Block Ciphers

Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Introduction

- encryption/decryption $E, D: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$
- -k key length, n block length
- correctness: $\forall K \in \{0,1\}^k \ \forall m \in \{0,1\}^n : D_K(E_K(m)) = m$
- E_K and D_K are mutually inverse permutations on $\{0, 1\}^n$

Real-world

- Examples of real-world block ciphers
 - AES block length: 128, key lengths: 128, 192, 256
 - TDEA (also known as 3DES) block length: 64, key lengths: 112, 168
- NIST SP 800-131A rev. 3 (draft, 2024):
 - AES acceptable
 - TDEA encryption disallowed; decryption for legacy use

Block size impact on security

- block cipher as a substitution with huge alphabet 2^n
 - frequency analysis impossible
- short block size (possibly) easier cryptanalysis
- extremely short block size
 - small alphabet (code book can be learned in some attack scenarios)
 - max. $(2^n)!$ permutations, regardless of key length

Key size impact on security

- exhaustive key search (EKS) complexity $\approx 2^k$
 - key length should be sufficiently large
- important assumption: keys with uniform distribution
 - otherwise enumerate keys by their probabilities (in descending order)
 - keys often derived from user passwords (⇒ non-uniformity)
- almost anything with better complexity than EKS is a successful cryptanalytic attack (at least in theory)
 - can still be impractical, because of
 - complexity, e.g. 2^{120} instead of 2^{128} is still infeasible
 - assumptions, e.g. CPA with 2^{90} of chosen plaintext blocks encrypted with the same key is rather unrealistic

Iterated ciphers

- the most frequently used construction method for block ciphers
- iteration of round function $F: \{0,1\}^{k'} \times \{0,1\}^n \rightarrow \{0,1\}^n$
- structure:
 - key scheduling/expansion: producing round keys k_1 , ..., k_r from the key
 - sequential iteration of F (r rounds): $c = F_{k_r}(...F_{k_2}(F_{k_1}(m))...)$
 - usually with some form of key whitening: $c = k_{r+1} \oplus F_{k_r} (...F_{k_1} (m \oplus k_0)...)$
 - sometimes the first/the last round is different
- decryption: inverse round function, reverse order of round keys

Feistel ciphers

- method of constructing a round function
 - its inverse has the same structure
- decryption ≈ encryption (with reversed order of round keys)
 ⇒ equal speed of encryption and decryption with
 precomputed round keys
- plaintext divided into left and right halves: L_0 , R_0
- iterations (for i = 1, ..., r 1):

$$L_i = R_{i-1}, \qquad R_i = L_{i-1} \oplus F'_{k_i}(R_{i-1})$$

- last round:

$$L_r = L_{r-1} \oplus F'_{k_r}(R_{r-1}), \qquad R_r = R_{r-1}$$

Feistel ciphers – remarks

- example: DES (TDEA/3DES)
- generalization: unbalanced Feistel (splitting block into parts of unequal length)
- Feistel network is used in other cryptographic constructions, for example:
 - OAEP (Optimal Asymmetric Encryption Padding) for RSA encryption
 - format preserving encryption
- theoretical construction: pseudorandom function → pseudorandom permutation

Speck (an example of a lightweight block cipher)

- published by NSA (2013)
 - controversy with ISO standardization, Linux kernel inclusion etc.
- family of variants with various block and key sizes
 - excellent performance in HW and SW
 - optimized for software, ARX cipher (modular addition, rotation, and XOR)
 - no realistic attacks known
- 10 variants of block/key lengths
 - the smallest: 32-bit block and 64-bit key (22 internal rounds)
 - the largest: 128-bit block with 128, 192, or 256-bit key (32, 33, 34 rounds)
- NIST selected Ascon family of algorithm as a lightweight standard (2023)
 - not a block cipher; multiple algorithms: AEAD, hash, XOF, CXOF

Speck2n

- round function
- input/output:2*n*-bit block (two *n*-bit words)
- round key k_i

Speck – key expansion

- a key $K=(l_{m-2},...,l_0,k_0)$ consists of m words, $m\in\{2,3,4\}, m=|K|/n$
 - for example: m = 2 for Speck128/128, m = 4 for Speck128/256
- round function is used for key expansion

AES (Advanced Encryption Standard)}

- previous standard: DES
 - short key length (56 bits), short block length (64 bits)
- public standardization process for a new encryption standard (1997–2000)
- requirements: block cipher, block length 128 bits, key lengths 128, 192, 256 bits
- Rijndael chosen algorithm (Vincent Rijmen, Joan Daemen)
- NIST standardized AES in 2001 (other standardizations followed)
- the most important symmetric cipher today
- used (almost) everywhere

- not a Feistel cipher
- different number of rounds depending on key length:
 AES-128 10 rounds, AES-192 12 rounds, AES-256 14 rounds
- slight performance degradation for longer key lengths
- modern processors support AES-NI instruction set (HW accelerated AES)

