
Hash-based signature schemes

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Lamport scheme
improvements

WOTS and WOTS+

Merkle hash tree
Merkle Signature Scheme (MSS)

XMSS

Stateless schemes

Hash-based signature schemes 2 / 31

Introduction

▶ signature scheme resistant to quantum computers
▶ security is not based on hardness of factorization, discrete log etc.
▶ security based on properties of hash functions, such as preimage

resistance, 2nd preimage resistance, collision resistance
▶ we discuss some schemes and their limitations

▶ number of signing operations
▶ state
▶ key/signature length

Hash-based signature schemes 3 / 31

Lamport scheme

▶ Lamport (1979)
▶ f : X → Y (for example a hash function)
▶ message/hash m = m1,m2, … ,mn ∈ {0, 1}n

▶ private key: xi,j
$← X for i = 1, … , n, j ∈ {0, 1}

▶ public key: yi,j = f (xi,j)
▶ signature 𝜎 = (x1,m1 , x2,m2 , … , xn,mn)
▶ verification of 𝜎 = (𝜎1, … ,𝜎n) given m:

f (𝜎i)
?
= yi,mi i = 1, … , n.

Hash-based signature schemes 4 / 31

Lamportova scheme – remarks

▶ one-time signature scheme
▶ signing two messages (if they differ in more than one bit)⇒ combine

their signatures to forge signature for a new message
▶ signing a hash does not help – signatures of O(lg n) messages are enough

to cover 0 and 1 on almost all hash positions
▶ key length for 256-bit hash function f and for n = 256:

▶ public key: 2 · 256 · 256 = 16 KiB
▶ private key: 16 KiB (for 256-bit values xi,j)

▶ signature length: 8 KiB
▶ speed is not a problem

Hash-based signature schemes 5 / 31

Lamport scheme – improvements (1)

▶ Merkle (1979)
▶ short private key

▶ generate the values with PRNG or PRF
▶ short public key

▶ y = H(y1,0, y1,1, … , yn,0, yn,1)
▶ values yi,1−mi , i.e., those not used in signing, are explicitly added to the

signature (making it 2 times longer)
▶ verification: computation of yi,mi and verification of y

Hash-based signature schemes 6 / 31

Lamportova scheme – improvements (2)

▶ reducing the length of keys and signatures by half (approx.):
▶ add ⌊lg n⌋ + 1 bits to the message (or its hash), counting 0 bits:

m′ = m | | (#0m)2
▶ let n′ = n + ⌊lg n⌋ + 1
▶ private key: xi

$← X for i = 1, … , n′
▶ public key: yi = f (xi)
▶ signature is a sequence:

(xi)i∈I for I = {1 ≤ i ≤ n′ | m′i = 1}

▶ m′ contains at least one bit 1
▶ change from 0 to 1 in m – corresponding xi is not in the signature
▶ change from 1 to 0 in m – more zeroes, hence at least one 0 changes to 1

in the counter and corresponding xi is not in the signature

Hash-based signature schemes 7 / 31

WOTS

▶ WOTS – Winternitz one time signature
▶ reducing signature length and increasing time complexity (TMTO)
▶ key-dependent function f : X × X → X (like MAC)

▶ notation: f (k, x) = fk (x)
▶ iterating f :

▶ f 0k (x) = k, f 1k (x) = fk (x), f 2k (x) = ffk (x) (x), . . .
▶ f rk (x) = ff r−1k (x) (x), for r ≥ 1
▶ other WOTS variants, such as direct iteration of (hash) function, require

stronger security assumptions (collision resistance)

▶ parameter w > 1, for example w = 16 or w = 32
▶ w-ary representation of m

▶ m = (m1, … ,ml1), where 0 ≤ mi < w for i = 1, … , l1
▶ checksum: C =

∑l1
i=1(w − 1 −mi)

▶ let l = l1 + l2, where l2 is a maximal length of C (w-ary representation)

Hash-based signature schemes 8 / 31

WOTS (2)

▶ private key: k1, … , kl
$← X

▶ public key: (x , y1, … , yl), where
▶ x

$← X
▶ yi = f w−1ki

(x) for i = 1, … , l

▶ signing:
1. split message and its checksum into blocks: m | | C ↦→ m1, … ,ml
2. signature 𝜎 = (𝜎1, … ,𝜎l) = (f m1

k1
(x), … , f ml

kl
(x))

