Secret sharing schemes

Martin Stanek

Department of Computer Science Comenius University stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Secret sharing schemes – introduction

- secret sharing schemes
 - distribute a secret (e.g. key) among some group of participants (users, servers)
 - rules what group can reconstruct the secret
 - share secret piece of information owned by individual participant
- a scheme consists of two algorithms/protocols:
 - producing and distributing the shares (usually uses a dealer)
 - reconstructing the shared secret
- motivation
 - Can you trust a single authority (admin or server)?
 - basis for other constructions threshold cryptography, distributing computation among group of trusted servers, multi-party secure computation, electronic voting, ...

Secret sharing schemes

- ▶ *n* participants $\mathcal{P} = \{P_1, P_2, ..., P_n\}$
- shared secret s
- ▶ shares: $P_i \leftarrow s_i$
- ▶ access structure $\mathcal{A} \subseteq 2^{\mathcal{P}}$ (power set)
 - ▶ $A \subseteq \mathcal{P}$ can reconstruct $s \Leftrightarrow A \in \mathcal{A}$
 - usually monotone access structure:

$$\forall A, B \subseteq \mathcal{P}: A \subseteq B \& A \in \mathcal{A} \implies B \in \mathcal{A}$$

► (t, n) threshold access structure, for $1 \le t \le n$:

$${A \mid A \subseteq \mathcal{P} \& |A| \ge t}$$

Simple examples

- \triangleright (1, n) threshold
 - distribute the secret as individual shares: $s_i = s$
- ► (n, n) threshold 1st attempt
 - ▶ let $s \in \{0, 1\}^l$
 - ▶ divide *s* into *n* shares $s_1, ..., s_n$ of length $\sim l/n$ bits
 - reconstruction: $s = s_1 \mid\mid ... \mid\mid s_n$
 - ▶ n-1 participants reconstruct a large part of s, approx. l(n-1)/n bits
- \triangleright (n, n) threshold
 - ▶ let $s \in \{0, 1\}^l$
 - let $s_i \stackrel{\$}{\leftarrow} \{0,1\}^l$ for $i=1,\ldots,n-1$, and $s_n=s\oplus s_1\oplus\ldots\oplus s_{n-1}$
 - reconstruction: $s = s_1 \oplus ... \oplus s_n$
 - security: any n-1 (or less) participants learn nothing about s
 - perfect scheme

Simple examples

- \triangleright (1, n) threshold
 - distribute the secret as individual shares: $s_i = s$
- ► (n, n) threshold 1st attempt
 - ▶ let $s \in \{0, 1\}^l$
 - ▶ divide *s* into *n* shares $s_1, ..., s_n$ of length $\sim l/n$ bits
 - reconstruction: $s = s_1 \mid\mid ... \mid\mid s_n$
 - ▶ n-1 participants reconstruct a large part of s, approx. l(n-1)/n bits
- (n, n) threshold
 - ▶ let $s \in \{0, 1\}^l$
 - ▶ let $s_i \stackrel{\$}{\leftarrow} \{0,1\}^l$ for i = 1, ..., n-1, and $s_n = s \oplus s_1 \oplus ... \oplus s_{n-1}$
 - reconstruction: $s = s_1 \oplus ... \oplus s_n$
 - \triangleright security: any n-1 (or less) participants learn nothing about s
 - perfect scheme

Shamir's secret sharing scheme

- ▶ idea: t points uniquely determine some polynomial of degree t-1
- finite field \mathbb{Z}_p , for a prime p > n
- ▶ shared secret $s \in \mathbb{Z}_p$; let us assume $s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- computing the shares:
 - ► choose a random polynomial $f(x) = s + a_1x + ... + a_{t-1}x^{t-1}$, where $a_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ for i = 1, ..., t-1
 - notice that f(0) = s
 - ▶ share for P_i : (i, s_i) , where $s_i = f(i)$
- reconstruction; WLOG let us assume t participants $P_1, ..., P_t$:
 - Lagrange interpolation using (i, s_i) for i = 1, ..., t:

$$f(x) = \sum_{i=1}^{t} \underbrace{f(i)}_{\substack{1 \le j \le t \\ j \ne i}} \frac{x - j}{i - j}$$

compute s = f(0) (all computations are in the finite field)