AES – state and internal operations

State (plaintext, internal state, ciphertext) 4 × 4 array of bytes

Internal operations (invertible)

- AddRoundKey XOR the state with 128bit round key
- SubBytes replace each byte using a fixed permutation (S-box)
- ShiftRows cyclically shift each row of the state
- MixColumns multiply each column by a fixed matrix

AES – details

AddRoundKey:

- fast mix of a round key into a state
- XOR, self-inverse

SubBytes:

- $-s_{i,j} = S(s_{i,j})$ for all $0 \le i, j \le 3$
- the only nonlinear operation in AES
- carefully chosen (linear/affine ciphers are easy to break)
- invertible: inverse permutation on $\{0,1\}^8$

ShiftRows

- 1st row is not shifted
- 2nd/3rd/4th row: bytes are cyclically shifted to the left by 1/2/3 bytes
- example: $(s_{1,0}, s_{1,1}, s_{1,2}, s_{1,3}) \mapsto (s_{1,1}, s_{1,2}, s_{1,3}, s_{1,0})$
- invertible: shift to the right

MixColumns

- fixed (invertible!) matrix M
- good diffusion properties (small difference on input is "amplified")

AES – encryption

AES – decryption

inverse operations: InvShiftRows, InvMixColumns, InvSubBytes

AES – key expansion for 128 bit key

- AES-128 \Rightarrow 10 rounds \Rightarrow 11 round keys (11 · 16 = 176 bytes)
- first 16 bytes (first round key) is the encryption key
- rcon(i) round constant

1st 4-byte word in each new round key:

AES – key expansion for 128 bit key (cont.)

- for the 2nd, 3rd, and 4th 4-byte word in each round key:

- round keys are formed from consecutive bytes of the expanded key
- slightly different key expansion for key length 256

AES – security

- brute force complexity: 2^{128} or 2^{192} or 2^{256}
- best key recovery attacks
 - Tao and Wu (2015),KPA:

	time	data
AES-128	$2^{126.1}$	2^{56}
AES-192	$2^{189.9}$	2^{48}
AES-256	$2^{254.3}$	2^{40}

- security of reduced AES
- key recovery attacks of 7-round AES-128

Attack	Rounds	l			Key schedule
Impossible Differential	7	$2^{112.2}$	$2^{117.2}$	$2^{112.2}$	yes
Meet-in-the-Middle	7	2^{116}	2^{116}	2^{116}	yes
Impossible Differential	7	$2^{105.1}$	2^{113}	$2^{74.1}$	yes
Impossible Differential	7	$2^{104.9}$	$2^{110.9}$	$2^{71.9}$	yes
Zero-Difference	7	$2^{110.2}$	$2^{110.2}$	$2^{110.2}$	no
Meet-in-the-Middle	7	2^{97}	2^{99}	2^{98}	yes

source: https://eprint.iacr.org/2022/487.pdf

Multiple encryption

- multiple encryption (cascade encryption)
 - using the same or different ciphers, usually with independent keys
 - two ciphers cascade: $E_{k_1,k_2}(p) = E'_{k_2}(E^*_{k_1}(p))$
- possible goals:
 - increasing the key space
 - in case one cipher is broken ... use two or three distinct
- some ciphers cannot be strengthened regardless of cascade length
 - the key space does not increase
 - examples: simple substitution, Vigenere, permutation, Vernam, etc.

$$\forall k_1, k_2 \; \exists k \; \forall p : E_{k_2}(E_{k_1}(p)) = E_k(p)$$

- independence of keys can be crucial
 - example: using the same key in double Vernam cipher ⇒ no encryption

TDEA (3DES)

- 3DES is defined as a cascade of length 3:
 - encryption: $E_{k_3}(D_{k_2}(E_{k_1}(p)))$
 - decryption: $D_{k_1}(E_{k_2}(D_{k_3}(c)))$
- keying options and the corresponding key length:
 - option 1: independent keys (168 bits)
 - option 2: $k_1 = k_3$ (112 bits)
 - option 3: $k_1 = k_2 = k_3$ (56 bits)
- EDE mode (instead of EEE mode) and keying option 3 ensures backward compatibility with DES
- real strength (bit security) of 3DES:
 - option 1: 112 bits (meet in the middle attack)
 - option 2: 80 bits (assuming 2⁴⁰ known plaintext/ciphertext pairs)

Meet in the middle attack (MITM)

- disadvantage of multiple encryption slower than single encryption
- Why not "double encryption"? → MITM attack!
 - MITM is generally applicable to multiple encryption schemes
 - MITM is known plaintext attack (several pairs (p_i, c_i) are known)

$$c = E_{k_2} \big(E_{k_1}(p) \big)$$

- 1. $\forall k_2'$: compute $x = D_{k_2'}(c)$ and store (x, k_2') in a hash table indexed by x
- 2. $\forall k_1'$: compute $x = E_{k_1'}(p)$
 - find entry(ies) (x, k'_2) in the table
 - verify a candidate key(s) (k'_1, k'_2) using other plaintext/ciphertext pairs

