Block Ciphers 2
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Modes of operation

— plaintext usually much longer than the block length

— modes of operation can provide:
= confidentiality (and not authenticity) - ECB, CBC, OFB, CFB
= authenticity (and not confidentiality) - CMAC
= confidentiality & authenticity (authenticated encryption) - GCM, CCM
= confidentiality for block-oriented storage devices (disks) - XTS
= key wrapping
= format-preserving encryption, ...

— varying requirements (speed, security properties, ability to parallelize, availability of
RNG, etc.) = different modes for the same purpose

1/23

Confidentiality modes

— the most important confidentiality modes: ECB, CBC, OFB, CFB, CTR

— e.g. see NIST SP 800-38A: Recommendation for Block Cipher Modes of Operation:
Methods and Techniques

— None of these modes provide protection against accidental or adversarial
modifications of the ciphertext!

- however, the effect of ciphertext modification on resulting plaintext varies among
modes

2 /23

ECB (Electronic Codebook)

— the simplest mode: C; = E(P;), P; = Dy (C;)

— requires padding to ensure length that is a multiple of
the block length

- encryption and decryption trivially parallelizable
- dataleaks: (; = C; & P; = P

— easy to rearrange the ciphertexts blocks (permute,
duplicate, ...)

— easy to perform a seek (random access)

P, P,
Lo
E. E.
'
C; C,

encrypt: C; = Ex(P))

P P,
P

Di| |Dx
(I

ci G

decrypt: P; = Di(C;)
3/23

CBC (Cipher Block Chaining)

P P,
- encryption: C; = E;,(P; & C;_4) i 4%
. C
— decryption: P; = D, (C;) & C;_4 (Co) E, E, |_‘
— initialization vector IV - secrecy not required, usually i i
appended as C C, C,
— popular mode (AES-128 CBC was mandatory in TLS 1.2) , »
1 2
— parallelizable decryption but not encryption v 4%
~ similarly to ECB, plaintext should be a multiple of the (o) 111
block length : k
= padding, ciphertext stealing % %
C, G,

4 /23

Visual comparison of ECB and CBC (AES-128)

o AL

\/\/\/\/\/ T 1 A T 1 -t-lklh."ﬁ:'-l

| | B ‘
ul - e :'.I-"II-"-I
\) It 2 I '=f' AL
I.: .L-- : .-. I |
| == rb I'T'l e

G

oy i

ECB CBC

5/ 23

CBC 2

— IV should be unpredictable (e.g. IV = E}, (msgseq), random, ...)
= otherwise, in CPA scenario, an attacker gets an Ey .y oracle

— data leak (birthday & two-time pad):
Ci=C = E(Pi®Ciq)=E(PeCi-1)
Pi®P =Ci—1®Cj—4

— Sweet32 attack (2016): ciphers with block length 64 bits and large amount of data

encrypted using the same key (TLS, OpenVPN)
= 64 bit block = collision expected after ~ 232 blocks (32 GB)

— limit number of blocks encrypted with a single key

6 /23

CFB (Cipher Feedback)

— encryption: Ci — Pi D Ek(Ci—1) v ﬁ Ci—q

— decryption: P; = C; ® E,(C;_1) Ex

— parallelizable decryption but not encryption
P, »é%—rﬁ>cz

- D is not needed

— plaintext length does not need to be a multiple of the

. v
block length Cimn ‘Ij (Co)
k
— IV should be unique for each plaintext
= repeated IV = two-time pad for the first blocks: i
C; P,

Ci®C =E,(V)@P, @E,V)B P =P, @ P,

7 /23

CFB8 variant of CFB mode and Zerologon

— Netlogon implementation used all-zero
[V (always)
= consider all-zero plaintext
= 1/256 of all keys lead to all-zero
— problems with cryptography in Netlogon ciphertext
protocol (AES-CFB8)

— Zerologon - compromising domain
admin in AD (2020)

— client authentication
— CFB8 mode (P; and C; are bytes): = encrypting his own challenge with a

Cy = E,(1V[0...15])[0] & P, session key

C, = E,(IV[1...15]C,)[0] & P, — the attacker chooses all-zero challenge

= session-key is unknown

= succeess with probability 1/256

Cipi = E(C[i — 15, ..., iD[0] @ P;, 4 = repeat if necessary (session-key will
change since it depends on the server
challenge as well)

Cs = E,(IV[2...15]C,C,)[0] & P4

8 /23

OFB (Output Feedback)

