Block Ciphers I

Martin Stanek
Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Introduction

iterated ciphers, Feistel ciphers
Simon and Speck

AES (Advanced Encryption Standard)
description
security

Multiple encryption
meet in the middle attacks, 3DES

Slide attack

Introduction - Block ciphers

- encryption/decryption $E, D:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- k - key length, n - block length
- correctness: $\forall K \in\{0,1\}^{k} \forall m \in\{0,1\}^{n}: D_{K}\left(E_{K}(m)\right)=m$
- E_{K} and D_{K} are mutually inverse permutations on $\{0,1\}^{n}$

Block ciphers - examples

- more versatile than stream ciphers (modes of operation)
- used more often than stream ciphers
- AES - block length: 128, key lengths: 128, 192, 256
- 3DES (also TDEA) - block length: 64, key lengths: 112, 168
- NIST SP 800-131A rev. 2 (2019):
- AES acceptable
- 3DES (with 168-bits keys) deprecated through 2023, disallowed after 2023
- ISO standardized the following block ciphers:
- ISO/IEC 18033-3:2010 64-bits block: TDEA, MISTY1, CAST-128, HIGHT 128-bits block: AES, Camellia, SEED
- ISO/IEC 29192-2:2019 (Lightweight cryptography) 64-bits block: PRESENT
128-bits block: CLEFIA, LEA
- standardized \nRightarrow used

Block ciphers - remarks

- alternative view: block cipher as a simple substitution
- huge alphabet, frequency analysis impossible
- short block size - (possibly) easier cryptanalysis
- extremely short block size
- small alphabet
- max. $\left(2^{n}\right)$! permutations, regardless of key length
- extremely short key length:
- exhaustive key search (brute-force attack) $\sim 2^{k}$

Security

- exhaustive key search (EKS) complexity $\sim 2^{k}$
- expected EKS complexity $\sim 2^{k-1}$
- important assumption: keys with uniform distribution (!)
- otherwise enumerate keys by their probabilities (in descending order)
- keys often derived from user passwords (\Rightarrow non-uniformity)
- (almost) anything with better complexity than EKS is a successful cryptanalytic attack (at least in theory)
- can be still impractical, because of
- complexity, e.g. 2^{120} instead of 2^{128} is still infeasible
- assumptions, e.g. CPA with 2^{90} of chosen plaintext blocks encrypted with the same key is rather unrealistic

Iterated ciphers

- the most frequently used construction method for block ciphers
- iteration of round function $F:\{0,1\}^{k^{\prime}} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- structure:
- key scheduling/expansion: producing round keys k_{1}, \ldots, k_{r} from the key
- sequential iteration of $F(r$ rounds $): c=F_{k_{r}}\left(\ldots F_{k_{2}}\left(F_{k_{1}}(m)\right) \ldots\right)$
- usually with some form of key whitening: $c=k_{r+1} \oplus F_{k_{r}}\left(\ldots F_{k_{1}}\left(m \oplus k_{0}\right) \ldots\right)$
- sometimes the first/the last round is different
- decryption employs inverse round function
- example: AES-128 has 10 rounds

Feistel ciphers

- method of constructing a round function (its inverse has the same structure)
- decryption ~ encryption (with reversed order of round keys) \Rightarrow equal speed of encryption and decryption with pre-computed round keys
- plaintext divided into left and right halves: L_{0}, R_{0}
- iterations (for $i=1, \ldots, r-1$):

$$
\begin{aligned}
L_{i} & =R_{i-1} \\
R_{i} & =L_{i-1} \oplus F_{k_{i}}^{\prime}\left(R_{i-1}\right)
\end{aligned}
$$

- last round:

$$
\begin{aligned}
& L_{r}=L_{r-1} \oplus F_{k_{r}}^{\prime}\left(R_{r-1}\right) \\
& R_{r}=R_{r-1}
\end{aligned}
$$

Feistel ciphers - decryption

- using the same structure, changing the order of round keys
- denote $L_{0}^{\prime}=L_{r}$ and $R_{0}^{\prime}=R_{r}$ (and other intermediate values $L_{i}^{\prime}, R_{i}^{\prime}$)
- we can show that $L_{i}^{\prime}=R_{r-i}$ and $R_{i}^{\prime}=L_{r-i}$ for $i=1, \ldots, r-1$:
- the first round:

$$
\begin{aligned}
& L_{1}^{\prime}=R_{0}^{\prime}=R_{r}=R_{r-1} \\
& R_{1}^{\prime}=L_{0}^{\prime} \oplus F_{k_{r}}^{\prime}\left(R_{0}^{\prime}\right)=L_{r} \oplus F_{k_{r}}^{\prime}\left(R_{r-1}\right)=L_{r-1}
\end{aligned}
$$