Shamir's secret sharing scheme

- ▶ idea: t points uniquely determine some polynomial of degree t-1
- finite field \mathbb{Z}_p , for a prime p > n
- ▶ shared secret $s \in \mathbb{Z}_p$; let us assume $s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- computing the shares:
 - ► choose a random polynomial $f(x) = s + a_1x + ... + a_{t-1}x^{t-1}$, where $a_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ for i = 1, ..., t-1
 - notice that f(0) = s
 - ▶ share for P_i : (i, s_i) , where $s_i = f(i)$
- reconstruction; WLOG let us assume t participants P_1, \dots, P_t :
 - Lagrange interpolation using (i, s_i) for i = 1, ..., t:

$$f(x) = \sum_{i=1}^{t} \underbrace{f(i)}_{\substack{s_i \\ j \neq i}} \prod_{1 \le j \le t} \frac{x - j}{i - j}$$

compute s = f(0) (all computations are in the finite field)

Shamir's secret sharing scheme – security

- ▶ consider group of t 1 participants (WLOG $P_1, ..., P_{t-1}$)
- the shared secret can be anything:
 - ▶ combine the shares and add point (0, s') for an arbitrary $s' \in \mathbb{Z}_p$
 - ▶ t points \Rightarrow unique polynomial f'
 - f' is consistent with shares of P_1, \dots, P_{t-1}
- \triangleright P_1, \dots, P_{t-1} are in the same position as someone without any share
 - ▶ probability of finding $s \sim \text{is } 1/p$ (guessing)
- perfect secret sharing scheme

Linear equations perspective

- unknown polynomial f (its coefficients)
- ▶ a share (i, s_i) forms a linear equation: $s_i = a_0 + a_1 i + ... + a_{t-1} i^{t-1}$
- ► *t* cooperating participants the system of *t* equations with *t* variables
 - square Vandermonde matrix with distinct elements (i.e. non-zero determinant)
 - the system has a unique solution
- ▶ t 1 cooperating participants the system of t 1 equations with t variables
 - ▶ add an additional equation: $s' = a_0$
 - ▶ square Vandermonde matrix with distinct elements (because any $i \neq 0$)
 - ightharpoonup the system has a unique solution for any s' ...perfect scheme

Remarks

reconstruction is just a linear combination of shares:

$$f(0) = \sum_{i \in S} s_i \cdot r_i$$

for coefficients $r_i = \prod_{j \in S \setminus \{i\}} -j/(i-j)$, and $S \subseteq \{1, ..., n\}$, |S| = t

- ▶ any points $(x_i, f(x_i))$ for distinct non-zero $x_1, ..., x_n$ can be used as shares
- homomorphic property with respect to addition:
 - two (t, n) threshold schemes defined by polynomials f and g
 - ▶ adding shares: $(i, f(i)), (i, g(i)) \mapsto (i, f(i) + g(i))$
 - **Proof** polynomial (the shared secret is the addition of shared secrets $a_0 + a'_0$):

$$f(x) + g(x) = \sum_{i=1}^{t-1} a_i x^i + \sum_{i=1}^{t-1} a'_i x^i = \sum_{i=1}^{t-1} (a_i + a'_i) x^i$$

Remarks (2)

- efficiency
 - polynomial time
 - ▶ long *s* can be divided into shorter pieces and shared by independent schemes (or we can encrypt *s* and share the encryption key)
- trusted dealer generates the polynomial and distributes the shares
- one-time scheme?
 - secret revealed after reconstruction vs. black-box reconstruction
- cheating in reconstruction:
 - for example $P_1, ..., P_t$ try to reconstruct s
 - P₁ cheats and reveals an incorrect share $(1, s'_1)$
 - the participants compute: $s' = s + s'_1 r_1 s_1 r_1$... and P_1 can easily compute s from s'

Information rate

- the size of share(s) vs. the size of the shared secret
- notation
 - \triangleright S set of secrets
 - \triangleright $K(P_i)$ set of all possible shares for P_i
 - random variables
- ▶ information rate for P_i : $\rho_i = H(S)/H(K(P_i))$
- information rate of the scheme: $\rho = \min_i \rho_i$
- uniform probability case: $\rho = \min_i \lg |S|/\lg |K(P_i)|$

Information rate (2)

- information rate for Shamir's scheme: $\rho = 1$
- perfect secret sharing scheme ... $\rho \leq 1$
 - ▶ let us assume that $\rho > 1 \implies \forall i : \rho_i > 1$
 - ► for all *i*:

$$\lg |S|/\lg |K(P_i)| > 1$$
$$\lg |S| > \lg |K(P_i)|$$
$$|S| > |K(P_i)|$$

- ▶ there exists $A \subseteq \mathcal{P}$: $P_i \notin A$, $A \notin \mathcal{A}$, and $A \cup \{P_i\} \in \mathcal{A}$
- **take** all shares from participants in A and all candidate shares from $K(P_i)$
- ightharpoonup compute all possible values of the shared secret ...less than |S|
- ▶ the scheme cannot be perfect (we can exclude some "impossible" secrets)
- ▶ a perfect secret sharing scheme with $\rho = 1$ is called ideal