Password Authenticated Key Exchange

Martin Stanek
Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Motivation

- authenticate user/client using a password
- common scenario for authentication in web application:
- TLS, server authentication, secure channel
- username/password login form, server verifies submitted password
- some problems with this approach ...
- phishing attacks - login to fake web site
- attacker gets all authentication data (username, password)
- multi-factor authentication can mitigate the risk
- TLS might not be available
- PAKE - Password Authenticated Key Exchange (agreement)

Goal: (mutual) authentication of two or more parties and establishing keys for subsequent communication

Passwords

- special type of shared secret
- easy to use
- potential problems: guessing (low entropy), brute-force attack
- limited length ("small" set of possible passwords)
- passwords from various dictionaries
- patterns/non-uniform selection of passwords

Simple authentication protocol

- challenge/response protocol
- (+) password not transmitted in plaintext
- notation: password P, hash function H

C	\longleftrightarrow	S
$v=H(P, r)$	$C, v \longrightarrow r$	selects random r
$v \stackrel{?}{=} H(P, r)$		

- drawbacks:
- one way authentication (only C is authenticated)
- attacker can accept any v and continue the session with C
- MITM attack: attacker relays communication between C and S
- no session key agreed in the protocol

Simple key-agreement protocol

- Diffie-Hellman protocol (using a group where CDH is hard)
- MITM attack (cause: unauthenticated exchange of parameters)
- notation: generator g

C	\longleftrightarrow	S
selects random a		
$A=g^{a}$	$A \longrightarrow$	selects random b
	$\longleftarrow B$	$B=g^{b}$
$K=B^{a}=g^{a b}$		$K=A^{b}=g^{a b}$

Simple AKE protocol

Goals: password never sent as a plaintext, authenticate both parties, agree on a session key, prevent MITM attack

selects random a, r_{C}

$$
\begin{array}{ccc}
A=g^{a} & C, A, r_{C} \longrightarrow & \text { selects random } b \\
& \longleftarrow B, r_{S}, E_{P}(H(0, \mathrm{msg})) & B=g^{b}
\end{array}
$$

verifies $E_{P}(\ldots)$

$$
\begin{array}{cc}
K=B^{a}=g^{a b} \quad E_{P}(H(1, \mathrm{msg})) \longrightarrow \quad \begin{array}{l}
\text { verifies } E_{P}(\ldots) \\
K=A^{b}=g^{a b}
\end{array}
\end{array}
$$

- notation: msg $=C\|A\| B\left\|r_{C}\right\| r_{S} ; H$ is a hash function
- E_{P} - e.g. symmetric cipher or MAC_{P}, key is derived from P
- problem: offline dictionary attack - testing passwords offline using eavesdropped communication

EKE (Encrypted Key Exchange) - general description

- Bellovin, Merritt (1992)
- first PAKE protocol
- prevents offline dictionary attack (and achieves previous goals as well)

C	\longleftrightarrow	S
generates $\left(p k_{C}, s k_{C}\right)$	$C, E_{P}\left(p k_{C}\right) \longrightarrow$	
decrypts K	$E_{P}\left(E_{p k_{C}}(K)\right)$	selects random K
selects random r_{C} verifies r_{C}	$E_{K}\left(r_{C}\right) \longrightarrow$	decrypts r_{C}
	$E_{K}\left(r_{C}, r_{S}\right)$	select random r_{S} $E_{K}\left(r_{S}\right) \longrightarrow$
verifies r_{S}		

- notation: $\left(p k_{C}, s k_{C}\right)$ pair of keys for asymmetric encryption; $E_{p k_{C}}$ public-key encryption, E_{p} symmetric encryption using a key derived from P; K session key

EKE remarks

- EKE is secure against offline dictionary attack, if all (or almost all) decryptions for distinct passwords yield
- valid public keys for message in the first step
- valid ciphertexts for message in the second step
- implementation problem - choosing suitable encryption schemes (symmetric and public-key)
- partition attack
- offline attack
- if decryption with P^{\prime} yield an incorrect/impossible public key, then $P \neq P^{\prime}$
- example: RSA ... n with small factors, even e
- multiple runs of the protocol \Rightarrow password is uniquely determined
- E_{P} should not leak information about P

DH-EKE

- variant of EKE with DH protocol for key agreement
- only modular groups (!)
- this variant follows the original proposal (Bellovin, Merritt, 1992):

