
Stream Ciphers

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Introduction
idea, general properties

Examples of stream ciphers
RC4
ChaCha20
Snow 3G

Stream Ciphers 2 / 15 ,

Introduction

▶ Vernam cipher (one-time pad)
▶ perfect secrecy
▶ impractical – long key that cannot be reused

▶ (some) stream ciphers examples:
▶ RC4 – old software and protocols, e.g. WEP, SSL/TLS etc.
▶ E0 – Bluetooth (BR/EDR – basic rate/enhanced data rate)

remark: Bluetooth Low Energy uses AES-CCM
▶ ChaCha20 – TLS (RFC 7905)

▶ basic types of stream ciphers: synchronous and self-synchronizing

Stream Ciphers 3 / 15 ,

Synchronous stream ciphers

IV key

plaintext ciphertext

keystream

pseudo-random
generator

▶ the most common stream ciphers used in practice
▶ encryption and decryption are the same
▶ keystream does not depend on plaintext
▶ usually binary additive stream ciphers (XOR of plaintext and keystream)

Stream Ciphers 4 / 15 ,

Synchronous stream ciphers 2

▶ periodic
▶ require synchronization

▶ decryption breaks after losing some bits of ciphertext
▶ vulnerable to active attacks

▶ e.g. changing bits in ciphertext results in change of corresponding
plaintext bits

▶ errors are not propagated
▶ IV and key must not repeat (otherwise . . . two-time pad)

▶ be careful of possible keystreams overlaps

Stream Ciphers 5 / 15 ,

Self-synchronizing stream ciphers

IV

key

pi ci

ci−n, ci−n+1, . . . , ci−1

function

IV

key

pi

ci−n, ci−n+1, . . . , ci−1

function

▶ keystream depends on ciphertext (and therefore on plaintext)
▶ ability to self-synchronize after the loss of same cipherext
▶ aperiodic
▶ hard to analyze, hard to guarantee security properties

Stream Ciphers 6 / 15 ,

Remarks

▶ stream ciphers can be constructed from block ciphers
▶ specific modes of operation:

▶ synchronous: OFB, CTR
▶ self-synchronizing: CFB

▶ Why stream ciphers at all?
▶ speed
▶ simplicity (HW implementation, constrained environment)

▶ requirements (preliminary observations):
▶ long period

. . .How do you attack stream cipher with short period?
▶ good statistical properties

. . . statistical tests of randomness are not sufficient
▶ keystream should be unpredictable (indistinguishable from a random

sequence)
. . .KPA⇒ knowing some part of the keystream

Stream Ciphers 7 / 15 ,

RC4

▶ Ron Rivest, 1987
▶ trade secret; posted anonymously to a mailing list in 1994
▶ internal state S [0… 255] – permutation {0, … , 255}
▶ key K [0… k] – array of bytes (16 for 128-bit key)
▶ initialization:

for i = 0, … , 255: S [i] = i;
j = 0;
for i = 0, … , 255:

j = (j + S [i] + K [i mod k]) mod 256;
swap(S [i], S [j]);

Stream Ciphers 8 / 15 ,

RC4 (2)

▶ generating keystream:

i = 0; j = 0;
while (is needed):

i = (i + 1) mod 256;
j = (j + S [i]) mod 256;
swap(S [i], S [j]);
output S [(S [i] + S [j]) mod 256];

▶ additive cipher, the output is XOR-ed with plaintext bytes
▶ first bytes of keystream leak information about key

▶ WEP attack (key and IV used as RC4 key)
▶ drop some keystrem prefix / different construction of the key

Stream Ciphers 9 / 15 ,

Klein’s attack on WEP 1

▶ WEP (Wired Equivalent Privacy) – security for 802.11 WiFi networks
▶ superseded by WPA2 (WiFi Protected Access)

▶ data frame:
IV, padding, IDRk︸ ︷︷ ︸

plaintext

, data, ICV︸ ︷︷ ︸
encrypted

▶ IV – initialization vector (3B)
▶ IDRk – Rk’s identifier (2 bits)
▶ ICV – integrity check value (CRC32)

▶ RC4 with key K = IV | | Rk (Rk – root key)
▶ Notation:

▶ Si – internal permutation after i-th round (i ≤ 256 corresponds to
initialization)

▶ ji – internal variable j after i-th round
▶ X – keystream (obtained by XORing ciphertext and known plaintext data)

Stream Ciphers 10 / 15 ,

Klein’s attack on WEP 2

▶ Klein proved the following property of RC4 (n = 256):

Pr[K [i mod k] = S−1i [i − X [i − 1]] − (Si [i] + ji)] ≈
1.36
n

instead of desired 1/n.
▶ IV = K [0],K [1],K [2] is known⇒ S3 and j3 can be computed
▶ the value w = S−13 [3− X [2]] − (S3 [3] + j3) is K [3] with probability ≈ 1.36

n

▶ attacker observes many frames (fixed Rk and different IV) . . . correct
value of K [3] (the first byte of Rk) revealed by statistics

▶ knowing K [3] ⇒ next RC4 round computation: S4, j4 . . . etc.

▶ improvements for WEP, e.g. PTW attack (2007)
▶ attack on RC4 in TLS: AlFardan et al. (2013)

Stream Ciphers 11 / 15 ,

ChaCha20

▶ high-speed ARX cipher (add-rotate-xor)
▶ designed by D.J. Bernstein (2008)
▶ details described e.g. in RFC 8439
▶ ChaCha20 – specific instance of ChaCha with 20 rounds
▶ state: 4 × 4 matrix, elements are 32-bit words
▶ inputs:

▶ key: 256 bits (8 words)
▶ nonce (IV): 96 bits (3 words)
▶ counter: 32 bits (1 word)⇒ max. 256 GB

▶ output: 512 bits (64 bytes, 16 words)
▶ different nonce/counter lengths possible (we follow RFC 8439)

Stream Ciphers 12 / 15 ,

ChaCha20 – initialization and quarter-round

const const
0

key

cnt nonce

key key key

key key keykey

nonce nonce

const const
1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

QuarterRound(a,b,c,d):
a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

Stream Ciphers 13 / 15 ,

ChaCha20 – block function

▶ iterate 10 times following two rounds:

QuarterRound(0, 4, 8, 12)
QuarterRound(1, 5, 9, 13)
QuarterRound(2, 6, 10, 14)
QuarterRound(3, 7, 11, 15)
QuarterRound(0, 5, 10, 15)
QuarterRound(1, 6, 11, 12)
QuarterRound(2, 7, 8, 13)
QuarterRound(3, 4, 9, 14)

▶ the output state is added (word by word) to the input state ↦→
keystream block

▶ the output state is used again as an input to the block function

Stream Ciphers 14 / 15 ,

Snow 3G – keystream generator

s15 s11 s5 s1s2 s0

α−1 α

R1 R2 R3
S1 S2

▶ SNOW 3G is the base of confidentiality and integrity algorithms UEA2
and UIA2 (for LTE)

▶ LSFR: 16 32-bit words; S1, S2 – s-boxes
▶ FSM (finite state machine): R1, R2, R3 – 32-bit values
▶ 𝛼 is the root of some fixed polynomial

Stream Ciphers 15 / 15 ,

	Introduction
	idea, general properties

	Examples of stream ciphers
	RC4
	ChaCha20
	Snow 3G

