Password Authenticated Key Exchange

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1 (2023/24)

Motivation

v

authenticate user/client using a password

v

common scenario for authentication in web application:

> TLS, server authentication, secure channel
> username/password login form, server verifies submitted password

v

some problems with this approach ...

v

phishing attacks — login to fake web site

> attacker gets all authentication data (username, password)
> multi-factor authentication can mitigate the risk

TLS might not be available
PAKE - Password Authenticated Key Exchange (agreement)

v

v

Goal: (mutual) authentication of two or more parties and establishing keys
for subsequent communication

PAKE 2/30

Passwords

> special type of shared secret

> easy to use
> potential problems: guessing (low entropy), brute-force attack

> limited length (“small” set of possible passwords)
> passwords from various dictionaries
> patterns/non-uniform selection of passwords

PAKE 3/30

Simple authentication protocol

\4

challenge/response protocol

> (+) password not transmitted in plaintext

> notation: password P, hash function H
C — S
— r selects random r
v=HP,r) Cv — v=HPr)
» drawbacks:

> one way authentication (only C is authenticated)

> attacker can accept any v and continue the session with C

> MITM attack: attacker relays communication between C and S
> no session key agreed in the protocol

PAKE 4/30

Simple key-agreement protocol

> Diffie-Hellman protocol (using a group where CDH is hard)
> MITM attack (cause: unauthenticated exchange of parameters)

> notation: generator g

C —> S
selects random a
A=gt A — selects random b
«— B B= gb
K:Ba:gab K:Ab:gab

PAKE 5/30

Simple AKE protocol

Goals: password never sent as a plaintext, authenticate both parties, agree
on a session key, prevent MITM attack

C — S
selects random a, rc
A=g C,Arc — selects random b
«— B, rs, Ep(H(0, msg)) B=gb
verifies Ep(...)
K =B*=g® Ep(H(1,msg)) — verifies Ep(...)
K = Ab = gab

> notation: msg = C|| A|| B|| rc || rs; H is a hash function
> Ep - e.g. symmetric cipher or MACp, key is derived from P

problem: offline dictionary attack — testing passwords offline using
eavesdropped communication

PAKE 6/30

EKE (Encrypted Key Exchange) — general description

> Bellovin, Merritt (1992)
» first PAKE protocol

> prevents offline dictionary attack (and achieves previous goals as well)

C — S

generates (pkc,skc) C, Ep(pkc) —
«— Ep(Ep(K)) selects random K

decrypts K
selects random r¢ Ex(rc) — decrypts rc
verifies r¢ «— Ex(re,rs) select random rg

Ex(rs) — verifies rg

> notation: (pkc, skc) pair of keys for asymmetric encryption; Epy.
public-key encryption, E, symmetric encryption using a key derived
from P; K session key

PAKE 7/30

EKE remarks

> EKE is secure against offline dictionary attack, if all (or almost all)
decryptions for distinct passwords yield

> valid public keys for message in the first step
> valid ciphertexts for message in the second step

> implementation problem — choosing suitable encryption schemes
(symmetric and public-key)

> partition attack

»

vvyyvyy

PAKE

offline attack

if decryption with P’ yield an incorrect/impossible public key, then P # P’
example: RSA ... n with small factors, even e

multiple runs of the protocol = password is uniquely determined

Ep should not leak information about P

8/30

DH-EKE

» variant of EKE with DH protocol for key agreement

> only modular groups (!)

> this variant follows the original proposal (Bellovin, Merritt, 1992):

C

“—>

S

selects random a
A=gt

decrypts rs
K = B2 = gab
selects random r¢

verifies r¢

PAKE

C, Ep(A) —

«— Ep(B), Ex(rs)
Ex(rc,rs) —

— Ex(rc)

selects random b
B=gb
K = Ab — gab
selects random rg

decrypts r¢
verifies rg

9/30

DH-EKE remarks

> more refined version of the protocol is EAP-EKE (RFC 6124), e.g.
> separate keys are derived for the protocol itself and for session
> encryption with MAC used for messages containing nonces (here: r¢, rs)
> additional data are computed, using a key derived from the shared key
and all messages up to given point — protects integrity of the negotiated
parameters
> explicit requirements for groups, e.g. g is a primitive element (generator)
of the group, p is a “safe” prime
> explicit list of suitable groups and their generators
> what if g is not a generator:
> decrypt Ep(A) and Ep/(B) using password P’
> if a generator is obtained, P’ is incorrect