▶ signature verification:
1. given m; compute its checksum and split both into blocks
2. verify

f w−1−mi
𝜎i

(x) ?
= yi i = 1, … , l

Hash-based signature schemes 9 / 31

WOTS (3)

▶ correctness is trivial
▶ the scheme is insecure without the checksum:

▶ the attacker takes 𝜎i for mi and for any m′i > mi he can compute

𝜎 ′i = f
m′i
ki
(x) = f

(m′i−mi)
𝜎i (x)

▶ 𝜎 ′i is a correct signature for i-th block m′i
▶ the checksum prevents these shifts

▶ still one-time scheme

Hash-based signature schemes 10 / 31

WOTS – a sample parameters instantiation

▶ key length (let f be a 256-bit hash function, and |m| = 256):
▶ for w = 16: l1 = 256/4 = 64, l2 = ⌊lg(64 · 15)/4⌋ + 1 = 2
▶ we get l = 66
▶ public key: (l + 1) · 256 ≈ 2.1 KiB
▶ private key: l · 256 ≈ 2.1 KiB (for 256-bit values)

▶ signature length: l · 256 ≈ 2.1 KiB
▶ approx. lgw = 4 time shorter than in the original Lamport scheme

▶ speed – comparison with the original Lamport scheme
▶ signing: ≈ l · w/2 calls of f vs. 0
▶ verification: ≈ l · w/2 calls of f vs. |m| calls (WOTS is approx. w/(2 · lgw)

times slower)

Hash-based signature schemes 11 / 31

WOTS+

▶ Hülsing (2013)
▶ similar to WOTS, different iteration of f ⇒ tighter security proof

▶ weaker or more standard security assumptions (f properties)
▶ WOTS+ as a replacement for WOTS in other schemes

▶ iteration of f : K × X → X
▶ input: key k ∈ K , x ∈ X , counter i ∈ N, randomizing values r = (r1, … , rj)

for j ≥ i
▶ computation:

c0k (x , r) = x

c1k (x , r) = fk (c0k (x , r) ⊕ r1)
…

cik (x , r) = fk (ci−1k (x , r) ⊕ ri)

Hash-based signature schemes 12 / 31

WOTS+ (2)

▶ parameters w , l = l1 + l2 just like in WOTS

▶ private key: x1, … , xl
$← X

▶ public key: ((r, k), y1, … , yl)
▶ k

$← K
▶ r = (r1, … , rw−1), where ri

$← X
▶ yi = cw−1k (xi , r), for i = 1, … , l

▶ signing:
1. (just like WOTS) split message and its checksum into blocks:

m | | C ↦→ m1, … ,ml
2. signature 𝜎 = (𝜎1, … ,𝜎l) = (cm1

k (x1, r), … , cml
k (xl , r))

Remark: The checksum ensures that for given m1, … ,ml any other message
contains at least one m′j < mj .

Hash-based signature schemes 13 / 31

WOTS+ (3)

▶ verification:
1. split m and its checksum into blocks
2. verify

cw−1−mi
k (𝜎i , rmi+1,w−1)

?
= yi i = 1, … , l

where rmi+1,w−1 = (rmi+1, … , rw−1)

▶ reducing the key length:
▶ values yi in WOTS a WOTS+ are computed in verification, the public key

can be replaced by their hash
▶ values in r can be generated from a seed (PRNG)
▶ similarly for values in the private key

Hash-based signature schemes 14 / 31

Merkle hash tree

▶ Merkle, 1979
▶ signature scheme for a single message is impractical
▶ multiple one-time signature schemes

▶ combined together into one tree-like structure
▶ Merkle hash tree – various applications, e.g.,

▶ file systems (ZFS), BitTorrent, Bitcoin, Git, . . .
▶ binary tree:

▶ input: data z0, … , z2h−1, for h ≥ 1
▶ assume 2h input data for simplicity
▶ H – hash function
▶ values in the leaf nodes: H(zi), for i = 0, … , 2h − 1
▶ value in the node v : H(a | | b), where a (or b) is the value of the left (or

right) child of v

Hash-based signature schemes 15 / 31

Example

H(z0) H(z1)
α000 α001

α00 = H(α000 ||α001)

H(z2) H(z3)
α010 α011

α01 = H(α010 ||α011)

H(z4) H(z5)
α100 α101

α10 = H(α100 ||α101)

H(z6) H(z7)
α110 α111

α11 = H(α110 ||α111)