C
\longleftrightarrow S
selects random a

$$
A=g^{a} \quad C, E_{P}(A) \longrightarrow \quad \text { selects random } b
$$

$$
\begin{gathered}
B=g^{b} \\
K=A^{b}=g^{a b}
\end{gathered}
$$

decrypts $r_{S} \longleftarrow E_{P}(B), E_{K}\left(r_{S}\right)$ selects random r_{S}

$$
K=B^{a}=g^{a b}
$$

selects random r_{C}
verifies $r_{C} \longleftarrow E_{K}\left(r_{C}\right)$

DH-EKE remarks

- more refined version of the protocol is EAP-EKE (RFC 6124), e.g.
- separate keys are derived for the protocol itself and for session
- encryption with MAC used for messages containing nonces (here: r_{C}, r_{s})
- additional data are computed, using a key derived from the shared key and all messages up to given point - protects integrity of the negotiated parameters
- explicit requirements for groups, e.g. g is a primitive element (generator) of the group, p is a "safe" prime
- explicit list of suitable groups and their generators
- what if g is not a generator:
- decrypt $E_{p^{\prime}}(A)$ and $E_{p^{\prime}}(B)$ using password P^{\prime}
- if a generator is obtained, P^{\prime} is incorrect
- there is $\approx 50 \%$ generators in groups with safe prime modulus, i.e. $q=2 q^{\prime}+1$ (where q^{\prime} is a prime)

Problems with EKE (DH-EKE, EAP-EKE)

- server knows the password (plaintext)
- successful attack on server results in compromised passwords
- passwords should be stored "salted" (best practice, recommendation)
- after a breach the offline dictionary attack is always possible - an attacker can test passwords by recomputing the stored value, or by simulating the server side of the protocol
- we don't want to make it easier by storing plaintext passwords
- DH constructions are hard to translate to elliptic curves
- How to ensure that decryption with wrong password yields a point on elliptic curve?

Secure Remote Password protocol (SRP)

- PAKE protocol, server does not store password in plaintext
- other properties are preserved (prevention of offline dictionary attack etc.)
- original proposal: Thomas Wu (1998)
- RFC 2945 (2000) version SRP-3
- using SRP-6 (2002) together with TLS: RFC 5054 (2007)
- other standardization: IEEE P1363.2, ISO IEC 11770-4
- 1Password Security Design (2023):

We do not rely on traditional authentication mechanisms, but instead use Secure Remote Password (SRP) to avoid most of the problems of traditional authentication.

- Apple uses SRP in iCloud, according Apple Platform Security (2022): The HSM cluster verifies that a user knows their iCloud Security Code using Secure Remote Password protocol (SRP); the code itself isn't sent to Apple.

Evolution of SRP: SRP-3

- T. Wu, The Secure Remote Password Protocol, 1998
- RFC 2945, The SRP Authentication and Key Exchange System
- protocol slightly differs in these documents (we will follow the first one)
- explicit choice of random u vs. derivation of u from B
- construction of the first verification message M_{1}
- calculation in $\operatorname{GF}(n)$, where n is a large prime
- both operations are used ("+" and ".")
- notation:
- g - generator of $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$
- password P
- random salt s
- hash function H
- P is stored on server as a verifier $v=g^{x}$, where $x=H(s, P)$

SRP-3 - protocol

selects random a

$$
\begin{array}{ccc}
A=g^{a} & C, A \longrightarrow & \text { selects random } b, u \\
& \longleftarrow s, B, u & B=v+g^{b}
\end{array}
$$

computes:
$x=H(s, P)$
$S=\left(B-g^{x}\right)^{a+u x}$
$K=H(S)$
$M_{1}=H(A, B, K)$
verifies M_{2}
$\mathrm{M}_{1} \longrightarrow$
$\longleftarrow M_{2}$

SRP-3 - protocol

selects random a

$$
\begin{array}{ccc}
A=g^{a} & C, A \longrightarrow & \text { selects random } b, u \\
& \longleftarrow s, B, u & B=v+g^{b}
\end{array}
$$

computes:
$x=H(s, P)$
$S=\left(B-g^{X}\right)^{a+u x}$
$K=H(S)$
$M_{1}=H(A, B, K)$
verifies M_{2}

computes:$x=H(s, P)$		computes:$S=\left(A v^{u}\right)^{b}$
$S=\left(B-g^{x}\right)^{a+u x}$		$K=H(S)$
$K=H(S)$		
$\begin{gathered} M_{1}=H(A, B, K) \\ \text { verifies } M_{2} \end{gathered}$	$\begin{aligned} & M_{1} \longrightarrow \\ & \leftarrow M_{1} \end{aligned}$	verifies M_{1} $M_{2}=H\left(A, M_{1}, K\right)$