» there is = 50% generators in groups with safe prime modulus, i.e.
g =2q + 1 (where ¢ is a prime)

PAKE 10/ 30

Problems with EKE (DH-EKE, EAP-EKE)

\4

server knows the password (plaintext)

v

successful attack on server results in compromised passwords

v

passwords should be stored “salted” (best practice, recommendation)
> after a breach the offline dictionary attack is always possible — an attacker
can test passwords by recomputing the stored value, or by simulating the
server side of the protocol
> we don’t want to make it easier by storing plaintext passwords
» DH constructions are hard to translate to elliptic curves

> How to ensure that decryption with wrong password yields a point on
elliptic curve?

PAKE 11/30

Secure Remote Password protocol (SRP)

|

vV v.v. vy

PAKE

PAKE protocol, server does not store password in plaintext
> other properties are preserved (prevention of offline dictionary attack etc.)

original proposal: Thomas Wu (1998)

RFC 2945 (2000) version SRP-3

using SRP-6 (2002) together with TLS: RFC 5054 (2007)
other standardization: IEEE P1363.2, ISO IEC 11770-4
1Password Security Design (2023):

We do not rely on traditional authentication mechanisms, but instead use
Secure Remote Password (SRP) to avoid most of the problems of traditional
authentication.

Apple uses SRP in iCloud, according Apple Platform Security (2022):

The HSM cluster verifies that a user knows their iCloud Security Code using
Secure Remote Password protocol (SRP); the code itself isn’t sent to Apple.

12/30

Evolution of SRP: SRP-3

v

T. Wu, The Secure Remote Password Protocol, 1998
> RFC 2945, The SRP Authentication and Key Exchange System

> protocol slightly differs in these documents (we will follow the first one)
> explicit choice of random u vs. derivation of u from B
> construction of the first verification message M,
> calculation in GF(n), where nis a large prime
> both operations are used (“+” and “-”)
> notation:
> g — generator of (Z},-)
> password P
> random salt s
> hash function H

> Pis stored on server as a verifier v = g¥, where x = H(s, P)

PAKE 13/30

SRP-3 - protocol

PAKE

C — S
selects random a
A=g? C,A — selects random b, u
«— s,Bu B=v+ gb
computes: computes:
x = H(s, P) S=(A)P
S — (B_gx)a+ux K - H(S)
K= H(S)
M; = H(A, B, K) M — verifies M,
verifies M, — M, My = H(A, My, K)

14/ 30

SRP-3 - protocol

C — S
selects random a
A=g? C,A — selects random b, u
«— s,Bu B=v+ gb
computes: computes:
x = H(s, P) S=(A)P
S — (B_gx)a+ux K - H(S)
K= H(S)
M; = H(A, B, K) M — verifies M,
verifies M, — M, My = H(A, My, K)

» computation of shared secret S:
> client: (B — g¥)®x = (g¥ + gb — g¥)arux = gabrubx
> server: (AvY)P = (g% gv)b = gabrubx

PAKE 14/ 30

SRP-3 - security goals

> assumption: active attacker with ability to eavesdrop and manipulate
transmitted data

> What security goals does SRP have?

> confidentiality of P and x
> confidentiality of K
> security against offline dictionary attack

PAKE 15/ 30

SRP-3 - remarks (1)
» Why B depends on v?

> simpler alternative: B = g®, C does not need to compute g¥, rest of the
protocol intact
> attacker E asks the server for s and then impersonates the server
1. C> E(S): C,A=g°
2. E(S) > C:s,B= gb, u, for randomly selected b, u
3. C > E(S): My = H(A, B, K), where S = B*“* and K = H(S)
» now E can perform this offline dictionary attack:
> E computes x’, v/ for a password P’ and then computes S’ = (Av¥)? and
K" = H(S)
> if P = P’ then those values are equal to values computed by C
> E verifies this with check H(A, B, K’) = M,
> “+v” prevents attack — the attacker can’t use a single instance to test
unlimited number of passwords (he must choose v’ that C substracts)
> Exercise: What is wrong with this modification?
> use B=v-gland C computes S = (B/g")™~
> advantage: we work only in the group (Z},-)

PAKE 16/ 30

SRP-3 - remarks (2)

> Why is u random, instead of some constant?

