
Block Ciphers
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Introduction

– encryption/decryption
𝐸, 𝐷 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛

– 𝑘 – key length, 𝑛 – block length

– correctness:
∀𝐾 ∈ {0, 1}𝑘 ∀𝑚 ∈ {0, 1}𝑛 : 𝐷𝐾(𝐸𝐾(𝑚)) = 𝑚

– 𝐸𝐾 and 𝐷𝐾 are mutually inverse
permutations on {0, 1}𝑛

1 / 30

Real-world

– Examples of real-world block ciphers
▫ AES – block length: 128, key lengths: 128, 192, 256
▫ TDEA (also known as 3DES) – block length: 64, key lengths: 112, 168

– NIST SP 800-131A rev. 3 (draft, 2024):
▫ AES acceptable
▫ TDEA encryption disallowed; decryption for legacy use

2 / 30

Block size impact on security

– block cipher as a substitution with huge alphabet 2𝑛

▫ frequency analysis impossible

– short block size – (possibly) easier cryptanalysis

– extremely short block size
▫ small alphabet (code book can be learned in some attack scenarios)
▫ max. (2𝑛)! permutations, regardless of key length

3 / 30

Key size impact on security

– exhaustive key search (EKS) complexity ≈ 2𝑘

▫ key length should be sufficiently large

– important assumption: keys with uniform distribution
▫ otherwise enumerate keys by their probabilities (in descending order)
▫ keys often derived from user passwords (⇒ non-uniformity)

– almost anything with better complexity than EKS is a successful cryptanalytic attack
(at least in theory)
▫ can still be impractical, because of

• complexity, e.g. 2120 instead of 2128 is still infeasible
• assumptions, e.g. CPA with 290 of chosen plaintext blocks encrypted with the

same key is rather unrealistic

4 / 30

Iterated ciphers

– the most frequently used construction method for block ciphers

– iteration of round function 𝐹 : {0, 1}𝑘′ × {0, 1}𝑛 → {0, 1}𝑛

– structure:
▫ key scheduling/expansion: producing round keys 𝑘1, …, 𝑘𝑟 from the key
▫ sequential iteration of 𝐹 (𝑟 rounds): 𝑐 = 𝐹𝑘𝑟(…𝐹𝑘2(𝐹𝑘1(𝑚))…)
▫ usually with some form of key whitening: 𝑐 = 𝑘𝑟+1⊕ 𝐹𝑘𝑟(…𝐹𝑘1(𝑚⊕ 𝑘0)…)
▫ sometimes the first/the last round is different

– decryption: inverse round function, reverse order of round keys

5 / 30

Feistel ciphers

– method of constructing a round function
▫ its inverse has the same structure

– decryption ≈ encryption (with reversed order of round keys)
⇒ equal speed of encryption and decryption with
precomputed round keys

– plaintext divided into left and right halves: 𝐿0, 𝑅0
– iterations (for 𝑖 = 1,…, 𝑟 − 1):

𝐿𝑖 = 𝑅𝑖−1, 𝑅𝑖 = 𝐿𝑖−1⊕ 𝐹′𝑘𝑖(𝑅𝑖−1)

– last round:

𝐿𝑟 = 𝐿𝑟−1⊕ 𝐹′𝑘𝑟(𝑅𝑟−1), 𝑅𝑟 = 𝑅𝑟−1

6 / 30

Feistel ciphers – remarks

– example: DES (TDEA/3DES)

– generalization: unbalanced Feistel (splitting block into parts of unequal length)

– Feistel network is used in other cryptographic constructions, for example:
▫ OAEP (Optimal Asymmetric Encryption Padding) for RSA encryption
▫ format preserving encryption

– theoretical construction: pseudorandom function → pseudorandom permutation

7 / 30

Speck (an example of a lightweight block cipher)

– published by NSA (2013)
▫ controversy with ISO standardization, Linux kernel inclusion etc.

