Block Ciphers I

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs.fmph.uniba. sk

Cryptology 1 (2023/24)

Block Ciphers

1/27

5

Content

Confidentiality modes - ECB, CBC, OFB, CFB, CTR

Padding
Padding oracle attack
Ciphertext stealing

Authenticated encryption - CCM, GCM
Forbidden attack

Block Ciphers 2/27

Modes of operation

> plaintext usually much longer than the block length
> modes of operation can provide:

> confidentiality (and not authenticity) ... “traditional” modes
authenticity (and not confidentiality)
confidentiality & authenticity (authenticated encryption)
confidentiality for block-oriented storage devices (e.g. disks)
key wrapping
format-preserving encryption, ...

vyVvyVvyYvyy

> varying requirements (speed, security properties, ability to parallelize,
availability of RNG, etc.) = different modes

Block Ciphers 3/27

Confidentiality modes

> the most important confidentiality modes: ECB, CBC, OFB, CFB, CTR

> e.g. see NIST SP 800-38A: Recommendation for Block Cipher Modes of
Operation: Methods and Techniques

» None of these modes provide protection against accidental or
adversarial modifications of ciphertext!

> however, the effect of ciphertext modification on resulting plaintext
varies among modes

Block Ciphers 4/27

ECB (Electronic Codebook)

Py Py Py Py
C; G C; G
encrypt: C; = Ex(P;) decrypt: P; = Di(C;)

the simplest mode

dataleaks: C;=C; & P;=P;

easy to rearrange the ciphertexts blocks (permute, duplicate, ...)
encryption and decryption trivially parallelizable

easy to perform a seek (random access)

vV v v v vYy

bit changes do not propagate (single block affected)

Block Ciphers 5/27

CBC (Cipher Block Chaining) 1

G G

encrypt: C; = Ex(P; & Ci—1) decrypt: P; = Di(C;) & Ci—q

1V (initialization vector) — secrecy not required, usually appended as Cy
popular mode (e.g. AES-128 CBC was mandatory in TLS 1.2, RFC 5246)
parallelizable decryption but not encryption

bit change in plaintext or IV propagates to the rest of the ciphertext

vV v.v.vyYy

bit change in the ciphertext affects only two plaintext blocks

Block Ciphers 6/27

Visual comparison of ECB and CBC (AES-128)

VAV T !,E'E:-:ﬂ.'.-.' &
UL Gt

\ [ux s

L e | | CE b
ECB CBC

Block Ciphers 7/27

CBC 2

> “self-synchronizing” after losing a ciphertext block

» similarly to ECB, plaintext should be a multiple of block length
> padding, ciphertext stealing

» 1V should be unpredictable (e.g. IV = Ek(msgseq), random, ...)

> otherwise, in CPA scenario, an attacker gets an E(-) oracle
> since Ci = E(IV & P), predictable 1V allows him/her to adjust P
> the attacker with Ex(-) access can test any plaintext block

Block Ciphers 8/27

CBC 3

> data leak (birthday & two-time pad):
Ci=C = E(PoCi)=E(PeCi.)
P;® R, =Ci_1® Cj_1

> Sweet32 attack (2016): ciphers with block length 64 bits and large
amount of data encrypted using the same key (TLS, OpenVPN)

> 64 bit block = collision expected after ~ 232 blocks (32 GiB)

» limit number of blocks encrypted with a single key

Block Ciphers 9/27

CFB (Cipher Feedback)

encrypt: C; = P; @ Ex(Ci—1) decrypt: P; = C; @ Ex(Ci—1)

parallelizable decryption but not encryption; Dy not needed
bit change in plaintext or IV propagates to the rest of the ciphertext

bit change in the ciphertext affects only two plaintext blocks

vvyVvyy

self-synchronizing after full ciphertext block is lost

> ciphertext block and its predecessor are needed to decrypt correctly
> there is a variant for more granular losses

Block Ciphers 10/27

CFB 2

> plaintext length does not need to be a multiple of block length

» |V should be unique for each plaintext
> repeated /V:
> two-time pad for the first blocks:

CioCi=E(V)®PidE(IV)® P =P &P

> for constant IV we have an encryption oracle in CPA scenario;
2nd block (G,):