> attacker E can impersonate C

> assumptions: E obtains v and s (knowing v requires access to server’s
data)

1. E(C) > S: C,A=gt-vu

2. S— E(C):s,B,where B=v+gb

3. E computes: S = (B—v)? = g%
S computes: S = (A-v¥)P = (g@- v¥ . vi)b = g

> therefore u must be unpredictable (unknown till C sends A)

> no proofs of security claims

PAKE 17/ 30

SRP-3 - two-for-one password guessing attack

> neither x nor v are known to attacker

» online password guessing using interaction with C:
> attacker E (knows s) guesses P’ and computes x’ = H(s, P’), v/ = g
> E impersonates the server using these values x’, v/
> if the protocol finishes successfully (M; is correct), then P’ is correct

X

PAKE 18/ 30

SRP-3 - two-for-one password guessing attack

> neither x nor v are known to attacker
» online password guessing using interaction with C:
> attacker E (knows s) guesses P’ and computes x’ = H(s, P’), v/ = g"/
> E impersonates the server using these values x’, v/
> if the protocol finishes successfully (M; is correct), then P’ is correct
> guessing two passwords simultaneously:
1. E makes a guess Py, P, and computes corresponding xq, x; and vy, v,
2. C— E(S):C,A
3. E(S) > C:s,B=g"+g"%u
4. C — E(S): My = H(A, B, K), where K = H(S) = H((B — g¥)**")
> value S = (B_gx)a+ux — (g)q +gxz _gx)a+ux
> if P= Py (or P = P,), then C computes S; = g"Z(‘”"X‘) (or S, = g"‘(‘”“XZ))
> E cancompute S; = (A-v{)* and S) = (A-v,)™
> ifP=P;: S{ — (ga_g)qu)xz :gxz(a+ux1) =5
> ifp= PZ: Sé — (ga . gxzu))q — gx1(a+uxz) — 52
> E can decide if any of those cases happened using M,
> E does not have to choose u in a special way, the attack works even if u
is computed as a truncated H(B) (RFC 2945)
PAKE 18/30

SRP-6

> T. Wu, SRP-6: Improvements and Refinements to the Secure Remote
Password Protocol, 2002

> motivation for new version:

1. two-for-one attack (parameter k used as a multiplication factor for v)

2. implementation problem with message order (when group parameters
must be sent)

> 1 additional round required

> solution: parameters/group ID and B sent before A
> A sent together with M,

> parameter k
> SRP-6: k = 3; SRP-6a: k = H(n,)
> without knowledge of dlog k the two-for-one attack does not work

> computation k = H(n, g) makes harder malicious choice n, g, where the
attacker knows dlog k

PAKE 19/30

SRP-6 protocol (original message order)

C —> S

selects random a

A=g? C,A — selects random b
«— s,B B=kv+gb
computes: computes:
u= H(A,B) u= H(A,B)
x = H(s, P) S=(A)P
S=(B— kg*)ax K = H(S)
K = H(S)

» computation of shared secret S:
> client: (B — kg¥)*X = (kg* + gb — kg¥)@+ux = gab+ubx
> server: (AvY)P = (g?. gv)b = gabrubx

PAKE 20/ 30

SRP-6 protocol (cont.)

» additional messages for verifying K (equality on both ends):

C — S
My =H(H(n)® H(g), H(C),s,A,B,K) M; — verifies M,
verifies M, — My, My=H(A M, K)

PAKE 21/30

SRP remarks (1)

> Ssend s to anyone
> salt is not secret, however ...
> knowing s allows a pre-computation (before obtaining v), e.g.
constructing TMTO tables = pre-computation attack
» protocol uses multiplication and addition
> group operation is not enough
> can’t be translated to elliptic curves (less efficient)
> specific requirements for n and g (“safe prime” and generator)
> direct use of some standardized parameters if not possible
> RFC 5054 defines specific 1024, 1536 a 2048-bit primes and generators
> larger primes are adopted from RFC 3526 (More Modular Exponential
(MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)), but with
different g (generator)

PAKE 22/30

SRP remarks (2)

> What if g is not a generator?