- computation of shared secret S :
- client: $\left(B-g^{x}\right)^{a+u x}=\left(g^{x}+g^{b}-g^{x}\right)^{a+u x}=g^{a b+u b x}$
- server: $\left(A v^{u}\right)^{b}=\left(g^{a} \cdot g^{x u}\right)^{b}=g^{a b+u b x}$

SRP-3 - security goals

- assumption: active attacker with ability to eavesdrop and manipulate transmitted data
- What security goals does SRP have?
- confidentiality of P and x
- confidentiality of K
- security against offline dictionary attack

SRP-3 - remarks (1)

- Why B depends on v ?
- simpler alternative: $B=g^{b}, C$ does not need to compute g^{x}, rest of the protocol intact
- attacker E asks the server for s and then impersonates the server

1. $C \rightarrow E(S): C, A=g^{a}$
2. $E(S) \rightarrow C: s, B=g^{b}, u$, for randomly selected b, u
3. $C \rightarrow E(S): M_{1}=H(A, B, K)$, where $S=B^{a+u x}$ and $K=H(S)$

- now E can perform this offline dictionary attack:
- E computes x^{\prime}, v^{\prime} for a password P^{\prime} and then computes $S^{\prime}=\left(A v^{\prime \prime}\right)^{b}$ and $K^{\prime}=H\left(S^{\prime}\right)$
- if $P=P^{\prime}$ then those values are equal to values computed by C
- E verifies this with check $H\left(A, B, K^{\prime}\right)=M_{1}$
- " $+v$ " prevents attack - the attacker can't use a single instance to test unlimited number of passwords (he must choose v^{\prime} that C substracts)
- Exercise: What is wrong with this modification?
- use $B=v \cdot g^{b}$ and C computes $S=\left(B / g^{x}\right)^{a+u x}$
- advantage: we work only in the group $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$

SRP-3 - remarks (2)

- Why is u random, instead of some constant?
- attacker E can impersonate C
- assumptions: E obtains v and s (knowing v requires access to server's data)

1. $E(C) \rightarrow S: C, A=g^{a} \cdot v^{-u}$
2. $S \rightarrow E(C): s, B$, where $B=v+g^{b}$
3. E computes: $S=(B-v)^{a}=g^{a b}$
S computes: $S=\left(A \cdot v^{u}\right)^{b}=\left(g^{a} \cdot v^{-u} \cdot v^{u}\right)^{b}=g^{a b}$

- therefore u must be unpredictable (unknown till C sends A)
- no proofs of security claims

SRP-3 - two-for-one password guessing attack

- neither x nor v are known to attacker
- online password guessing using interaction with C :
- attacker E (knows s) guesses P^{\prime} and computes $x^{\prime}=H\left(s, P^{\prime}\right), v^{\prime}=g^{x^{\prime}}$
- E impersonates the server using these values x^{\prime}, v^{\prime}
- if the protocol finishes successfully (M_{1} is correct), then P^{\prime} is correct

SRP-3 - two-for-one password guessing attack

- neither x nor v are known to attacker
- online password guessing using interaction with C :
- attacker E (knows s) guesses P^{\prime} and computes $x^{\prime}=H\left(s, P^{\prime}\right), v^{\prime}=g^{x^{\prime}}$
- E impersonates the server using these values x^{\prime}, v^{\prime}
- if the protocol finishes successfully (M_{1} is correct), then P^{\prime} is correct
- guessing two passwords simultaneously:

1. E makes a guess P_{1}, P_{2} and computes corresponding x_{1}, x_{2} and v_{1}, v_{2}
2. $C \rightarrow E(S): C, A$
3. $E(S) \rightarrow C: s, B=g^{x_{1}}+g^{x_{2}}, u$
4. $C \rightarrow E(S): \mathcal{M}_{1}=H(A, B, K)$, where $K=H(S)=H\left(\left(B-g^{x}\right)^{a+u x}\right)$

- value $S=\left(B-g^{x}\right)^{a+u x}=\left(g^{x_{1}}+g^{x_{2}}-g^{x}\right)^{a+u x}$
- if $P=P_{1}$ (or $\left.P=P_{2}\right)$, then C computes $S_{1}=g^{x_{2}\left(a+u x_{1}\right)}\left(\right.$ or $\left.S_{2}=g^{x_{1}\left(a+u x_{2}\right)}\right)$
- E can compute $S_{1}^{\prime}=\left(A \cdot v_{1}^{u}\right)^{x_{2}}$ and $S_{2}^{\prime}=\left(A \cdot v_{2}^{u}\right)^{x_{1}}$
- if $P=P_{1}: S_{1}^{\prime}=\left(g^{a} \cdot g^{x_{1} u}\right)^{x_{2}}=g^{x_{2}\left(a+u x_{1}\right)}=S_{1}$
- if $P=P_{2}: S_{2}^{\prime}=\left(g^{a} \cdot g^{x_{2} u}\right)^{x_{1}}=g^{x_{1}\left(a+u x_{2}\right)}=S_{2}$
- E can decide if any of those cases happened using M_{1}
- E does not have to choose u in a special way, the attack works even if u is computed as a truncated $H(B)$ (RFC 2945)