- the second round (other rounds similarly):

$$
\begin{aligned}
& L_{2}^{\prime}=R_{1}^{\prime}=L_{r-1}=R_{r-2} \\
& R_{2}^{\prime}=L_{1}^{\prime} \oplus F_{k_{r-1}}^{\prime}\left(R_{1}^{\prime}\right)=R_{r-1} \oplus F_{k_{r-1}}^{\prime}\left(R_{r-2}\right)=L_{r-2}
\end{aligned}
$$

- the last rounds (assuming $L_{r-1}^{\prime}=R_{1}$ and $R_{r-1}^{\prime}=L_{1}$):

$$
\begin{aligned}
& R_{r}^{\prime}=R_{r-1}^{\prime}=L_{1}=R_{0} \\
& L_{r}^{\prime}=L_{r-1}^{\prime} \oplus F_{k_{1}}^{\prime}\left(R_{r-1}^{\prime}\right)=R_{1} \oplus F_{k_{1}}^{\prime}\left(L_{1}\right)=L_{0}
\end{aligned}
$$

Feistel ciphers - remarks

- examples: DES (3DES), Camellia, Blowfish, etc.
- generalizations:
unbalanced Feistel (splitting block into parts of unequal length)
- Feistel network is used in other cryptographic constructions, e.g.:
- OAEP (Optimal Asymmetric Encryption Padding) for RSA encryption
- format preserving encryption
- theoretical construction:
pseudorandom function \rightarrow pseudorandom permutation

Simon and Speck

- lightweight block ciphers
- families, variants with various block and key sizes
- both ciphers with excellent performance in HW and SW
- published by NSA (2013)
- Simon
- optimized for hardware, balanced Feistel network
- XOR, bitwise AND, ROT (rotation)
- Speck
- optimized for software, ARX cipher (modular addition, XOR, ROT)
- proposed as ISO standard in 2014
- rejected in 2018 by subcommittee ISO/IEC JTC 1/SC 27 (Information security, cybersecurity and privacy protection)
- standardized later in 2018 by other subcommittee ISO/IEC JTC 1/SC 31 (Automatic identification and data capture techniques)

Speck

- 10 variants of block/key lengths
- starting with 32-bit block and 64-bit key ...
- e.g. 128 -bit block with 128,192 , or 256 -bit key ($32,33,34$ rounds)
- Speck2n
- $2 n$-bit block (two n-bit words)
- round function (round key k_{i}):

Speck - key expansion

- a key K consists of m words, $m \in\{2,3,4\}(m=|K| / n)$
- for example: $m=2$ for Speck128/128, $m=4$ for Speck128/256
- $K=\left(l_{m-2}, \ldots, l_{0}, k_{0}\right)$
- round function is used for key expansion:

AES (Advanced Encryption Standard)

- DES deficiency: short key length (56 bits)
- public standardization process for new encryption standard (1997-2000)
- requirements: block cipher, block length 128 bits, key lengths 128, 192, 256 bits
- Rijndael - winning algorithm (Vincent Rijmen, Joan Daemen)
- NIST standardized AES in 2001 (other standardizations followed)
- the most important symmetric cipher today
- used (almost) everywhere

AES

- not a Feistel cipher
- different number of rounds depending on key length: AES-128 10 rounds, AES-192 12 rounds, AES-256 14 rounds
- slight performance degradation for longer key lengths

	1 thread (millions AES/s)	
with AES-NI	no AES-NI	
AES-128	42.8	7.1
AES-192	36.1	6.0
AES-256	31.4	5.3

platform: i7-2600 @ 3.40 GHz (4 cores/8 threads, AES-NI)
implementation: openssl 1.0.1
overall encryption performance AES-128: $0.75 \mathrm{~GB} / \mathrm{s}$ (1 thread, AES-NI)

AES - state and operations

- state (plaintext, internal state, ciphertext): 4×4 array of bytes:

- 4 basic operations (invertible):

1. AddRoundKey - XOR the state with 128 -bit round key
2. SubBytes - replace each byte using a fixed permutation (S-box)
3. ShiftRows - cyclically shift each row of the state
4. MixColumns - multiply each column by a fixed matrix