C = Ek(Ek(IV) (] P1) @ P,
— ——
Gy

choosing P; = C; @ P; @ X and arbitrary P; yields
C=EE(V)eCieoPdaX)dP,=E(X)®P,

thus Ex(X) = C,® P,

Block Ciphers

11/27

CFB8 variant of CFB mode and Zerologon

v

Zerologon (CVE-2020-1472, Tom Tervoort)
compromising domain admin in AD

v

problems with cryptography in Netlogon protocol
AES-CFB38
CFB8 mode (P; and C; denote bytes):

v

v

Cz = Ek(IV“ 15]C1)[0] &b P2
C3 = Ek(IV[Z 15]C1C2)[0] &b P3

Cip1 = Ek(C[i_ 15,~~,i])[0] ® Piyq

Block Ciphers 12/27

CFB8 variant of CFB mode and Zerologon 2

» function in Netlogon implementation used all-zero IV (always)
» consider all-zero plaintext
> 1/256 of all keys lead to all-zero ciphertext
> client authenticates by encrypting his own challenge with a session key
> the attacker chooses all-zero challenge
> session-key is unknown
> the attacker succeeds with probability 1/256
> if unsuccessful try again (session-key will change since it depends on
server challenge as well)
>

the attack requires more than this, but this is the core problem

Block Ciphers 13/27

OFB (Output Feedback)

v v
R R
k) Y k) Y
e e
P; 4’@5—’ C; C; 4’@5—’ P;
Ri = Ex(Ri—+)
encrypt: C; = P; & R; decrypt: P;= C; ® R;

synchronous stream cipher; Dy not needed
1V should be unique for each plaintext

neither encryption nor decryption can be parallelized

vV v.v Yy

single bit change in plaintext/ciphertext causes single bit change in
ciphertext/plaintext (easy to flip plaintext bits)

Block Ciphers 14 /27

CTR (Counter)

ctr++

encrypt: C; = P; ® E,(IV | ctr) decrypt: P; = C; @ Ex(1V | ctr)

inputs to £y should not overlap (otherwise ...two-time pad)
similar to OFB (synchronous stream cipher)
similar properties of changing ciphertext bits

easy to perform a seek (random access)

vV v.v.v Yy

easy to encrypt and decrypt in parallel

Block Ciphers 15/27

Padding

v

ECB and CBC assume: n | |plaintext|
(i.e. ndivides the length of plaintext)

v

padding required (various paddings used):

> bit padding — append 1 (always) and necessary number of 0’s:

msg || 1000...0
> byte padding (PKCS #7, CMS (RFC 5652)):

msg || 01 if n| |msg|+1

msg || 030303 if n| |msg|+3

msg || 1010...10 if n| |msg| (for n = 128)
> similarly for TLS 1.2 (RFC 5246): 00; 02 02 02; OF OF ...0OF

v

padding = |ciphertext| > |plaintext|

v

padding should be verified after decryption
“stream” modes like OFB, CTR or CFB do not need padding
> |ciphertext| = |plaintext|

v

Block Ciphers

16 /27

Padding oracle attack 1

> implementation issue
> our assumptions:
> CBC mode, PKCS #7 padding
> we can recognize correct/incorrect padding, e.g. a server behaves
differently (observable error, timing differences, ...)
> goal: decrypt ciphertext block C, i.e. compute Y = Dy (C)
> the attack:

> try ciphertexts (assume 16-byte block, X is a random 15-byte value):
X100 | € (X [[01) | C, .o, (X[|TA) || C ..o (X | F) || C,
until we find a ciphertext with valid padding

> the highest probability: the corresponding plaintext ends with byte 01
(and not with bytes 02 02 or even longer padding)

> there is always a candidate with 01 padding, we can also alter the
penultimate byte of X to distinguish it

> finally, we can compute Yis, e.g. (TA®Y15) =01= Yi5=7B

Block Ciphers 17/27

Padding oracle attack 2

> the attack (cont.):

> set the last byte of the first block to get 02 as the final byte of the
plaintext: b® Yi5 =02, i.e. b=79

> try ciphertexts (X is a random 14-byte value):
(X[100 | 79) | C, (X [|01]|79) | C; ..,

(X1 B2([79) | C....., (X | FF | 79) || C,

until we find a ciphertext with valid padding (this time: 02 02)

> we can compute Y4, e.g. (B2@®Yyy) =02 = Yy, = B0

...similarly for other bytes

> avariant used against SSL/TLS implementations (Lucky Thirteen, 2013)

Block Ciphers 18/27

Ciphertext stealing 1

> method of avoiding padding for CBC or ECB modes
> ciphertext stealing for CBC mode encryption
> example: Kerberos, AES256-CTS