– family of variants with various block and key sizes
▫ excellent performance in HW and SW
▫ optimized for software, ARX cipher (modular addition, rotation, and XOR)
▫ no realistic attacks known

– 10 variants of block/key lengths
▫ the smallest: 32-bit block and 64-bit key (22 internal rounds)
▫ the largest: 128-bit block with 128, 192, or 256-bit key (32, 33, 34 rounds)

– NIST selected Ascon family of algorithm as a lightweight standard (2023)
▫ not a block cipher; multiple algorithms: AEAD, hash, XOF, CXOF

8 / 30

Speck2𝑛

– round function

– input/output:
2𝑛-bit block (two 𝑛-bit words)

– round key 𝑘𝑖

9 / 30

Speck – key expansion

– a key 𝐾 = (𝑙𝑚−2, …, 𝑙0, 𝑘0) consists of 𝑚 words, 𝑚 ∈ {2, 3, 4}, 𝑚 = |𝐾|/𝑛
▫ for example: 𝑚 = 2 for Speck128/128, 𝑚 = 4 for Speck128/256

– round function is used for key expansion

10 / 30

AES (Advanced Encryption Standard)}

– previous standard: DES
▫ short key length (56 bits), short block length (64 bits)

– public standardization process for a new encryption standard (1997–2000)

– requirements: block cipher, block length 128 bits, key lengths 128, 192, 256 bits

– Rijndael – chosen algorithm (Vincent Rijmen, Joan Daemen)

– NIST standardized AES in 2001 (other standardizations followed)

– the most important symmetric cipher today

– used (almost) everywhere

11 / 30

AES

– not a Feistel cipher

– different number of rounds depending on key length:
AES-128 10 rounds, AES-192 12 rounds, AES-256 14 rounds

– slight performance degradation for longer key lengths

– modern processors support AES-NI instruction set (HW accelerated AES)

12 / 30

AES – state and internal operations

State (plaintext, internal state, ciphertext)
4 × 4 array of bytes

Internal operations (invertible)

– AddRoundKey – XOR the state with 128-
bit round key

– SubBytes – replace each byte using a
fixed permutation (S-box)

– ShiftRows – cyclically shift each row of
the state

– MixColumns – multiply each column by a
fixed matrix

13 / 30

AES – details

AddRoundKey:
– fast mix of a round key into a state
– XOR, self-inverse

SubBytes:
– 𝑠𝑖,𝑗 = 𝑆(𝑠𝑖,𝑗) for all 0 ≤ 𝑖, 𝑗 ≤ 3
– the only nonlinear operation in AES
– carefully chosen (linear/affine ciphers

are easy to break)
– invertible: inverse permutation on
{0, 1}8

ShiftRows
– 1st row is not shifted
– 2nd/3rd/4th row: bytes are cyclically

shifted to the left by 1/2/3 bytes
– example: (𝑠1,0, 𝑠1,1, 𝑠1,2, 𝑠1,3) ↦
(𝑠1,1, 𝑠1,2, 𝑠1,3, 𝑠1,0)

– invertible: shift to the right

MixColumns
– fixed (invertible!) matrix 𝑀
– good diffusion properties (small

difference on input is “amplified”)

14 / 30

AES – encryption

15 / 30

AES – decryption

inverse operations: InvShiftRows, InvMixColumns, InvSubBytes

16 / 30

AES – key expansion for 128 bit key

– AES-128 ⇒ 10 rounds ⇒ 11 round keys
(11 ⋅ 16 = 176 bytes)

– first 16 bytes (first round key) is the
encryption key

– rcon(𝑖) – round constant

1st 4-byte word in each new round key:

17 / 30

AES – key expansion for 128 bit key (cont.)

– for the 2nd, 3rd, and 4th 4-byte word in each round key:

– round keys are formed from consecutive bytes of the expanded key

– slightly different key expansion for key length 256

18 / 30

AES – security

– brute force complexity:
2128 or 2192 or 2256

– best key recovery attacks
▫ Tao and Wu (2015),

KPA:

time data
AES-128 2126.1 256

AES-192 2189.9 248

AES-256 2254.3 240

– security of reduced AES
– key recovery attacks of 7-round AES-128

source: https://eprint.iacr.org/2022/487.pdf

19 / 30

https://eprint.iacr.org/2022/487.pdf

Multiple encryption

– multiple encryption (cascade encryption)
▫ using the same or different ciphers, usually with independent keys
▫ two ciphers cascade: 𝐸𝑘1,𝑘2(𝑝) = 𝐸