> g generates a proper subgroup [g] of (Z}, ")
> if for some P’ the value B—v' = B— gl(5) ¢ [g], then P’ is not correct
password = partition attack

PAKE 23/30

Conclusion

v

many PAKE protocols exist

v

balanced PAKE protocols (both parties know the password):
> EKE, DH-EKE, Dragonfly (SAE), SPEKE, J-PAKE, ...
augmented, or asymmetric PAKE protocols (client/server)

> server does not store password-equivalent data (i.e. data that allow
successful authentication as a client)
> SRP, Augmented-EKE, B-SPEKE, OPAQUIE, ...

first protocol resistant to pre-computation attack: OPAQUE (2018)

v

v

PAKE 24/ 30

OPAQUE

> PAKE secure against pre-computation attack
> main idea:
> combination of OPRF and AKE protocol, or
> combination of OPRF and PAKE protocol
> AKE and PAKE must have suitable properties (they can’t be arbitrary)
> OPREF (Oblivious Pseudorandom Function)
> pseudorandom function Fi(x)
OPREF is a protocol with two parties C (input x) and S (input k)

C learns Fi(x) at the end, and nothing else
S learns nothing (in particular, nothing about x)

vyy

PAKE 25/30

Example: DH-OPRF

vV v.v Yy

PAKE

[- security parameter

group G of prime order g (where |q| =)

hash function H : {0,1}! — G, H with range {0, 1}!
PRF F : Z4 x {0, 1}} — {0, 1}&

Fe(x) = H(x, H' (x)%)

protocol:
1. C— S:a= H'(x)", for random r € Z,
2.S> C:b=d"
3. C computes H(x, b'/")
correctness: b'/" = (H' (x)")X/" = H'(x)k
security: ROM (for hash function) + “one more DH” assumption

> informally, after Q oracle queries (oracle returns k-th power) the attacker
cannot compute one-more k-th power (moreover, attacker has access to
DDH oracle)

26/ 30

Idea: combining OPRF and PAKE

> Sstores k, H(R) for C

C —> S

password P — OPRF = k
output R = F¢(P)

R & PAKE = H(R)
session key K session key K

> pre-computation attack is impossible, since R is random to the attacker

> attacker learns k and H(R) only after S is compromised

PAKE 27/ 30

Idea: combining OPRF and AKE

> assumptions for AKE:
> C’s public/private key: pkc/skc
> S’s public/private key: pks/sks

» AuthEnc - authenticated encryption ¢ = AuthEncg(pkc, skc, pks)
> S stores k, ¢, pkc for C

C —> S

password P &= OPRF = k
output R = Fi(P)

decrypts and verifies —c c
pkc, Sl(c, pk5 «— AKE = pl(g, Sl(g, ka
session key K session key K

PAKE 28/ 30

AKE example - HMQV

|

>
| 4
>

HMQV: variant of DH protocol with implicit authentication of K
modifiable for arbitrary finite groups, e.g. elliptic curves
multiple variants of MQV (Menezes-Qu-Vanstone) / HMQV (hash MQV)

ska

private and public key for participant A: pky = g
C — S

PAKE

selects random x¢ Xc =g —
— Xs=g% selects random sg
K= KE(Skc, Xc, pks, Xs) K = KE(Sks, Xs, pkc, Xc)
session key K session key K

computation:
U:
KE (skc, xc. pks, Xs) = H((Xs - pkis)xcrsherec) = p(glrsssks-es) ierec sho))
S:
KE(Sks, Xs, ka’ XC) = H((XC . kaC)x5+sk5-es) - H(g(xc+ec-skc)(xg+sk5.es))
parameters ec = H(Xc, S) and es = H(Xs, C)

29/30

Remark — small group confinement

vVvy Vv VvV VY

> Aand B compute shared secret g

DH-like schemes or schemes with security related to DLOG
unauthenticated data — group element
existence of small subgroups
example: DH protocol in (Z, -) with generator g
let w| (p— 1) be asmall primeandlet k= (p—1)/w
attack:
1. A> E(B): A= g°
2. E(A) — B: A
3. B— E(A):B=gb
4. E(B) — A: B
kab

> E can find this secret searching in small subgroup [g¥] (order w)

S

PAKE

> (gk)w — g(p—1)w/w :gp—1 =1

choose suitable groups and check parameters

30/ 30

	Introduction
	Motivation, Passwords

	Simple protocols
	EKE and DH-EKE
	SRP
	OPAQUE