Poov Pu]|0...0

plaintext: ... Pp_, Pp_1, Py
ciphertext: ... C,—5,C/_., C,

n—=1"n

Block Ciphers 19/27

Ciphertext stealing 2

» decrypting CBC ciphertext stealing:

Pov P,]]0...0

Block Ciphers 20/ 27

Ciphertext stealing 2

» decrypting CBC ciphertext stealing:

Pov P,]]0...0

Block Ciphers 20/ 27

Authenticated encryption

» modes providing confidentiality & authenticity of data
> e.g. CCM (Counter with CBC-MAC), GCM (Galois/Counter Mode)
> CCM (idea):
> plaintext encrypted using CTR mode
authentication tag computed as CBC-MAC

>
> authenticate-then-encrypt (single key is used)
> two-pass scheme (two E transforms for each input block)

Block Ciphers 21/27

Authenticated encryption - GCM

v

we follow NIST SP 800-38D, GCM for 128-bit block ciphers, e.g. AES
popular variant with 96-bit IV and 32-bit counter

vy

notation:
> K - key, single key is used
> P, A, C - plaintext, additional authenticated data, ciphertext
> H = Ex(0'®) - authentication key used for authentication tag
computation
> Jo= VIO 1;
> len(X) — the length of X in bits, a 64-bit value
> encryption using the CTR mode:

1. ctr = inc3(Jo) (increment modulo 232 to the last 4B)
2. P Xi,..., X, (the last block might be incomplete)
3. fori=1,....m

> Cj=P;® Eg(ctr)

> ctr = inc3y(ctr)
4. output: Cy,..., Cy, where |C,y| = | Py

Block Ciphers 22/27

GCM - authentication tag

» GHASHy(A, C) computation:
1. Al|C = Xi,..., Xp—1,len(A) || len(C)

~— ————
X
A and C are padded with 0 to fill incomplete blocks, if necessary

2. Yp=0'%8
3. fori=1,...,mY;=(Yi.1® X)) e H
4. GHASHyx(A,C) « Y,

» authentication tag T: T = Ex(Jo) ® GHASHy (A, C)

> e is multiplication in GF(2'?®) (generated by x'® + x” + x> + x + 1)

Block Ciphers 23/27

GCM remarks and forbidden attack

> limited message length (increasing the length affects the security), for
example:
(TLS 1.3, RFC 8446) For AES-GCM, up to 2°*> full-size records (about 24
million) may be encrypted on a given connection while keeping a safety
margin of approximately 2> for Authenticated Encryption (AE) security.

> IV must be unique (nonce) for given key and message, otherwise
“forbidden attack”

> repeated IV:

> two-time pad for CTR encryption

> H can be computed (see next slides)

> impact: the attacker can manipulate ciphertext (bit flipping), edit
associated data A, and compute correct authentication tag

Block Ciphers 24 /21

Forbidden attack — let’s compute H

forbidden attack (A. Joux)

assumption: two messages encrypted with the same K and IV
H is the same in both cases, since H = Ex(0'%)

similarly Ex(Jo) is the same (let’s denote it J*)

for readability: ® — + and e > -

vV v v v VvY

computation of T can be written as a polynomial g(z):
g(z) :,,I* +Z'Xn+22 'Xn_] +...+Zn 'X1

where T = g(H)
> known: T, A, C, where A||C — Xi,..., Xy—1,len(A) ||len(C)

» unknown: H and J*

Block Ciphers 25/27

Forbidden attack — let’s compute H (cont.)

> two polynomials for our messages:

g2 =S +z-Xg+ 22 Xpq +..+ 2" X
g@) =S +z- X, +22 X, 4. +2" - X]
> Hisaroot of g(z) + T and g’(z) + T, i.e. it is a root of their sum:
82 +T+g(2)+T
> polynomial with degree max{n, '}, we know all coefficients (J* cancels
out)
> H can be computed via factorization, finding roots and verification for
other messages
> more messages with the same IV = more polynomials that share a

common root
> number of roots in theory up to the degree, in practice substantially less

Block Ciphers 26/ 27

Forbidden attack in real-world

> Bock et al. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on
GCM in TLS, 2016

» AES-GCM in TLS 1.2 (implementation should ensure uniquess)
> 184 out of approx. 70.000 HTTPS servers/devices with duplicit 1V
> examples: VISA, Deutsche Borse

Block Ciphers 27727

	Confidentiality modes – ECB, CBC, OFB, CFB, CTR
	Padding
	Padding oracle attack
	Ciphertext stealing

	Authenticated encryption – CCM, GCM
	Forbidden attack