AES - details of operations

1. AddRoundKey: fast mix of round key in; self-inverse
2. SubBytes: $s_{i, j}=S\left(s_{i, j}\right)$ for all $0 \leq i, j \leq 3$

- the only nonlinear operation in AES
- carefully chosen (a linear/affine ciphers are easy to break)
- invertible: inverse permutation on $\{0,1\}^{8}$

3. ShiftRows:

- 1st row is not shifted
- 2 nd/3rd/4th row: bytes are cyclically shifted to the left by $1 / 2 / 3$ bytes
- example: $\left(s_{1,0}, s_{1,1}, s_{1,2}, s_{1,3}\right) \mapsto\left(s_{1,1}, s_{1,2}, s_{1,3}, s_{1,0}\right)$
- invertible: shift to the right

4. MixColumns

- fixed (invertible !) matrix M
- good diffusion properties (small difference on input "amplifies")

AES - encryption structure

AES - decryption structure

inverse operations: InvShiftRows, InvMixColumns, InvSubBytes

AES - key expansion (for 128 bit key) 1

- AES-128 $\Rightarrow 10$ rounds $\Rightarrow 11$ round keys (i.e. $11 \cdot 16=176 \mathrm{~B}$)
- first 16 B (first round key) is the encryption key
- rcon(i) - round constant
- 1st 4-byte word in each new round key:

AES - key expansion (for 128 bit key) 2

- for the 2 nd, 3 rd and 4th 4-byte word in each round key:

- round keys are formed from consecutive bytes of the expanded key
- slightly different key expansion for key length 256

AES - security

- exhaustive key search complexity $\sim 2^{128}$ or 2^{192} or 2^{256}
- best key recovery attacks
- Bogdanov et al. 2011, KPA:

	time	data
AES-128	$2^{126.2}$	2^{88}
AES-192	$2^{189.7}$	2^{80}
AES-256	$2^{254.4}$	2^{40}

- Tao and Wu 2015, KPA:

	time	data
AES-128	$2^{126.1}$	2^{56}
AES-192	$2^{189.9}$	2^{48}
AES-256	$2^{254.3}$	2^{40}

Multiple encryption

- multiple encryption (cascade encryption)
- using the same or different ciphers, usually with independent keys

$$
E_{k_{1}, k_{2}}(p)=E_{k_{2}}^{\prime}\left(E_{k_{1}}^{*}(p)\right)
$$

- possible goals:
- increasing the key space
- security (what if a cipher is broken ... use two or three distinct)
- some ciphers cannot be strengthened (the key space does not increase), regardless of cascade length
- examples: simple substitution, Vigenere, permutation, Vernam, etc.

$$
\forall k_{1}, k_{2} \exists k \forall p: E_{k_{1}}\left(E_{k_{1}}(p)\right)=E_{k}(p)
$$

- independence of keys can be crucial
- example: using the same key in double Vernam cipher \Rightarrow no encryption

3DES (TDEA)

- 3DES is defined as a cascade of the length 3:
- encryption: $E_{k_{3}}\left(D_{k_{2}}\left(E_{k_{1}}(p)\right)\right)$
- decryption: $D_{k_{1}}\left(E_{k_{2}}\left(D_{k_{3}}(c)\right)\right)$
- keying options (and corresponding key length):
- option 1: independent keys (168 bits)
- option 2: $k_{1}=k_{3}$ (112 bits)
- option 3: $k_{1}=k_{2}=k_{3}$ (56 bits)
- EDE mode (instead of EEE mode) and keying option 3 ensures backward compatibility with DES
- real strength (bit security) of 3DES:
- option 1: 112 bits (meet in the middle attack)
- option 2: 80 bits (assuming 2^{40} known plaintext/ciphertext pairs)

Meet in the middle attack (MITM)

- disadvantage of multiple encryption - slower than single encryption
- why not "double encryption" - MITM attack
- MITM is generally applicable to multiple encryption schemes
- MITM is known plaintext attack (several pairs $\left(p_{i}, c_{i}\right)$ known)
$c=E_{k_{2}}\left(E_{k_{1}}(p)\right)$

1. $\forall k_{2}^{\prime}$: compute $x=D_{k_{2}^{\prime}}(c)$ and store $\left(x, k_{2}^{\prime}\right)$ in a hash table indexed by x
2. $\forall k_{1}^{\prime}$: compute $x=E_{k_{1}^{\prime}}(p)$
2.1 find entry(ies) (x, k_{2}^{\prime}) in the table
2.2 verify a candidate key(s) ($k_{1}^{\prime}, k_{2}^{\prime}$) using other plaintext/ciphertext pairs