α0 = H(α00 ||α01) α1 = H(α10 ||α11)

α = H(α0 ||α1)

Merkle hash tree for h = 3

Hash-based signature schemes 16 / 31

Merkle Signature Scheme (MSS)

▶ leaf data – public keys of OTS schemes
▶ public key: root value of the Merkle hash tree
▶ private key:

▶ key for some (suitable) algorithm to generate OTS schemes
▶ alternatively a sequence of OTS schemes private keys

▶ we are able to sign up to 2h messages:
▶ use OTS schemes sequentially one by one
▶ saved state – counter of already used OTS schemes

▶ a signature contains:
▶ signature using next OTS scheme
▶ public key of this OTS scheme
▶ authentication path

Hash-based signature schemes 17 / 31

Authentication path

▶ authentication path for a given leaf:
▶ a sequence of sibling nodes values on the path to the root
▶ it allows to compute the root value from leaf and additional h values

H(z0) H(z1)
α000 α001

α00 = H(α000 ||α001)

H(z2) H(z3)
α010 α011

α01 = H(α010 ||α011)

H(z4) H(z5)
α100 α101

α10 = H(α100 ||α101)

H(z6) H(z7)
α110 α111

α11 = H(α110 ||α111)

α0 = H(α00 ||α01) α1 = H(α10 ||α11)

α = H(α0 ||α1)

authentication path for 𝛼010: auth(𝛼010) = (𝛼011,𝛼00,𝛼1)

Hash-based signature schemes 18 / 31

MSS – verification

▶ input:
▶ MSS public key (root value)
▶ message
▶ signature in OTS scheme and its public key
▶ authentication path

▶ verification steps:
1. verify signature in OTS scheme
2. compute a root value (from public key and authentication path)
3. compare the root value with the public key of MSS

▶ security depends on properties of these elements:
▶ H used in Merkle hash tree
▶ used OTS scheme
▶ cryptographic constructions used in generation of OTS schemes

Hash-based signature schemes 19 / 31

MSS – remarks

▶ all OTS schemes and entire tree must be generated for MSS
instantiation
▶ limit on h (big trees are impractical), and therefore on the number of

signatures
▶ authentication path computation:

▶ Merkle tree traversal – sequential computation of authentication paths
▶ possible in linear time and memory O(h) (per authentication path)

▶ What if 2h OTS schemes were used?
▶ generate a new instance (tree) and distribute public key
▶ use the last OTS scheme to sign a new tree
▶ create a sufficiently large instance such so this does not happen

▶ signatures are longer (authentication path) – h hash values
▶ size of the tree impact the length of the signature

Hash-based signature schemes 20 / 31

MSS – remarks (2)

▶ if WOTS (WOTS+) is used in MSS
▶ public key of OTS scheme is computed from signature (beside x for WOTS

or (r, k) for WOTS+)
▶ signature is shorter, this idea used, for example, in XMSS

▶ problem in MSS: no longer one-time scheme but now it is stateful
▶ important for security: avoid using a OTS scheme multiple times
▶ important for efficiency: authentication path computation

▶ state might be acceptable for some use cases
▶ for example CA signs certificates in HSM

▶ in general having state is undesirable and potential problem
▶ load-balancing, system recovery from backups (old state), etc.

Hash-based signature schemes 21 / 31

XMSS (eXtended Merkle Signature Scheme)

▶ Buchmann, Dahmen, Hülsing (2011)
▶ modification of Merkle hash tree

▶ xor masks when aggregating
▶ L-trees hanging in leaves – storing public keys for WOTS schemes

(hashing public key – useful in security proofs)
▶ assumption of second preimage resistance is sufficient, instead of collision

resistance
▶ using WOTS – public key not needed in signature

▶ it can be computed from signature and verified when verifying XMSS tree
▶ masks (random string with suitable length)

▶ left and right masks chosen for each non-leaf height

Hash-based signature schemes 22 / 31

XMSS tree

. . .

root of L-tree (for public key in WOTS scheme)

α010 α011

α01 = H(α010 ⊕ bl2 ||α011 ⊕ br2)

α0 = H(α00 ⊕ bl1 ||α01 ⊕ br1) α1 = H(α10 ⊕ bl1 ||α11 ⊕ br1)

α = H(α0 ⊕ bl0 ||α1 ⊕ br0)

.

