
Weaknesses in real-world protocols

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

KRACK

Dragonfly (SAE)

Bluetooth

Weaknesses in real-world protocols 2 / 19

KRACK

▶ Key Reinstallation Attacks (Vanhoef, Piessens, 2017)
▶ just an idea
▶ details and paper available at www.krackattacks.com

▶ WPA (Wi-Fi Protected Access)
▶ WPA – 802.11i (draft D3.0); WPA2 – 802.11i (final version D9.0)
▶ two data confidentiality and integrity protocols: (WPA-)TKIP and

(AES-)CCMP
▶ 802.11ad amendment: Galois/Counter Mode Protocol (GCMP)

▶ 4-way handshake protocol
▶ mutual authentication based on PMK (Pairwise Master Key)
▶ PMK derived from preshared secret (WPA-Personal) or negotiated in

802.1x (WPA-Enterprise)
▶ establish a session key PTK (Pairwise Transient Key)

▶ supplicant/station (client) and authenticator (AP)

Weaknesses in real-world protocols 3 / 19

4-way handshake

▶ simplified presentation
▶ 4-way handshake:

1. AP → S: ANonce (now the supplicant can derive PTK)
2. S → AP: SNonce, MICKCK (now the authenticator can derive PTK)
3. AP → S: GTK, MICKCK (GTK encrypted with KEK)
4. S → AP: Ack, MICKCK (Ack)

▶ MIC (Message Integrity Check)
▶ GTK (Group Temporal Key . . . broadcast/multicast)
▶ PTK = PRF(PMK, APMac, SMac, ANonce, SNonce), divided into

▶ KCK (EAPOL-Key Confirmation Key) – for MIC computation
▶ KEK (EAPOL-Key Encryption Key) – for encryption of GTK
▶ TK (Temporal Key) – for encryption of data frames
▶ TMK1, TMK2 (Temporal AP MIC Key) – keys for MIC computation

(unicast), one for each direction

Weaknesses in real-world protocols 4 / 19

KRACK – idea

▶ remark: offline dictionary attack (4th message), no forward secrecy
▶ the third (or the first) message can be retransmitted (multiple times)

▶ for example, if the authenticator does not receive message 4 (or 2)
▶ reinstall the PTK and reset initialization vector (nonce) for data

encryption and authentication
▶ according 802.11i “AP retransmits message 1 or 3 if it did not receive a

reply”

▶ behavior of clients differs (depends on NIC and supplicant
implementation)

▶ other variants: key reinstallation against group key handshake . . .

Weaknesses in real-world protocols 5 / 19

KRACK – impact

▶ CCMP – AES-CCM (CTR and CBC-MAC)
▶ key and IV are re-used, i.e. keystream is re-used
▶ attacker can decrypt

▶ GCMP – AES-GCM
▶ keystream re-use
▶ authentication key can be recovered after nonce reuse

forbidden attack (Joux, 2006)
▶ attacker can decrypt and inject own data

▶ special weakness in Android and Linux:
▶ retransmitted message 3 causes all-zero key

▶ other variants of KRACK attack (2018)

Weaknesses in real-world protocols 6 / 19

Dragonfly (SAE)

▶ WPA3 (2018)
▶ mandatory: new protocol Simultaneous Authentication of Equals (SAE)
▶ original design – Harkins (2008)

▶ balanced PAKE protocol
▶ IEEE 802.11-2016
▶ RFC 7664 (Dragonfly Key Exchange)
▶ other variants: EAP-pwd (RFC 5931), IKEv2 Secure PSK Authentication

(RFC 6617)

▶ EAP-pwd: can be used in some enterprise WiFi networks
▶ SAE is used to derive new PMK for the 4-way handshake

▶ does not prevent KRACK per-se
▶ prevents offline dictionary attack
▶ ensures forward secrecy

▶ M. Vanhoef, E. Ronen: Dragonblood: Attacking the Dragonfly Handshake
of WPA3 (2019) – weaknesses in SAE and EAP-pwd