′
𝑘2(𝐸

∗
𝑘1(𝑝))

– possible goals:
▫ increasing the key space
▫ in case one cipher is broken … use two or three distinct

– some ciphers cannot be strengthened regardless of cascade length
▫ the key space does not increase
▫ examples: simple substitution, Vigenere, permutation, Vernam, etc.
∀𝑘1, 𝑘2 ∃𝑘 ∀𝑝 : 𝐸𝑘2(𝐸𝑘1(𝑝)) = 𝐸𝑘(𝑝)

– independence of keys can be crucial
▫ example: using the same key in double Vernam cipher ⇒ no encryption

20 / 30

TDEA (3DES)

– 3DES is defined as a cascade of length 3:
▫ encryption: 𝐸𝑘3(𝐷𝑘2(𝐸𝑘1(𝑝)))
▫ decryption: 𝐷𝑘1(𝐸𝑘2(𝐷𝑘3(𝑐)))

– keying options and the corresponding key length:
▫ option 1: independent keys (168 bits)
▫ option 2: 𝑘1 = 𝑘3 (112 bits)
▫ option 3: 𝑘1 = 𝑘2 = 𝑘3 (56 bits)

– EDE mode (instead of EEE mode) and keying option 3 ensures backward compatibility
with DES

– real strength (bit security) of 3DES:
▫ option 1: 112 bits (meet in the middle attack)
▫ option 2: 80 bits (assuming 240 known plaintext/ciphertext pairs)

21 / 30

Meet in the middle attack (MITM)

– disadvantage of multiple encryption – slower than single encryption

– Why not “double encryption”? → MITM attack!
▫ MITM is generally applicable to multiple encryption schemes
▫ MITM is known plaintext attack (several pairs (𝑝𝑖 , 𝑐𝑖) are known)

𝑐 = 𝐸𝑘2(𝐸𝑘1(𝑝))

1. ∀𝑘′2: compute 𝑥 = 𝐷𝑘′2(𝑐) and store (𝑥, 𝑘′2) in a hash
table indexed by 𝑥

2. ∀𝑘′1: compute 𝑥 = 𝐸𝑘′1(𝑝)
– find entry(ies) (𝑥, 𝑘′2) in the table
– verify a candidate key(s) (𝑘′1, 𝑘′2) using other

plaintext/ciphertext pairs

22 / 30

MITM – complexity

– assume key length 𝑘 and block length 𝑛

– expected number of required plaintext/ciphertext pairs is ⌈2𝑘/𝑛⌉
▫ ≈ 22𝑘/2𝑛 “valid” key pairs for a single (𝑝, 𝑐) pair
▫ ≈ 22𝑘/2𝑡𝑛 for 𝑡 plaintext/ciphertext pairs
▫ from 1 ≈ 22𝑘/2𝑡𝑛 we get 𝑡 ≈ 2𝑘/𝑛

– time complexity 𝑂(2𝑘)
▫ first cycle 2𝑘 iterations; second cycle 2𝑘 iterations
▫ single hash table operation 𝑂(1)

– memory complexity 𝑂(2𝑘)
▫ each key 𝑘′2 produces one fixed-length entry in the hash table
▫ second cycle in constant memory

– easily generalized for longer cascades
▫ example: MITM on 3DES with 3 keys – time 2112 and memory 256

23 / 30

A KPA on two-key triple encryption

– example cipher: 3DES with keying option 2, 𝑐 = 𝐸𝑘1(𝐷𝑘2(𝐸𝑘1(𝑝)))

– slightly more involved than MITM attack on double-encryption

– assume 𝑡 known plaintext/ciphertext pairs

– time complexity: 𝑂(𝑡 + 2𝑘+𝑛− lg 𝑡), memory complexity: 𝑂(𝑡 + 2𝑘−𝑛 ⋅ 𝑡)

– 3DES with two key option:
▫ parameters: 𝑘 = 56, 𝑛 = 64, 𝑡 = 240

▫ time complexity: 𝑂(𝑡 + 2𝑘+𝑛− lg 𝑡) ≈ 2120−40 = 280

▫ memory complexity: 𝑂(𝑡 + 2𝑘−𝑛 ⋅ 𝑡) ≈ 240

– Triple AES-128 (not used in practice) with two-key option:
▫ parameters: 𝑘 = 128, 𝑛 = 128, 𝑡 = 260