R R
R) Y2 R) Y2
PI i Ci Cl i PI
R; = Ex(Ri-1)
encrypt: C; = P ® R; decrypt: P, = C; ® R;

— synchronous stream cipher; D;, is not needed
— IV should be unique for each plaintext, otherwise we get two-time pad problem

— neither encryption nor decryption can be parallelized

9 /23

CTR (Counter)

AV | ctr AV | ctr
Ek Ek
PI % Ci Cl % PI
ctr++
encrypt: C; = P; ® E(1V | ctr) decrypt: P; = C; @ Ex(1V | ctr)

— inputs to E} should not overlap (otherwise ... two-time pad)
— similar to OFB (synchronous stream cipher)
— easy to perform a seek (random access)

— easy to encrypt and decrypt in parallel

10/ 23

Padding

— ECB and CBC assume that n divides the length of the plaintext

— padding required (various paddings are used):

= bit padding - append 1 (always) and necessary number of zeroes: msg || 1000...0
= byte padding (PKCS #7, CMS (RFC 5652)):

msg || 01 ifn||msg|+ 1
msg || 03 03 03 ifn||msg| + 3
msg || 01 01 ... 01 ifn | |msg| (forn = 128)

= similarly for TLS 1.2 (RFC 5246): 00; 02 02 02; OF OF ... OF
— padding = |ciphertext| > |plaintext|
- padding should be verified after decryption

- “stream” modes like OFB, CTR or CFB do not need padding, |ciphertext| = |plaintext]|

11/ 23

Padding oracle attack

— implementation issue

— our assumptions:

CBC mode, PKCS 7 padding

= we can recognize correct/incorrect padding, e.g., a server behaves differently

(observable error, timing differences, ...)

— goal: decrypt a ciphertext block C, i.e.,, compute Y = D, (C)

— the attack:

let X be a random 15-byte block

try ciphertexts: (X || 00) || C, (X ||01) || C, ..., (X || 7A) || C, ..., (X || FF) || C, until we
find the ciphertext with valid padding

the highest probability: the corresponding plaintext ends with byte 01 (and not
with bytes 02 02 or even longer padding)

12 /23

Padding oracle attack (cont.)

— the attack (cont.):

there is always a candidate with 01 padding, we can also alter the penultimate byte
of X to distinguish it

finally, we can compute Y5, e.g., 7A@ Y = 01 = Y5 = 7B

set the last byte of the first block to get 02 as the final byte of the plaintext:
b®dYi:=02=b=79

try ciphertexts (X is a random 14-byte value):

(X]00||79) ||C, (X |01 79)]| C, .. X]||B2]|79)]|C, .. (X||FF|| 79) || C, until
we find a ciphertext with valid padding (this time: 02 02)

we can compute Y14, e.g,B2® Y4, = 02 = Y4, = BO

... similarly for other bytes

— avariant used against SSL/TLS implementations (Lucky Thirteen, 2013)

13 /23

Ciphertext stealing 1

P,_i P,]l0...0

- method of avoiding padding for CBC or ECB modes

— ciphertext stealing for CBC mode encryption e Ey Ei
= example: Kerberos, AES256-CTS t h l
— plaintext: ...P,,_,, P,,_1, P,

- Cipher‘teXt: ...Cn_z, n—-1» C‘r,l %

14 /23

Decrypting CBC ciphertext stealing

Py P,]]0...0 P,y P,]]0...0
. Dy Dy T Dy Dy
Cn—2 Cn—1 Cn Cn—2 Cn—1 Cn
G G G G

15/ 23

CBC-MAC

— using a block cipher for authentication

— MAC - Message Authentication Code
= secret key + message (data) — authentication tag
= sender computes and sends the authentication tag
= recipient recomputes the tag and compares with the received value

v

my

my

my
— secure for fixed-length messages
—>
— security discussion in the MAC lecture
r = insecure for variable-length messages
f = key and IV sensitivity

16 /23

Authenticated encryption

— modes providing confidentiality & authenticity of data
— examples: CCM (Counter with CBC-MAC), GCM (Galois/Counter Mode)

- CCM (idea):
= plaintext encrypted using CTR mode
= authentication tag computed as CBC-MAC
= authenticate-then-encrypt (single key is used)
= two-pass scheme (F is used twice for each input block)