Weaknesses in real-world protocols 7 / 19

Dragonfly (SAE) – introduction

▶ simplified for presentation
▶ main goals and properties

▶ no fixed roles (e.g. initiator, client, server, . . .)
▶ both parties can initiate the protocol (simultaneously)
▶ forward secrecy
▶ resistance to offline dictionary attack (and other attacks)
▶ based on DLOG problem

▶ proposed for modular and elliptic curves groups
▶ parameters: primes p, q, and q | (p − 1)
▶ modular group: subgroup of order q is used
▶ elliptic curve group over GF(p): group order q, curve

y2 = x3 + ax2 + b mod p

▶ H – hash function (random oracle); KDF – key derivation function

Weaknesses in real-world protocols 8 / 19

Dragonfly (SAE) – password element P
▶ map password pw to a group element P
▶ hash to group:

for counter in range(1, 256):
seed = H(addrA, addrB, pw, counter)
x = KDF(seed, p)
if x ≥ p: continue
P = x (p−1)/q mod p
if P > 1: return P

▶ hash to curve:
base = pw, counter = 1
while counter++ < 40 or P not found:

seed = H(addrA, addrB, base, counter)
x = KDF(seed, p)
if x ≥ p: continue
if x3 + ax + b ∈ QRp and P not found:

P = (x , sqrt(x3 + ax + b) mod p)
base = random()

return P

Weaknesses in real-world protocols 9 / 19

SAE – protocol

1. Commit Exchange (presentation uses elliptic curves)
▶ A select random rA,mA ∈ Z∗

q ;
A computes sA = (rA +mA) mod q, and EA = −mA · P

▶ B select random rB,mB ∈ Z∗
q ;

B computes sB = (rB +mB) mod q, and EB = −mB · P
A → B : sA, EA
B → A : sB, EB

▶ check validity of sX , check that EX is on the curve
▶ shared secret element K is computed:

A: K = rA · (sB · P + EB) = rA · ((rB +mB) · P −mB · P) = (rArB) · P
B: K = rB · (sA · P + EA) = rB · ((rA +mA) · P −mA · P) = (rArB) · P

▶ shared key k = H(K)

Weaknesses in real-world protocols 10 / 19

SAE – protocol (2)

2. Confirmation Exchange
▶ verify k and transcript of the protocol:

A → B : cA = HMACk (sA, EA, sB, EB)
B → A : cB = HMACk (sB, EB, sA, EA)

▶ variants of Dragonfly differ in
▶ computation of password element
▶ computation of confirmation messages
▶ key derivation and usage (e.g. multiple keys are derived), . . .

Weaknesses in real-world protocols 11 / 19

SAE – some earlier results

▶ D. Clarke, F. Hao: Cryptanalysis of the Dragonfly Key Exchange
Protocol (2013)
▶ offline dictionary attack for small subgroups
▶ importance of checks in “Commit Exchange” step (validity of EX and sX)

▶ J. Lancrenon, M. Škrobot: On the Provable Security of the Dragonfly
Protocol (2015)
▶ security proof in model by Bellare, Pointcheval and Rogaway (other

models exist)
▶ assumptions: random oracle model (H), CDH, DIDH (Decisional

Inverted-Additive Diffie-Hellman)
▶ DIDH: hard to distinguish g1/(x+y) and a random g1/z when given g1/x

and g1/y .

Weaknesses in real-world protocols 12 / 19

Timing attacks – MODP groups

▶ hash to group – number of iterations depends on password
▶ KDF returns bit string of length |p|
▶ probability that x ≥ p is not negligible for some groups
▶ RFC 5114 – group 22 (30.84%), group 23 (32.40%), group 24 (47.01%)
▶ Is the difference between r and r + 1 iterations measurable?

