
Block Ciphers II

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Block Ciphers 1 / 27 ,

Content

Confidentiality modes – ECB, CBC, OFB, CFB, CTR

Padding
Padding oracle attack
Ciphertext stealing

Authenticated encryption – CCM, GCM
Forbidden attack

Block Ciphers 2 / 27 ,

Modes of operation

▶ plaintext usually much longer than the block length
▶ modes of operation can provide:

▶ confidentiality (and not authenticity) . . . “traditional” modes
▶ authenticity (and not confidentiality)
▶ confidentiality & authenticity (authenticated encryption)
▶ confidentiality for block-oriented storage devices (e.g. disks)
▶ key wrapping
▶ format-preserving encryption, . . .

▶ varying requirements (speed, security properties, ability to parallelize,
availability of RNG, etc.)⇒ different modes

Block Ciphers 3 / 27 ,

Confidentiality modes

▶ the most important confidentiality modes: ECB, CBC, OFB, CFB, CTR
▶ e.g. see NIST SP 800-38A: Recommendation for Block Cipher Modes of

Operation: Methods and Techniques
▶ None of these modes provide protection against accidental or

adversarial modifications of ciphertext!
▶ however, the effect of ciphertext modification on resulting plaintext

varies among modes

Block Ciphers 4 / 27 ,

ECB (Electronic Codebook)

P1

Ek

C1

P2

Ek

C2

encrypt: Ci = Ek (Pi)

P1

Dk

C1

P2

C2

decrypt: Pi = Dk (Ci)

Dk

▶ the simplest mode
▶ data leaks: Ci = Cj ⇔ Pi = Pj
▶ easy to rearrange the ciphertexts blocks (permute, duplicate, . . .)
▶ encryption and decryption trivially parallelizable
▶ easy to perform a seek (random access)
▶ bit changes do not propagate (single block affected)

Block Ciphers 5 / 27 ,

CBC (Cipher Block Chaining) 1
P1

Ek

C1

P2

Ek

C2

IV
(C0)

encrypt: Ci = Ek (Pi ⊕ Ci−1)

P1

Dk

C1

P2

C2

IV
(C0)

decrypt: Pi = Dk (Ci)⊕ Ci−1

Dk

▶ IV (initialization vector) – secrecy not required, usually appended as C0

▶ popular mode (e.g. AES-128 CBC was mandatory in TLS 1.2, RFC 5246)
▶ parallelizable decryption but not encryption
▶ bit change in plaintext or IV propagates to the rest of the ciphertext
▶ bit change in the ciphertext affects only two plaintext blocks

Block Ciphers 6 / 27 ,

Visual comparison of ECB and CBC (AES-128)

?!
ECB CBC

Block Ciphers 7 / 27 ,

CBC 2

▶ “self-synchronizing” after losing a ciphertext block
▶ similarly to ECB, plaintext should be a multiple of block length

▶ padding, ciphertext stealing
▶ IV should be unpredictable (e.g. IV = Ek (msgseq), random, . . .)

▶ otherwise, in CPA scenario, an attacker gets an Ek (·) oracle
▶ since C1 = Ek (IV ⊕ P1), predictable IV allows him/her to adjust P1
▶ the attacker with Ek (·) access can test any plaintext block

Block Ciphers 8 / 27 ,

CBC 3

▶ data leak (birthday & two-time pad):

Ci = Cj ⇒ Ek (Pi ⊕ Ci−1) = Ek (Pj ⊕ Cj−1)
Pi ⊕ Pj = Ci−1 ⊕ Cj−1

▶ Sweet32 attack (2016): ciphers with block length 64 bits and large
amount of data encrypted using the same key (TLS, OpenVPN)
▶ 64 bit block⇒ collision expected after ≈ 232 blocks (32 GiB)

▶ limit number of blocks encrypted with a single key

Block Ciphers 9 / 27 ,

CFB (Cipher Feedback)

Pi

Ek

Ci

IV

encrypt: Ci = Pi ⊕ Ek (Ci−1) decrypt: Pi = Ci ⊕ Ek (Ci−1)

