Noise protocol framework

Martin Stanek

Department of Computer Science
Comenius University
stanekedcs. fmph.uniba. sk

Cryptology 1 (2023/24)

Content

Introduction

Components, handshake state, and handshake tokens

Handshake patterns

Security
payload security properties

Noise protocol framework 2/14

Introduction

» Trevor Perrin
» handshake protocols for two participants

> initiator, responder
> framework: handshake patterns

> based on DH key exchange
> static and ephemeral keys
> some instances used real applications

> WireGuard (VPN), WhatsApp, Lightning Network (Bitcoin/blockchain
transactions)

Noise protocol framework 3/14

Components

» DH keys (public and private part for DH exchange) — each party has
(one or both)
> long-term static key pair (acceptance is left for an application: certificates,

pinning, preconfigured list etc.)
> ephemeral key pair: always new, never reused
> instantiation: Curve25519 (X25519), Curve448 (X448)

> symmetric cipher:
> only AEAD ciphers
> instantiation: AES-GCM, ChaCha20/Poly1305

» hash function
> instantiation: SHA-256, SHA-512, BLAKE2s, BLAKE2b

Noise protocol framework 4/14

Handshake state

> variables maintained by each party:

s, e local static and ephemeral key pairs (may be empty)

rs, re remote static and ephemeral public keys (may be empty)
h handshake hash (all data sent and received)

ck chaining key: hashes all previous DH outputs

transport encryption keys are derived from ck
k,n encryption key and nonce (counter)

computed whenever ck is updated (n is reset to 0)

encrypt static public keys and handshake data

h is always used as associated data in AEAD

Noise protocol framework 5/14

Handshake tokens

» handshake message = tokens + payload

> payload - data chosen by application, e.g. a certificate
> payload encrypted using k (if non-empty) and h is updated

> possible tokens:

e new ephemeral public key
sent in cleartext, h is updated
s static public key

sent encrypted (if k is set), h is updated
ee, es, se, ss DH is performed with ephemeral/static key pair
the first/second letter for initiator’s/responders’s pair
result hashed with old ck to derive a new ck and k
psk pre-shared symmetric key
mixed into h and encryption keys

Noise protocol framework 6/14

Handshake patterns

v

prologue — arbitrary data hashed into h

v

pre-message pattern
> information about public keys of the other party

v

sequence of message patterns

> 3 one-way handshake patterns

> 12 fundamental interactive handshake patterns
unauthenticated DH:

> no static key for initiator
> no static key for reponder

v

NN:
-> e
<- e, ee

Noise protocol framework 7/14

Some other patterns

- both static keys trasmitted - no static key for initiator
- reponder’s static key known to
XX: initiator
<- e
-> e, ee, s, se NK:
<- s, es <- s
-> e, es
<- e, ee

Noise protocol framework 8/14

Naming convention

no static key for initiator/responder

static key known to the other party

static key transmitted to the other party

static key for initiator immediately transmitted to responder
(reduced or absent identity hiding)

- X R Z

Noise protocol framework 9/14

Security of Noise protocols

> handshake pattern validity — set of rules for pattern to be valid, e.g.,

> no more than one occurrence of ee, es, se, or ss per handshake
> after an ss token, the initiator must not send a handshake payload or
transport payload unless there has also been an es token, etc.

> payload security properties

> source properties: 0, 1, 2 (authentication)
> destination properties: 0, ..., 5 (confidentiality and forward secrecy)

> identity hiding properties:
> for initiator and for responder on scale 0, ..., 9

> based on static public keys (not addressing other possible identity leaks
through IP addresses, payload, etc.)

Noise protocol framework 10/ 14

Example: IK pattern

IK:
-> e, es, s, Ss
<- e, ee, se

» used by WireGuard
> TI:static key for initiator immediately transmitted to responder

> K: static public key for responder known to initiator

Noise protocol framework 11/14

IK pattern — properties (1)
IK:
-> e, es, s, ss, O source: 1, destination: 2

> payload security properties
» source: 1 - sender authentication vulnerable to key-compromise
impersonation (KCI)
> when a longterm static private key is compromised
» destination: 2 — encryption to a known recipient, forward secrecy for
sender compromise only, vulnerable to replay

Noise protocol framework 12/ 14

IK pattern — properties (2)

IK:
<- s
-> e, es, s, Ss
<- e, ee, se, O source: 2, destination: 4

> source: 2 — sender authentication resistant to KCI

» destination: 4 — encryption to a known recipient, weak forward secrecy
if the sender’s private key has been compromised

Noise protocol framework 13/14

IK pattern — properties (3)

IK:
<- s
-> e, es, s, SS
<- e, ee, se
-> 0O source: 2, destination: 5
<- O source: 2, destination: 5

> source: 2 — sender authentication resistant to KCI

> destination: 5 — encryption to a known recipient, strong forward secrecy

Noise protocol framework 14 /14

	Introduction
	Components, handshake state, and handshake tokens
	Handshake patterns
	Security
	payload security properties