Yes (see the experiments in the Dragonblood paper)
e.g. for group 22 ≈ 75 measurements were enough to identify r

▶ number of iteration depends on MAC addresses as well
▶ spoofing MAC, measuring iterations . . . building a password “profile”
▶ offline dictionary/brute-force attack

Weaknesses in real-world protocols 13 / 19

Timing attacks – elliptic curves

▶ hash to curve for EAP-pwd
▶ iterate until P is on the curve
▶ similar timing leak as for hash to group

▶ hash to curve for SAE – timing attacks countermeasures already present
▶ x ≥ p is not negligible for Brainpool curves (RFC 6932)
▶ multiple measurements for a MAC:

more iteration with real password yield lower variance
average time depends on real iterations and number of x ≥ p results
(see the experiments in the Dragonblood paper)

▶ cache attacks (Flush and Reload)
▶ blinding the y value in the QR test
▶ detection of QR test result in the first iteration
▶ assumption: attacker runs a process on victim host (e.g. Android app)

Weaknesses in real-world protocols 14 / 19

Other issues and observations

▶ AP must store the password in plaintext
▶ WPA3 Transition Mode – AP accepts WPA3-SAE and WPA2 with the

same password
▶ compatibility with old clients
▶ downgrade attack are detected, thanks to properties of 4-way handshake
▶ attack has enough data for offline dictionary attacks
▶ countermeasure: remember if the network supports WPA3-SAE

(“pinning”)
▶ high overhead of hash to curve

▶ timing attacks defense (40 iterations) is costly for lightweight devices
▶ existing DoS countermeasures can be defeated

e.g. experiment with 8 connections/s – AP’s CPU saturated
▶ fatal impact of bad PRNG

▶ attacker reconstructs P and K
▶ impact worse than bad PRNG in WPA2

▶ update to WPA3?

Weaknesses in real-world protocols 15 / 19

Bluetooth

▶ widely deployed protocol
▶ mobile phones, laptops, fitness/smart watches, headphones, . . .

▶ two protocols (similar):
▶ Bluetooth BR/EDR – Secure Simple Pairing (SSP)
▶ Bluetooth Low Energy – Low Energy Secure Connection (LE SC)

▶ goals for both protocols: confidentiality and MITM protection
▶ authenticated ECDH key exchange
▶ both protocols are vulnerable
▶ Biham, Neumann: Breaking the Bluetooth Pairing – Fixed Coordinate

Invalid Curve Attack (2018)
▶ other attacks for older versions exist (e.g. crackle)

Weaknesses in real-world protocols 16 / 19

Invalid Curve Attack on ECDH

▶ ECDH (elliptic curve E , generator P):
1. A → B: U = u · P
2. B → A: V = v · P
⇒ shared key: K = (uv) · P

▶ attacker uses invalid points (not on the curve) to find shared key
▶ group operation does not depend on b (y2 = x3 + ax2 + b), see the “dlog”

lecture
▶ attacker can choose a curve E ′ (different b′) with subgroup of small order
▶ let P ′ be a generator, and q′ is the order

Weaknesses in real-world protocols 17 / 19

Invalid Curve Attack on ECDH (2)

▶ attack:
1. A → M: U = u · P
2. M → A: P ′ . . . A computes K = u · P ′

. . . A → M: c = EK (m)
▶ assumption: M knows m
▶ M finds u′ ∈ Zq′ : Eu′ ·P ′ (m) = c ⇒ u ≡ u′ (mod q′)
▶ recovering u:

▶ iterate attack multiple times for different (co-prime) q′
▶ use CRT to compute u

▶ assumptions:
▶ the protocol can be executed multiple times and u does not change
▶ attacker can choose arbitrary P ′

▶ Bluetooth specification: to prevent this attack, refresh your parameters
for every pairing

Weaknesses in real-world protocols 18 / 19

Fixed Coordinate Invalid Curve Attack (idea)

▶ let’s ignore all other SSP / LE SC details
▶ main problem:

y-coordinate is not authenticated (only x-coordinate of “public key”)
▶ semi-passive attack:

▶ set y-coordinate of both public keys to 0 (a curve with different b′)
▶ the order of these points is 2
▶ if both “private keys” are even (prob. 25%), then K = 0 (point at infinity)
▶ attacker knows the shared key (shared by both parties)

▶ fully-active attack:
▶ improved attack with 50% probability of success

▶ large majority of the Bluetooth devices were vulnerable
▶ chips/implementations: Broadcom,Qualcomm, Intel / Apple, Google, . . .

Weaknesses in real-world protocols 19 / 19

	KRACK
	Dragonfly (SAE)
	Bluetooth