(new set of masks, shared among all L-trees)

Hash-based signature schemes 23 / 31

XMSS – remarks

▶ L-tree
▶ construction like XMSS tree (new independent masks, but same for each

L-tree)
▶ leaves – public keys for WOTS scheme (x , y1, … , yl)
▶ not necessary a power of 2, but still binary tree

▶ still stateful
▶ example parameters (proposed in 2011):

▶ h = 20, capacity for 220 signatures
▶ SHA-256, public/private key length: 13 568 / 280 bits
▶ w = 16⇒ signature 22 296 bits; 196-bit security
▶ w = 64⇒ signature 16 664 bits; 146-bit security

▶ a more recent proposal: RFC 8391 (2018)

Hash-based signature schemes 24 / 31

Stateless schemes

▶ remove state from the scheme
▶ basic idea by Goldreich: a huge binary tree, for example h = 256

▶ every node represents an OTS scheme
▶ every scheme can be generated using private key and position of the node

(PRF/PRNG)

▶ private key: random bit string
▶ public key: public key of OTS scheme in the root of the tree (Y)

Hash-based signature schemes 25 / 31

Signature

▶ signing message m:
1. H(m) denotes a concrete leaf 𝛽 in the tree
2. compute keys for OTS schemes for all nodes (and their siblings) on path

from 𝛽 to the root (let public keys Y l
h,Y

r
h , … ,Y l

1,Y
r
1)

3. sign H(m) using OTS scheme for 𝛽 ↦→ 𝜎m)
4. every siblingly pair of public keys is signed by OTS scheme for their

parent node, obtaining signatures (𝜎0,𝜎1, … ,𝜎h−1), where 𝜎0 is the
signature in the root

5. signature: 𝜎 = (𝜎m,𝜎0, … ,𝜎h−1,Y l
1,Y

r
1 , … ,Y l

h,Y
r
h)

Hash-based signature schemes 26 / 31

Verification

▶ input:
▶ message m (or H(m))
▶ public key for root OTS scheme Y
▶ signature 𝜎 = (𝜎m,𝜎0, … ,𝜎h−1,Y l

1,Y
r
1 , … ,Y l

h,Y
r
h)

▶ verification steps:
1. determine a leaf 𝛽 from H(m)
2. verify signature 𝜎m (using Y l

h or Y
r
h)

3. verify certification path, i.e. signatures (𝜎0, … ,𝜎h−1), using public keys
from 𝜎 and using public key Y for 𝜎0 verification

▶ state not needed, probability of collision is negligible
▶ signature in any node is always the same

▶ public keys of children are certified
▶ OTS scheme is sufficient

▶ problem: very long signatures, not practical

Hash-based signature schemes 27 / 31

How to optimize stateless scheme

▶ usually a combination of multiple techniques
▶ deterministic/pseudorandom leaf selection in the tree
▶ using few-time signature schemes instead of WOTS in leaves

▶ just for message signing
▶ secure signing of few messages (e.g. 4)
▶ smaller tree (less leaves)
▶ examples: HORS, HORST, FORS

▶ change the structure from a single huge tree to multiple levels of smaller
Merkle trees

Hash-based signature schemes 28 / 31

Stateless scheme optimizations (2)

Source: D. Bernstein et al.: The SPHINCS+ Signature Framework (2019)

Hash-based signature schemes 29 / 31

PQC standardization
▶ SPHINCS+ if one of the three selected signature schemes for

standardization
▶ FIPS 205 (Draft) Stateless Hash-Based Digital Signature Standard
▶ SLH-DSA based on SHAKE or SHA2 hash functions

▶ NIST Third Round Status Report:

SPHINCS+ was selected for standardization because it provides a workable (albeit
rather large and slow) signature scheme whose security seems quite solid and is
based on an entirely different set of assumptions than those of our other signature
schemes to be standardized.

▶ lengths in bytes (s – size-optimized (small), f – speed-optimized (fast)):

level public key signature
128 32 7 856 s
128 32 17 088 f
256 64 29 792 s
256 64 49 856 f

Hash-based signature schemes 30 / 31

Conclusion

▶ hash-based signature schemes
▶ limited number of signatures
▶ simple principles, usually simple requirements/assumptions
▶ optimization aiming at practicality and weaker assumptions complicate

construction

Hash-based signature schemes 31 / 31

	Lamport scheme
	improvements

	WOTS and WOTS+
	Merkle hash tree
	Merkle Signature Scheme (MSS)

	XMSS
	Stateless schemes

