}, C_{1}\right)$:
- set $b=1$
- decrypt C_{0} to get e (if error: set $b=0$ and $e=s$ for some s)
- verify that $H(2, e)=C_{1}$ (if not: set $b=0$ and $e=s$)
- compute session key $K=H(b, e, C)$