SRP-6

- T. Wu, SRP-6: Improvements and Refinements to the Secure Remote Password Protocol, 2002
- motivation for new version:

1. two-for-one attack (parameter k used as a multiplication factor for v)
2. implementation problem with message order (when group parameters must be sent)

- 1 additional round required
- solution: parameters/group ID and B sent before A
- A sent together with M_{1}
- parameter k
- SRP-6: $k=3$; SRP-6a: $k=H(n, g)$
- without knowledge of $\operatorname{dlog}_{g} k$ the two-for-one attack does not work
- computation $k=H(n, g)$ makes harder malicious choice n, g, where the attacker knows $\mathrm{dlog}_{g} k$

SRP-6 protocol (original message order)

C	\longleftrightarrow	S
selects random a		
$A=g^{a}$	$C, A \longrightarrow$	selects random b
	$\longleftarrow s, B$	$B=k v+g^{b}$
computes:		computes:
$u=H(A, B)$		$u=H(A, B)$
$x=H(s, P)$		$S=\left(A v^{u}\right)^{b}$
$S=\left(B-k g^{x}\right)^{a+u x}$		$K=H(S)$
$K=H(S)$		

- computation of shared secret S :
- client: $\left(B-k g^{x}\right)^{a+u x}=\left(k g^{x}+g^{b}-k g^{x}\right)^{a+u x}=g^{a b+u b x}$
- server: $\left(A v^{u}\right)^{b}=\left(g^{a} \cdot g^{x u}\right)^{b}=g^{a b+u b x}$

SRP-6 protocol (cont.)

- additional messages for verifying K (equality on both ends):

C	\longleftrightarrow	S		
$M_{1}=H(H(n) \oplus H(g), H(C), s, A, B, K)$	$\mathcal{M}_{1} \longrightarrow$	verifies M_{1}		
verifies M_{2}	\longleftarrow	M_{2}		$M_{2}=H\left(A, M_{1}, K\right)$
:---:				

SRP remarks (1)

- S send s to anyone
- salt is not secret, however ...
- knowing s allows a pre-computation (before obtaining v), e.g. constructing TMTO tables \Rightarrow pre-computation attack
- protocol uses multiplication and addition
- group operation is not enough
- can't be translated to elliptic curves (less efficient)
- specific requirements for n and g ("safe prime" and generator)
- direct use of some standardized parameters if not possible
- RFC 5054 defines specific 1024, 1536 a 2048-bit primes and generators
- larger primes are adopted from RFC 3526 (More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)), but with different g (generator)

SRP remarks (2)

- What if g is not a generator?
$-g$ generates a proper subgroup [g] of $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$
- if for some P^{\prime} the value $B-v^{\prime}=B-g^{H\left(s, P^{\prime}\right)} \notin[g]$, then P^{\prime} is not correct password \Rightarrow partition attack

Conclusion

- many PAKE protocols exist
- balanced PAKE protocols (both parties know the password):
- EKE, DH-EKE, Dragonfly (SAE), SPEKE, J-PAKE, ...
- augmented, or asymmetric PAKE protocols (client/server)
- server does not store password-equivalent data (i.e. data that allow successful authentication as a client)
- SRP, Augmented-EKE, B-SPEKE, OPAQUE, ...
- first protocol resistant to pre-computation attack: OPAQUE (2018)

OPAQUE

- PAKE secure against pre-computation attack
- main idea:
- combination of OPRF and AKE protocol, or
- combination of OPRF and PAKE protocol
- AKE and PAKE must have suitable properties (they can't be arbitrary)
- OPRF (Oblivious Pseudorandom Function)
- pseudorandom function $F_{k}(x)$
- OPRF is a protocol with two parties C (input x) and S (input k)
- C learns $F_{k}(x)$ at the end, and nothing else
- S learns nothing (in particular, nothing about x)

Example: DH-OPRF

- l-security parameter
- group G of prime order q (where $|q|=l)$
- hash function $H^{\prime}:\{0,1\}^{l} \rightarrow G, H$ with range $\{0,1\}^{l}$
- PRF $F: \mathbb{Z}_{q} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}:$

$$
F_{k}(x)=H\left(x, H^{\prime}(x)^{k}\right)
$$

- protocol:

1. $C \rightarrow S: a=H^{\prime}(x)^{r}$, for random $r \in \mathbb{Z}_{q}$
2. $S \rightarrow C: b=a^{k}$
3. C computes $H\left(x, b^{1 / r}\right)$

- correctness: $b^{1 / r}=\left(H^{\prime}(x)^{r}\right)^{k / r}=H^{\prime}(x)^{k}$
- security: ROM (for hash function) + "one more DH" assumption
- informally, after Q oracle queries (oracle returns k-th power) the attacker cannot compute one-more k-th power (moreover, attacker has access to DDH oracle)

Idea: combining OPRF and PAKE

- S stores $k, H(R)$ for C

C	\longleftrightarrow	S
password P output $R=F_{k}(P)$	$\Longleftarrow \mathrm{OPRF} \Longrightarrow$	k

$$
\begin{array}{ccc}
R & \Longleftarrow \text { PAKE } \Longrightarrow & \begin{array}{c}
H(R) \\
\text { session key } K
\end{array} \\
& & \\
\text { session key } K
\end{array}
$$

- pre-computation attack is impossible, since R is random to the attacker
- attacker learns k and $H(R)$ only after S is compromised

Idea: combining OPRF and AKE

- assumptions for AKE:
- C's public/private key: $p k_{C} / s k_{C}$
- S 's public/private key: $p k_{S} / s k_{S}$
- AuthEnc - authenticated encryption $c=\operatorname{AuthEnc}_{R}\left(p k_{C}, s k_{C}, p k_{S}\right)$
- S stores $k, c, p k_{C}$ for C

C	\longleftrightarrow	S
password P output $R=F_{k}(P)$	$\Longleftarrow \mathrm{OPRF} \Longrightarrow$	k
decrypts and verifies	$\longleftarrow c$	c
$p k_{C}, s k_{C}, p k_{S}$ session key K	$\Longleftarrow \mathrm{AKE} \Longrightarrow$	$p k_{S}, s k_{S}, p k_{C}$ session key K

AKE example - HMQV

- HMQV: variant of DH protocol with implicit authentication of K
- modifiable for arbitrary finite groups, e.g. elliptic curves
- multiple variants of MQV (Menezes-Qu-Vanstone) / HMQV (hash MQV)
- private and public key for participant $A: p k_{A}=g^{s k_{A}}$

C	\longleftrightarrow	S
selects random x_{C}	$\begin{gathered} X_{C}=g^{x_{C}} \longrightarrow \\ \leftarrow X_{S}=g^{x_{S}} \end{gathered}$	selects random s_{S}
$\begin{aligned} K= & \operatorname{KE}\left(s k_{C}, x_{C}, p k_{S}, X_{S}\right) \\ & \text { session key } K \end{aligned}$		$\begin{aligned} K= & \mathrm{KE}\left(s k_{s}, x_{S}, p k_{C}, X_{C}\right) \\ & \text { session key } K \end{aligned}$
computation:		
U :		
$\operatorname{KE}\left(s k_{C}, x_{C}, p k_{S}, X_{S}\right)=H\left(\left(X_{S} \cdot p k_{S}^{e_{S}}\right)^{x_{C}+s k_{C} \cdot e_{C}}\right)=H\left(g^{\left(x_{S}+s k_{s} \cdot e_{S}\right)\left(x_{C}+e_{C} \cdot s k_{C}\right)}\right)$		
$\mathrm{KE}\left(s k_{S}, x_{S}, p k_{C}, X_{C}\right)=H\left(\left(X_{C} \cdot p k_{C}^{e_{C}}\right)^{x_{S}+s k_{s} \cdot e_{S}}\right)=H\left(g^{\left(x_{C}+e_{C} \cdot s k_{C}\right)\left(x_{S}+s k_{s} \cdot e_{S}\right)}\right)$		
		29 / 30

Remark - small group confinement

- DH-like schemes or schemes with security related to DLOG
- unauthenticated data - group element
- existence of small subgroups
- example: DH protocol in $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ with generator g
- let $w \mid(p-1)$ be a small prime and let $k=(p-1) / w$
- attack:

1. $A \rightarrow E(B): A=g^{a}$
2. $E(A) \rightarrow B: A^{k}$
3. $B \rightarrow E(A): B=g^{b}$
4. $E(B) \rightarrow A: B^{k}$

- A and B compute shared secret $g^{k a b}$
- E can find this secret searching in small subgroup $\left[g^{k}\right]$ (order w)
- $\left(g^{k}\right)^{w}=g^{(p-1) w / w}=g^{p-1}=1$
- choose suitable groups and check parameters