17 /23

Authenticated encryption - GCM

— NIST SP 800-38D, GCM for 128-bit block
ciphers, such as AES

= popular variant with 96-bit IV and Encryption using the CTR mode
32-bit counter 1. ctr = inc3,(J)
R T — increment the last 4B modulo 232
— K - key, single key is used 2. P Xq, .0 Xn
~ P, A, C - plaintext, additional the last block might be incomplete
authenticated data, ciphertext 3. fori=1,..,m
- H = Ex(0'%8) - authentication key used C; = P; @ Eg(ctr)
for authentication tag computation ctr = incs;(ctr)
— Jo =1V 03 1; 4. output: Cy, ..., C,, where |Cy,| = |B,|
- len(X) - the length of X in bits, a 64-bit
value

18 /23

GCM - authentication tag

GHASH (4, C):
1. A||C Xy, ... X,,—1,1en(A4) || len(C)

Xn

A and C are padded with 0 to fill incomplete blocks, if necessary
2. Y, =0128
3. fori=1,..n:Y; =1 DX;) e H
4, GHASHL(A,C) « Y,
— authenticationtag T: T = Ex(J,) ® GHASHy (A4, C)

~ e is multiplication in GF(21?8), the field is generated by x128 + x7 + x2 + x + 1

19 /23

GCM remarks and forbidden attack

— limited message length (increasing the length affects the security), for example:
(TLS 1.3, RFC 8446) For AES-GCM, up to 2**> full-size records (about 24 million) may be
encrypted on a given connection while keeping a safety margin of approximately 2~>7 for
Authenticated Encryption (AE) security.

— IV must be unique (nonce) for given key and message, otherwise forbidden attack

— repeated IV:
= two-time pad for CTR encryption
= H can be computed (see next slides)
= impact: the attacker can manipulate ciphertext (bit flipping), edit associated data A4,
and compute correct authentication tag

— this implementation issue was observed in real world systems in the past

20 /23

Forbidden attack - let’s compute H

— forbidden attack (A. Joux)
— assumption: two messages encrypted with the same K and IV
~ H is the same in both cases, since H = Ex(0!28)
— similarly Ex (J,) is the same (let’s denote it J*)
— for readability: @ —» +and e - -
— computation of T can be written as a polynomial g(z):
g2)=]"+z-X,+z* X1+ ..+z" X4
where T = g(H)
— known: T, 4, C,where A || C » X3, ..., X;,_1,1en(4) || len(C)

— unknown: H and J*

21/23

Forbidden attack - let’s compute H (cont.)

— two polynomials for our messages:
g2)="+z- X, +z*- X, +..+z" X4
g@ =4z Xy +2%2- Xy 4+ ..+2" X}

- Hisarootof g(z) + Tand g'(z) + T' = itisaroot of theirsum: g(z) + T+ g'(z) + T’
= polynomial with degree max{n,n'}, we know all coefficients (J* cancels out)

— H can be computed via factorization, finding roots and verification for other messages
= more messages with the same IV = more polynomials that share a common root
= number of roots in theory up to the degree, in practice substantially less

22 /23

Exercises

1. Analyze how inverting a bit in the ciphertext changes the resulting plaintext after
decryption. Consider ECB, CBC, OFB, CFB, and CTR modes.

2. Assume CPA scenario for the CBC mode with predictable IV. Show how an attacker can

get an access to E; () oracle. Discuss how this allows to test the candidates for the
plaintext block (for given ciphertext block).

(*) Show similar problem for a constant IV in the CFB mode.

3. Assume a plaintext consisting of a sufficiently long sequence of 32-bit integers (0)3,,
(1)35, (2)39, ... A block cipher with 32-bit block is used to encrypt this plaintext. Can you
recognize which one of these modes was used: ECB, CBC, or OFB?

23 /23

	Modes of operation
	Confidentiality modes
	ECB (Electronic Codebook)
	CBC (Cipher Block Chaining)
	Visual comparison of ECB and CBC (AES-128)
	CBC 2
	CFB (Cipher Feedback)
	CFB8 variant of CFB mode and Zerologon
	OFB (Output Feedback)
	CTR (Counter)
	Padding
	Padding oracle attack
	Padding oracle attack (cont.)
	Ciphertext stealing 1
	Decrypting CBC ciphertext stealing
	CBC-MAC
	Authenticated encryption
	Authenticated encryption – GCM
	GCM – authentication tag
	GCM remarks and forbidden attack
	Forbidden attack – let's compute H
	Forbidden attack – let's compute H (cont.)
	Exercises

