Secret sharing schemes

Martin Stanek
Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Secret sharing schemes - introduction

- secret sharing schemes
- distribute a secret (e.g. key) among some group of participants (users, servers)
- rules - what group can reconstruct the secret
- share - secret piece of information owned by individual participant
- a scheme consists of two algorithms/protocols:
- producing and distributing the shares (usually uses a dealer)
- reconstructing the shared secret
- motivation
- Can you trust a single authority (admin or server)?
- basis for other constructions - threshold cryptography, distributing computation among group of trusted servers, multi-party secure computation, electronic voting, ...

Secret sharing schemes

- n participants $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$
- shared secret s
- shares: $P_{i} \leftarrow s_{i}$
- access structure $\mathcal{A} \subseteq 2^{\mathcal{P}}$ (power set)
- $A \subseteq \mathcal{P}$ can reconstruct $s \Leftrightarrow A \in \mathcal{A}$
- usually monotone access structure:

$$
\forall A, B \subseteq \mathcal{P}: A \subseteq B \& A \in \mathcal{A} \Rightarrow B \in \mathcal{A}
$$

- (t, n) threshold access structure, for $1 \leq t \leq n$:

$$
\{A|A \subseteq \mathcal{P} \&| A \mid \geq t\}
$$

Simple examples

- $(1, n)$ threshold
- distribute the secret as individual shares: $s_{i}=s$
- (n, n) threshold -1 st attempt
- let $s \in\{0,1\}^{l}$
- divide s into n shares s_{1}, \ldots, s_{n} of length $\sim l / n$ bits
- reconstruction: $s=s_{1}\|\ldots\| s_{n}$
- $n-1$ participants reconstruct a large part of s, approx. $l(n-1) / n$ bits

Simple examples

- $(1, n)$ threshold
- distribute the secret as individual shares: $s_{i}=s$
- (n, n) threshold -1 st attempt
- let $s \in\{0,1\}^{l}$
- divide s into n shares s_{1}, \ldots, s_{n} of length $\sim l / n$ bits
- reconstruction: $s=s_{1}\|\ldots\| s_{n}$
- $n-1$ participants reconstruct a large part of s, approx. $l(n-1) / n$ bits
- (n, n) threshold
- let $s \in\{0,1\}^{l}$
- let $s_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{l}$ for $i=1, \ldots, n-1$, and $s_{n}=s \oplus s_{1} \oplus \ldots \oplus s_{n-1}$
- reconstruction: $s=s_{1} \oplus \ldots \oplus s_{n}$
- security: any $n-1$ (or less) participants learn nothing about s
- perfect scheme

Shamir's secret sharing scheme

- idea: t points uniquely determine some polynomial of degree $t-1$
- finite field \mathbb{Z}_{p}, for a prime $p>n$
- shared secret $s \in \mathbb{Z}_{p}$; let us assume $s \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$
- computing the shares:
- choose a random polynomial $f(x)=s+a_{1} x+\ldots+a_{t-1} x^{t-1}$, where $a_{i} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$ for $i=1, \ldots, t-1$
- notice that $f(0)=s$
- share for $P_{i}:\left(i, s_{i}\right)$, where $s_{i}=f(i)$

Shamir's secret sharing scheme

- idea: t points uniquely determine some polynomial of degree $t-1$
- finite field \mathbb{Z}_{p}, for a prime $p>n$
- shared secret $s \in \mathbb{Z}_{p}$; let us assume $s \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$
- computing the shares:
- choose a random polynomial $f(x)=s+a_{1} x+\ldots+a_{t-1} x^{t-1}$, where $a_{i} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$ for $i=1, \ldots, t-1$
- notice that $f(0)=s$
- share for $P_{i}:\left(i, s_{i}\right)$, where $s_{i}=f(i)$
\checkmark reconstruction; WLOG let us assume t participants P_{1}, \ldots, P_{t} :
- Lagrange interpolation using $\left(i, s_{i}\right)$ for $i=1, \ldots, t$:

$$
f(x)=\sum_{i=1}^{t} \underbrace{f(i)}_{\substack{1 \leq j \leq t \\ s_{i}}} \prod_{\substack{ \\j \neq i}} \frac{x-j}{i-j}
$$

- compute $s=f(0) \quad$ (all computations are in the finite field)

