
Noise protocol framework

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)



Content

Introduction

Components, handshake state, and handshake tokens

Handshake patterns

Security
payload security properties

Noise protocol framework 2 / 14



Introduction

▶ Trevor Perrin
▶ handshake protocols for two participants

▶ initiator, responder
▶ framework: handshake patterns

▶ based on DH key exchange
▶ static and ephemeral keys

▶ some instances used real applications
▶ WireGuard (VPN), WhatsApp, Lightning Network (Bitcoin/blockchain

transactions)

Noise protocol framework 3 / 14



Components

▶ DH keys (public and private part for DH exchange) – each party has
(one or both)
▶ long-term static key pair (acceptance is left for an application: certificates,

pinning, preconfigured list etc.)
▶ ephemeral key pair: always new, never reused
▶ instantiation: Curve25519 (X25519), Curve448 (X448)

▶ symmetric cipher:
▶ only AEAD ciphers
▶ instantiation: AES-GCM, ChaCha20/Poly1305

▶ hash function
▶ instantiation: SHA-256, SHA-512, BLAKE2s, BLAKE2b

Noise protocol framework 4 / 14



Handshake state

▶ variables maintained by each party:

s, e local static and ephemeral key pairs (may be empty)
rs, re remote static and ephemeral public keys (may be empty)
h handshake hash (all data sent and received)
ck chaining key: hashes all previous DH outputs

transport encryption keys are derived from ck
k, n encryption key and nonce (counter)

computed whenever ck is updated (n is reset to 0)
encrypt static public keys and handshake data
h is always used as associated data in AEAD

Noise protocol framework 5 / 14



Handshake tokens

▶ handshake message = tokens + payload
▶ payload – data chosen by application, e.g. a certificate
▶ payload encrypted using k (if non-empty) and h is updated

▶ possible tokens:

e new ephemeral public key
sent in cleartext, h is updated

s static public key
sent encrypted (if k is set), h is updated

ee, es, se, ss DH is performed with ephemeral/static key pair
the first/second letter for initiator’s/responders’s pair
result hashed with old ck to derive a new ck and k

psk pre-shared symmetric key
mixed into h and encryption keys

Noise protocol framework 6 / 14



Handshake patterns

▶ prologue – arbitrary data hashed into h
▶ pre-message pattern

▶ information about public keys of the other party
▶ sequence of message patterns

▶ 3 one-way handshake patterns
▶ 12 fundamental interactive handshake patterns

▶ unauthenticated DH:
▶ no static key for initiator
▶ no static key for reponder

NN:
-> e
<- e, ee

Noise protocol framework 7 / 14



Some other patterns

– both static keys trasmitted

XX:
<- e
-> e, ee, s, se
<- s, es

– no static key for initiator
– reponder’s static key known to
initiator

NK:
<- s
...
-> e, es
<- e, ee

Noise protocol framework 8 / 14



Naming convention

N no static key for initiator/responder
K static key known to the other party
X static key transmitted to the other party
I static key for initiator immediately transmitted to responder

(reduced or absent identity hiding)

Noise protocol framework 9 / 14



Security of Noise protocols

▶ handshake pattern validity – set of rules for pattern to be valid, e.g.,
▶ no more than one occurrence of ee, es, se, or ss per handshake
▶ after an ss token, the initiator must not send a handshake payload or

transport payload unless there has also been an es token, etc.
▶ payload security properties

▶ source properties: 0, 1, 2 (authentication)
▶ destination properties: 0, . . . , 5 (confidentiality and forward secrecy)

▶ identity hiding properties:
▶ for initiator and for responder on scale 0, . . . , 9
▶ based on static public keys (not addressing other possible identity leaks

through IP addresses, payload, etc.)

Noise protocol framework 10 / 14



Example: IK pattern

IK:
<- s
...
-> e, es, s, ss
<- e, ee, se

▶ used by WireGuard
▶ I: static key for initiator immediately transmitted to responder
▶ K: static public key for responder known to initiator

Noise protocol framework 11 / 14



IK pattern – properties (1)

IK:
<- s
...
-> e, es, s, ss, □ source: 1, destination: 2
<- e, ee, se

▶ payload security properties
▶ source: 1 – sender authentication vulnerable to key-compromise

impersonation (KCI)
▶ when a longterm static private key is compromised

▶ destination: 2 – encryption to a known recipient, forward secrecy for
sender compromise only, vulnerable to replay

Noise protocol framework 12 / 14



IK pattern – properties (2)

IK:
<- s
...
-> e, es, s, ss
<- e, ee, se, □ source: 2, destination: 4

▶ source: 2 – sender authentication resistant to KCI
▶ destination: 4 – encryption to a known recipient, weak forward secrecy

if the sender’s private key has been compromised

Noise protocol framework 13 / 14



IK pattern – properties (3)

IK:
<- s
...
-> e, es, s, ss
<- e, ee, se
-> □ source: 2, destination: 5
<- □ source: 2, destination: 5

▶ source: 2 – sender authentication resistant to KCI
▶ destination: 5 – encryption to a known recipient, strong forward secrecy

Noise protocol framework 14 / 14


	Introduction
	Components, handshake state, and handshake tokens
	Handshake patterns
	Security
	payload security properties