▫ time / memory complexity: ≈ 2196 / ≈ 260

– different trade-offs for different 𝑡 values
24 / 30

Data requirements of KPA/CPA

– assumption: block length 𝑛 = 128

– only the ciphertext is considered for size computation, and for calculation of
transmission time

data size [TB] time for 1Gb/s
240 17.6 39 hours
260 1.8 ⋅ 108 4676 years
280 1.9 ⋅ 1013 4.9 ⋅ 109 years
2100 2.0 ⋅ 1019 5.1 ⋅ 1015 years

25 / 30

Slide attack – overview

– iterated ciphers
▫ easy to change the number of rounds
▫ usually more rounds ≈ increased security
▫ key scheduling is important

– Biryukov, Wagner (1999)
▫ general attack on iterated cipher with identical round transform
▫ arbitrary number of rounds
▫ other variants exist

– cipher: 𝐶 = 𝐹𝑘 ∘ 𝐹𝑘 ∘ … ∘ 𝐹𝑘(𝑃)

26 / 30

Slid pair

– slid pair is a known pair (𝑃, 𝐶) and (𝑃′, 𝐶′) such that 𝑃′ = 𝐹𝑘(𝑃) and 𝐶′ = 𝐹𝑘(𝐶)

27 / 30

Slide attack – how

– we assume that 𝐹𝑘 is “weak”:
▫ easy to compute 𝑘 from equations 𝑦0 = 𝐹𝑘(𝑥0), 𝑦1 = 𝐹𝑘(𝑥1)
▫ usually very easy; for example, try this for Speck2𝑛 or AES

– KPA attack
▫ approx. 2𝑛/2 of known plaintext-ciphertext pairs
⇒ expecting ≈ 1 slid pair (birthday paradox)

▫ testing all combinations if there is a slid pair (𝑃, 𝐶), (𝑃′, 𝐶′)
Is there 𝑘 such that 𝑃′ = 𝐹𝑘(𝑃) ∧ 𝐶′ = 𝐹𝑘(𝐶)? … (≈ 2𝑛)

▫ one slid pair recovers approx. 𝑛 bits of the key

– Why bother when time complexity is 𝑂(2𝑛)?
▫ single round (slide attack) vs. full cipher (brute-force)
▫ other improvements depending on 𝐹

28 / 30

Slide attack – remarks

– CPA slide attacks much better with Feistel ciphers
▫ single round … half of the block does not change
▫ ≈ 2𝑛/4 plaintext-ciphertext pairs for finding a slid pair
▫ complexity is 𝑂(2𝑛/2)

– advanced variants of slide attack exist

– pay attention to key scheduling

29 / 30

Exercises

1. Decrypt an ASCII plaintext block encrypted using AES-128 and a key in the form
b'0000000000??????', where ? are some digits. The ciphertext (two representations):
– (hex) 090db742e1ff338013701602ea2ea422

(bytes) b'\t\r\xb7B\xe1\xff3\x80\x13p\x16\x02\xea.\xa4"'

2. Assess the security of AES-128, where we omit all operations
a) AddRoundKey
b) ShiftRows
c) MixColumns

3. Assume Speck128/128 (𝑛 = 64) with equal round keys. Show how to find a slid pair for
this cipher efficiently in CPA scenario. Estimate the complexity of the slide attack.

30 / 30

	Introduction
	Real-world
	Block size impact on security
	Key size impact on security
	Iterated ciphers
	Feistel ciphers
	Feistel ciphers – remarks
	Speck (an example of a lightweight block cipher)
	Speck2n
	Speck – key expansion
	AES (Advanced Encryption Standard)}
	AES
	AES – state and internal operations
	AES – details
	AES – encryption
	AES – decryption
	AES – key expansion for 128 bit key
	AES – key expansion for 128 bit key (cont.)
	AES – security
	Multiple encryption
	TDEA (3DES)
	Meet in the middle attack (MITM)
	MITM – complexity
	A KPA on two-key triple encryption
	Data requirements of KPA/CPA
	Slide attack – overview
	Slid pair
	Slide attack – how
	Slide attack – remarks
	Exercises