Shamir's secret sharing scheme - security

- consider group of $t-1$ participants (WLOG P_{1}, \ldots, P_{t-1})
- the shared secret can be anything:
- combine the shares and add point $\left(0, s^{\prime}\right)$ for an arbitrary $s^{\prime} \in \mathbb{Z}_{p}$
- t points \Rightarrow unique polynomial f^{\prime}
- f^{\prime} is consistent with shares of P_{1}, \ldots, P_{t-1}
- P_{1}, \ldots, P_{t-1} are in the same position as someone without any share
- probability of finding $s \sim$ is $1 / p$ (guessing)
- perfect secret sharing scheme

Linear equations perspective

- unknown polynomial f (its coefficients)
- a share (i, s_{i}) forms a linear equation: $s_{i}=a_{0}+a_{1} i+\ldots+a_{t-1} i^{t-1}$
- t cooperating participants - the system of t equations with t variables
- square Vandermonde matrix with distinct elements (i.e. non-zero determinant)
- the system has a unique solution
- $t-1$ cooperating participants - the system of $t-1$ equations with t variables
- add an additional equation: $s^{\prime}=a_{0}$
- square Vandermonde matrix with distinct elements (because any $i \neq 0$)
- the system has a unique solution for any $s^{\prime} \ldots$ perfect scheme

Remarks

- reconstruction is just a linear combination of shares:

$$
f(0)=\sum_{i \in S} s_{i} \cdot r_{i}
$$

for coefficients $r_{i}=\prod_{j \in S \backslash\{i\}}-j /(i-j)$, and $S \subseteq\{1, \ldots, n\},|S|=t$

- any points $\left(x_{i}, f\left(x_{i}\right)\right)$ for distinct non-zero x_{1}, \ldots, x_{n} can be used as shares
- homomorphic property with respect to addition:
- two (t, n) threshold schemes defined by polynomials f and g
- adding shares: $(i, f(i)),(i, g(i)) \mapsto(i, f(i)+g(i))$
- polynomial (the shared secret is the addition of shared secrets $a_{0}+a_{0}^{\prime}$):

$$
f(x)+g(x)=\sum_{i=1}^{t-1} a_{i} x^{i}+\sum_{i=1}^{t-1} a_{i}^{\prime} x^{i}=\sum_{i=1}^{t-1}\left(a_{i}+a_{i}^{\prime}\right) x^{i}
$$

Remarks (2)

- efficiency
- polynomial time
- long s can be divided into shorter pieces and shared by independent schemes (or we can encrypt s and share the encryption key)
- trusted dealer - generates the polynomial and distributes the shares
- one-time scheme?
- secret revealed after reconstruction vs. black-box reconstruction
- cheating in reconstruction:
- for example - P_{1}, \ldots, P_{t} try to reconstruct s
- P_{1} cheats and reveals an incorrect share ($1, s_{1}^{\prime}$)
- the participants compute: $s^{\prime}=s+s_{1}^{\prime} r_{1}-s_{1} r_{1}$
\ldots and P_{1} can easily compute s from s^{\prime}

Information rate

- the size of share(s) vs. the size of the shared secret
- notation
- S - set of secrets
- $K\left(P_{i}\right)$ - set of all possible shares for P_{i}
- random variables
- information rate for $P_{i}: \rho_{i}=H(S) / H\left(K\left(P_{i}\right)\right)$
- information rate of the scheme: $\rho=\min _{i} \rho_{i}$
- uniform probability case: $\rho=\min _{i} \lg |S| / \lg \left|K\left(P_{i}\right)\right|$

Information rate (2)

- information rate for Shamir's scheme: $\rho=1$
- perfect secret sharing scheme $\ldots \rho \leq 1$
- let us assume that $\rho>1 \Rightarrow \forall i: \rho_{i}>1$
- for all i :

$$
\begin{aligned}
\lg |S| / \lg \left|K\left(P_{i}\right)\right| & >1 \\
\lg |S| & >\lg \left|K\left(P_{i}\right)\right| \\
|S| & >\left|K\left(P_{i}\right)\right|
\end{aligned}
$$

- there exists $A \subseteq \mathcal{P}: P_{i} \notin A, A \notin \mathcal{A}$, and $A \cup\left\{P_{i}\right\} \in \mathcal{A}$
- take all shares from participants in A and all candidate shares from $K\left(P_{i}\right)$
- compute all possible values of the shared secret ... less than $|S|$
- the scheme cannot be perfect (we can exclude some "impossible" secrets)
- a perfect secret sharing scheme with $\rho=1$ is called ideal