Ci

Ek

Pi

IV
(C0) (C0)

Ci−1 Ci−1

▶ parallelizable decryption but not encryption; Dk not needed
▶ bit change in plaintext or IV propagates to the rest of the ciphertext
▶ bit change in the ciphertext affects only two plaintext blocks
▶ self-synchronizing after full ciphertext block is lost

▶ ciphertext block and its predecessor are needed to decrypt correctly
▶ there is a variant for more granular losses

Block Ciphers 10 / 27 ,

CFB 2

▶ plaintext length does not need to be a multiple of block length
▶ IV should be unique for each plaintext
▶ repeated IV :

▶ two-time pad for the first blocks:

C1 ⊕ C′1 = Ek (IV) ⊕ P1 ⊕ Ek (IV) ⊕ P ′1 = P1 ⊕ P ′1

▶ for constant IV we have an encryption oracle in CPA scenario;
2nd block (C2):

C2 = Ek (Ek (IV) ⊕ P1︸ ︷︷ ︸
C1

) ⊕ P2

choosing P ′1 = C1 ⊕ P1 ⊕ X and arbitrary P ′2 yields

C′2 = Ek (Ek (IV) ⊕ C1 ⊕ P1 ⊕ X) ⊕ P ′2 = Ek (X) ⊕ P ′2

thus Ek (X) = C′2 ⊕ P ′2

Block Ciphers 11 / 27 ,

CFB8 variant of CFB mode and Zerologon

▶ Zerologon (CVE-2020-1472, Tom Tervoort)
compromising domain admin in AD

▶ problems with cryptography in Netlogon protocol
▶ AES-CFB8
▶ CFB8 mode (Pi and Ci denote bytes):

C1 = Ek (IV [0… 15]) [0] ⊕ P1
C2 = Ek (IV [1… 15]C1) [0] ⊕ P2
C3 = Ek (IV [2… 15]C1C2) [0] ⊕ P3
…

Ci+1 = Ek (C [i − 15, … , i]) [0] ⊕ Pi+1

Block Ciphers 12 / 27 ,

CFB8 variant of CFB mode and Zerologon 2

▶ function in Netlogon implementation used all-zero IV (always)
▶ consider all-zero plaintext

▶ 1/256 of all keys lead to all-zero ciphertext
▶ client authenticates by encrypting his own challenge with a session key

▶ the attacker chooses all-zero challenge
▶ session-key is unknown
▶ the attacker succeeds with probability 1/256
▶ if unsuccessful try again (session-key will change since it depends on

server challenge as well)

▶ the attack requires more than this, but this is the core problem

Block Ciphers 13 / 27 ,

OFB (Output Feedback)

Pi

Ek

Ci

IV

encrypt: Ci = Pi ⊕ Ri decrypt: Pi = Ci ⊕ Ri

Ci

Ek

Pi

IV
(R0) (R0)

Ri = Ek (Ri−1)

▶ synchronous stream cipher; Dk not needed
▶ IV should be unique for each plaintext
▶ neither encryption nor decryption can be parallelized
▶ single bit change in plaintext/ciphertext causes single bit change in

ciphertext/plaintext (easy to flip plaintext bits)

Block Ciphers 14 / 27 ,

CTR (Counter)

Pi

Ek

Ci

IV | ctr

encrypt: Ci = Pi ⊕ Ek (IV | ctr) decrypt: Pi = Ci ⊕ Ek (IV | ctr)

Pi

Ek

Ci

IV | ctr

ctr++

▶ inputs to Ek should not overlap (otherwise . . . two-time pad)
▶ similar to OFB (synchronous stream cipher)
▶ similar properties of changing ciphertext bits
▶ easy to perform a seek (random access)
▶ easy to encrypt and decrypt in parallel

Block Ciphers 15 / 27 ,

Padding

▶ ECB and CBC assume: n | |plaintext|
(i.e. n divides the length of plaintext)