MITM - complexity

- assume key length k and block length n
- expected number of required plaintext/ciphertext pairs $\lceil 2 k / n\rceil$
- $\approx 2^{2 k} / 2^{n}$ "valid" key pairs for a single (p, c) pair
- $\approx 2^{2 k} / 2^{t n}$ for t plaintext/ciphertext pairs
- from $1 \sim 2^{2 k} / 2^{\text {th }}$ we get $t \sim 2 k / n$
- time complexity $O\left(2^{k}\right)$
- first cycle 2^{k} iterations; second cycle 2^{k} iterations
- single hash table operation $O(1)$
- memory complexity $O\left(2^{k}\right)$
- each key k_{2}^{\prime} produces one fixed-length entry in the hash table
- second cycle in constant memory
- easily generalized for longer cascades
- example: MITM on 3DES with 3 keys - time 2^{112} and memory 2^{56}

A KPA on two-key triple encryption

- example cipher: 3DES with keying option 2, $c=E_{k_{1}}\left(D_{k_{2}}\left(E_{k_{1}}(p)\right)\right)$
- slightly more involved than MITM attack on double-encryption
- details and analysis in archive
- assume t known plaintext/ciphertext pairs
- time complexity: $O\left(t+2^{k+n-\lg t}\right)$
- memory complexity: $O\left(t+2^{k-n} \cdot t\right)$
- 3DES with two key option:
- parameters: $k=56, n=64, t=2^{40}$
- time complexity: $O\left(t+2^{k+n-\lg t}\right) \approx 2^{120-40}=2^{80}$
- memory complexity: $O\left(t+2^{k-n} \cdot t\right) \approx 2^{40}$
- Triple AES-128 (not used in practice) with two-key option:
- parameters: $k=128, n=128, t=2^{60}$
- time / memory complexity: $\approx 2^{196} / \approx 2^{60}$
- different trade-offs for different t values

Data requirements of KPA/CPA

- assumption: block length $n=128$
- only the ciphertext is considered for size computation, and for calculation of transmission time

data	size $[\mathrm{TB}]$	time for $1 \mathrm{~Gb} / \mathrm{s}$
2^{40}	17.6	39 hours
2^{60}	$1.8 \cdot 10^{8}$	4676 years
2^{80}	$1.9 \cdot 10^{13}$	$4.9 \cdot 10^{9}$ years
2^{100}	$2.0 \cdot 10^{19}$	$5.1 \cdot 10^{15}$ years

Slide attack 1

- iterated ciphers
- easy to change the number of rounds
- usually more rounds ~ increased security
- Biryukov, Wagner (1999)
- general attack on iterated cipher with identical round transform
- arbitrary number of rounds
- other variants exist
- cipher: $C=F_{k} \circ F_{k} \circ \ldots \circ F_{k}(P)$
- slid pair is a known pair of (P, C) and $\left(P^{\prime}, C^{\prime}\right)$ such that $P^{\prime}=F_{k}(P)$ and $C^{\prime}=F_{k}(C)$

Slide attack 2

- we assume that F_{k} is "weak":
- easy to compute k from equations $y_{0}=F_{k}\left(x_{0}\right), y_{1}=F_{k}\left(x_{1}\right)$
- usually very easy; for example, try this for Speck2n or AES
- KPA attack
- approx. $2^{n / 2}$ of known plaintext-ciphertext pairs expecting ≈ 1 slid pair (birthday paradox)
- testing all combinations if there is a slid pair $(P, C),\left(P^{\prime}, C^{\prime}\right)$ Is there k such that $P^{\prime}=F_{k}(P) \wedge C^{\prime}=F_{k}(C) ? \ldots\left(\approx 2^{n}\right)$
- one slid pair recovers approx. n bits of the key
- Why bother when time complexity is $O\left(2^{n}\right)$?
- single round (slide attack) vs. full cipher (brute-force)
- other improvements depending on F

Slide attack 3

- KPA and CPA slide attacks much better with Feistel ciphers
- single round ... half of the block does not change
- $\approx 2^{n / 4}$ plaintext-ciphertext pairs for finding a slid pair
- i.e. complexity is $O\left(2^{n / 2}\right)$
- advanced variants of slide attack exist
- pay attention to key scheduling