MITM – complexity

- assume key length k and block length n
- expected number of required plaintext/ciphertext pairs is $\lceil 2k/n \rceil$
 - \sim 2^{2k}/2ⁿ "valid" key pairs for a single (p, c) pair
 - $\approx 2^{2k}/2^{tn}$ for t plaintext/ciphertext pairs
 - from $1 \approx 2^{2k}/2^{tn}$ we get $t \approx 2k/n$
- time complexity $O(2^k)$
 - first cycle 2^k iterations; second cycle 2^k iterations
 - single hash table operation O(1)
- memory complexity $O(2^k)$
 - each key k_2' produces one fixed-length entry in the hash table
 - second cycle in constant memory
- easily generalized for longer cascades
 - example: MITM on 3DES with 3 keys time 2^{112} and memory 2^{56}

A KPA on two-key triple encryption

- example cipher: 3DES with keying option 2, $c = E_{k_1}(D_{k_2}(E_{k_1}(p)))$
- slightly more involved than MITM attack on double-encryption
- assume t known plaintext/ciphertext pairs
- time complexity: $O(t + 2^{k+n-\lg t})$, memory complexity: $O(t + 2^{k-n} \cdot t)$
- 3DES with two key option:
 - parameters: k = 56, n = 64, $t = 2^{40}$
 - time complexity: $O(t + 2^{k+n-\lg t}) \approx 2^{120-40} = 2^{80}$
 - memory complexity: $O(t + 2^{k-n} \cdot t) \approx 2^{40}$
- Triple AES-128 (not used in practice) with two-key option:
 - parameters: k = 128, n = 128, $t = 2^{60}$
 - time / memory complexity: $\approx 2^{196}$ / $\approx 2^{60}$
- different trade-offs for different t values

Data requirements of KPA/CPA

- assumption: block length n = 128
- only the ciphertext is considered for size computation, and for calculation of transmission time

data	size [TB]	time for 1Gb/s
2^{40}	17.6	39 hours
2^{60}	$1.8 \cdot 10^8$	4676 years
2^{80}	$1.9\cdot10^{13}$	$4.9 \cdot 10^9$ years
2^{100}	$2.0 \cdot 10^{19}$	$5.1 \cdot 10^{15}$ years

Slide attack – overview

- iterated ciphers
 - easy to change the number of rounds
 - usually more rounds ≈ increased security
 - key scheduling is important
- Biryukov, Wagner (1999)
 - general attack on iterated cipher with identical round transform
 - arbitrary number of rounds
 - other variants exist
- cipher: $C = F_k \circ F_k \circ \dots \circ F_k(P)$

Slid pair

- *slid pair* is a known pair (P, C) and (P', C') such that $P' = F_k(P)$ and $C' = F_k(C)$

Slide attack – how

- we assume that F_k is "weak":
 - easy to compute k from equations $y_0 = F_k(x_0)$, $y_1 = F_k(x_1)$
 - usually very easy; for example, try this for Speck2n or AES
- KPA attack
 - □ approx. $2^{n/2}$ of known plaintext-ciphertext pairs \Rightarrow expecting ≈ 1 slid pair (birthday paradox)
 - testing all combinations if there is a slid pair (P, C), (P', C')Is there k such that $P' = F_k(P) \wedge C' = F_k(C)$? ... $(\approx 2^n)$
 - one slid pair recovers approx. *n* bits of the key
- Why bother when time complexity is $O(2^n)$?
 - single round (slide attack) vs. full cipher (brute-force)
 - other improvements depending on *F*

Slide attack – remarks

- CPA slide attacks much better with Feistel ciphers
 - single round ... half of the block does not change
 - $\sim 2^{n/4}$ plaintext-ciphertext pairs for finding a slid pair
 - complexity is $O(2^{n/2})$
- advanced variants of slide attack exist
- pay attention to key scheduling

Exercises

- 1. Decrypt an ASCII plaintext block encrypted using AES-128 and a key in the form b'000000000??????', where ? are some digits. The ciphertext (two representations):
 - (hex) 090db742e1ff338013701602ea2ea422
 (bytes) b'\t\r\xb7B\xe1\xff3\x80\x13p\x16\x02\xea.\xa4"'
- 2. Assess the security of AES-128, where we omit all operations
 - a) AddRoundKey
 - b) ShiftRows
 - c) MixColumns
- 3. Assume Speck128/128 (n=64) with equal round keys. Show how to find a slid pair for this cipher efficiently in CPA scenario. Estimate the complexity of the slide attack.