▶ padding required (various paddings used):
▶ bit padding – append 1 (always) and necessary number of 0’s:

msg || 1000. . . 0
▶ byte padding (PKCS #7, CMS (RFC 5652)):

msg || 01 if n | |msg| + 1
msg || 03 03 03 if n | |msg| + 3
msg || 10 10 . . . 10 if n | |msg| (for n = 128)

▶ similarly for TLS 1.2 (RFC 5246): 00; 02 02 02; 0F 0F . . . 0F

▶ padding⇒ |ciphertext| > |plaintext|
▶ padding should be verified after decryption
▶ “stream” modes like OFB, CTR or CFB do not need padding

▶ |ciphertext| = |plaintext|

Block Ciphers 16 / 27 ,

Padding oracle attack 1

▶ implementation issue
▶ our assumptions:

▶ CBC mode, PKCS #7 padding
▶ we can recognize correct/incorrect padding, e.g. a server behaves

differently (observable error, timing differences, . . .)

▶ goal: decrypt ciphertext block C, i.e. compute Y = Dk (C)
▶ the attack:

▶ try ciphertexts (assume 16-byte block, X is a random 15-byte value):
(X || 00) || C, (X || 01) || C, . . . , (X || 7A) || C, . . . , (X || FF) || C,
until we find a ciphertext with valid padding

▶ the highest probability: the corresponding plaintext ends with byte 01
(and not with bytes 02 02 or even longer padding)

▶ there is always a candidate with 01 padding, we can also alter the
penultimate byte of X to distinguish it

▶ finally, we can compute Y15, e.g. (7A ⊕Y15) = 01⇒ Y15 = 7B

Block Ciphers 17 / 27 ,

Padding oracle attack 2

▶ the attack (cont.):
▶ set the last byte of the first block to get 02 as the final byte of the

plaintext: b ⊕ Y15 = 02, i.e. b = 79
▶ try ciphertexts (X is a random 14-byte value):

(X || 00 || 79) || C, (X || 01 || 79) || C, . . . ,
(X || B2 || 79) || C, . . . , (X || FF || 79) || C,

until we find a ciphertext with valid padding (this time: 02 02)
▶ we can compute Y14, e.g. (B2 ⊕Y14) = 02⇒ Y14 = B0

. . . similarly for other bytes

▶ a variant used against SSL/TLS implementations (Lucky Thirteen, 2013)

Block Ciphers 18 / 27 ,

Ciphertext stealing 1

▶ method of avoiding padding for CBC or ECB modes
▶ ciphertext stealing for CBC mode encryption

▶ example: Kerberos, AES256-CTS

Pn−1

Ek

Cn−1

Pn || 0 . . . 0

Ek

CnCn−2

C′n−1 C′n || x . . . x

plaintext: … Pn−2, Pn−1, Pn
ciphertext: …Cn−2,C′n−1,C

′
n

Block Ciphers 19 / 27 ,

Ciphertext stealing 2

▶ decrypting CBC ciphertext stealing:

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

3

Block Ciphers 20 / 27 ,

Ciphertext stealing 2

▶ decrypting CBC ciphertext stealing:

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

Pn−1

Dk

Cn−1

Pn || 0 . . . 0

Dk

CnCn−2

C′n−1 C′n
1 2

3

Block Ciphers 20 / 27 ,

Authenticated encryption

▶ modes providing confidentiality & authenticity of data
▶ e.g. CCM (Counter with CBC-MAC), GCM (Galois/Counter Mode)
▶ CCM (idea):

▶ plaintext encrypted using CTR mode
▶ authentication tag computed as CBC-MAC
▶ authenticate-then-encrypt (single key is used)
▶ two-pass scheme (two E transforms for each input block)

m1

Ek

m2

Ek

IV

mt

Ek

Block Ciphers 21 / 27 ,

Authenticated encryption – GCM

▶ we follow NIST SP 800-38D, GCM for 128-bit block ciphers, e.g. AES
▶ popular variant with 96-bit IV and 32-bit counter
▶ notation:

▶ K – key, single key is used
▶ P , A, C – plaintext, additional authenticated data, ciphertext
▶ H = EK (0128) – authentication key used for authentication tag

computation
▶ J0 = IV | | 031 | | 1;
▶ len(X) – the length of X in bits, a 64-bit value

▶ encryption using the CTR mode:
1. ctr = inc32 (J0) (increment modulo 232 to the last 4B)
2. P ↦→ X1, … ,Xn (the last block might be incomplete)
3. for i = 1, … , n:

▶ Ci = Pi ⊕ EK (ctr)
▶ ctr = inc32 (ctr)

4. output: C1, … ,Cn, where |Cn | = |Pn |

Block Ciphers 22 / 27 ,

GCM – authentication tag

▶ GHASHH (A,C) computation:
1. A | | C ↦→ X1, … ,Xn−1, len(A) | | len(C)︸ ︷︷ ︸

Xn
A and C are padded with 0 to fill incomplete blocks, if necessary

2. Y0 = 0128

3. for i = 1, … , n: Yi = (Yi−1 ⊕ Xi) • H
4. GHASHH (A,C) ← Yn

▶ authentication tag T : T = EK (J0) ⊕ GHASHH (A,C)
▶ • is multiplication in GF(2128) (generated by x128 + x7 + x2 + x + 1)

Block Ciphers 23 / 27 ,

GCM remarks and forbidden attack

▶ limited message length (increasing the length affects the security), for
example:
(TLS 1.3, RFC 8446) For AES-GCM, up to 224.5 full-size records (about 24
million) may be encrypted on a given connection while keeping a safety
margin of approximately 2−57 for Authenticated Encryption (AE) security.

▶ IV must be unique (nonce) for given key and message, otherwise
“forbidden attack”

▶ repeated IV:
▶ two-time pad for CTR encryption
▶ H can be computed (see next slides)
▶ impact: the attacker can manipulate ciphertext (bit flipping), edit

associated data A, and compute correct authentication tag

Block Ciphers 24 / 27 ,

Forbidden attack – let’s compute H

▶ forbidden attack (A. Joux)
▶ assumption: two messages encrypted with the same K and IV
▶ H is the same in both cases, since H = EK (0128)
▶ similarly EK (J0) is the same (let’s denote it J∗)
▶ for readability: ⊕ ↦→ + and • ↦→ ·
▶ computation of T can be written as a polynomial g(z):

g(z) = J∗ + z · Xn + z2 · Xn−1 +… + zn · X1

where T = g(H)
▶ known: T , A, C, where A | | C ↦→ X1, … ,Xn−1, len(A) | | len(C)
▶ unknown: H and J∗

Block Ciphers 25 / 27 ,

Forbidden attack – let’s compute H (cont.)

▶ two polynomials for our messages:

g(z) = J∗ + z · Xn + z2 · Xn−1 +… + zn · X1
g′(z) = J∗ + z · X ′n′ + z2 · X ′n′−1 +… + zn

′ · X ′1
▶ H is a root of g(z) + T and g′(z) + T ′, i.e. it is a root of their sum:

g(z) + T + g′(z) + T ′
▶ polynomial with degree max{n, n′}, we know all coefficients (J∗ cancels

out)
▶ H can be computed via factorization, finding roots and verification for

other messages
▶ more messages with the same IV⇒ more polynomials that share a

common root
▶ number of roots in theory up to the degree, in practice substantially less

Block Ciphers 26 / 27 ,

Forbidden attack in real-world

▶ Böck et al. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on
GCM in TLS, 2016

▶ AES-GCM in TLS 1.2 (implementation should ensure uniquess)
▶ 184 out of approx. 70.000 HTTPS servers/devices with duplicit IV

▶ examples: VISA, Deutsche Börse

Block Ciphers 27 / 27 ,

	Confidentiality modes – ECB, CBC, OFB, CFB, CTR
	Padding
	Padding oracle attack
	Ciphertext stealing

	Authenticated encryption – CCM, GCM
	Forbidden attack

