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Introduction

» Vernam cipher (one-time pad)
> perfect secrecy
> impractical — long key that cannot be reused
> (some) stream ciphers examples:
> RC4 - old software and protocols, e.g. WEP, SSL/TLS etc.
> EO - Bluetooth (BR/EDR - basic rate/enhanced data rate)
remark: Bluetooth Low Energy uses AES-CCM
» ChaCha20 — TLS (RFC 7905)

> basic types of stream ciphers: synchronous and self-synchronizing
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Synchronous stream ciphers
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plaintext —»ég—» ciphertext

the most common stream ciphers used in practice

encryption and decryption are the same

keystream does not depend on plaintext

vV v.vyYy

usually binary additive stream ciphers (XOR of plaintext and keystream)
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Synchronous stream ciphers 2

> periodic
> require synchronization
> decryption breaks after losing some bits of ciphertext
> vulnerable to active attacks
> e.g. changing bits in ciphertext results in change of corresponding
plaintext bits
> errors are not propagated
> |V and key must not repeat (otherwise ...two-time pad)

> be careful of possible keystreams overlaps
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Self-synchronizing stream ciphers
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keystream depends on ciphertext (and therefore on plaintext)
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ability to self-synchronize after the loss of same cipherext
aperiodic

hard to analyze, hard to guarantee security properties
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Remarks

> stream ciphers can be constructed from block ciphers
> specific modes of operation:
> synchronous: OFB, CTR
> self-synchronizing: CFB
» Why stream ciphers at all?
> speed
> simplicity (HW implementation, constrained environment)
> requirements (preliminary observations):
> long period
...How do you attack stream cipher with short period?
> good statistical properties
...statistical tests of randomness are not sufficient
> keystream should be unpredictable (indistinguishable from a random
sequence)
...KPA = knowing some part of the keystream
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RC4

Ron Rivest, 1987

trade secret; posted anonymously to a mailing list in 1994
internal state S[0... 255] — permutation {0, ..., 255}

key K[0... k] — array of bytes (16 for 128-bit key)

initialization:

vV v.v. v Yy

fori=0,...,255: S[i] = i

J=0

fori=0,...,255:
j=(+S[i]+K[imod k]) mod 256;
swap(S[i], S[j]);
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RC4 (2)

> generating keystream:

i=0;j=0;
while (is needed):
i=(i+1) mod 256;
j =+ S[i]) mod 256;
swap(S[il, S[j]);
output S[(S[/] + S[j]) mod 256];

» additive cipher, the output is XOR-ed with plaintext bytes
> first bytes of keystream leak information about key

> WEP attack (key and IV used as RC4 key)
> drop some keystrem prefix / different construction of the key
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Klein’s attack on WEP 1

> WEP (Wired Equivalent Privacy) — security for 802.11 WiFi networks
> superseded by WPA2 (WiFi Protected Access)

» data frame:

IV, padding, IDgg, data, ICV
[ ——

plaintext encrypted

> IV - initialization vector (3B)
> DRk — Rk’s identifier (2 bits)
> [CV - integrity check value (CRC32)
» RC4 with key K =1V || Rk (Rk - root key)
> Notation:
> S; — internal permutation after i-th round (i < 256 corresponds to
initialization)
> j; —internal variable j after i-th round
> X - keystream (obtained by XORing ciphertext and known plaintext data)
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Klein’s attack on WEP 2

> Klein proved the following property of RC4 (n = 256):
1.36

Pr[K[imod k] = S;'[i— X[i—1]] = (Si[i] +j)] ~ —
instead of desired 1/n.

> IV = KJ[0], K[1], K[2] is known = S; and j3 can be computed

> the value w = S;'[3— X[2]] — (S3[3] +j3) is K[3] with probability ~ 13

> attacker observes many frames (fixed Rk and different 1V) ...correct
value of K[3] (the first byte of Rk) revealed by statistics

> knowing K[3] = next RC4 round computation: S, js ...etc.

» improvements for WEP, e.g. PTW attack (2007)
> attack on RC4 in TLS: AlFardan et al. (2013)
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ChaCha20

vVVvy VvV VVYy

high-speed ARX cipher (add-rotate-xor)
designed by D.J. Bernstein (2008)
details described e.g. in RFC 8439
ChaCha20 - specific instance of ChaCha with 20 rounds
state: 4 X 4 matrix, elements are 32-bit words
inputs:
> key: 256 bits (8 words)

> nonce (IV): 96 bits (3 words)
> counter: 32 bits (1 word) = max. 256 GB

> output: 512 bits (64 bytes, 16 words)
> different nonce/counter lengths possible (we follow RFC 8439)
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ChaCha20 - initialization and quarter-round

const | const | const | const

key |key |key |key

key |key |key |key

12 13 14 15
cnt nonce | nonce | nonce

QuarterRound(a,b,c,d):
a += b; d r= a; d <<<= 16;

c += d; b A= c; b <<<= 12;
a += b; d A= a; d <<<= 8;
c += d; b A= c; b <<<= 7;
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ChaCha20 - block function

> iterate 10 times following two rounds:

QuarterRound (0, 4, 8, 12)
QuarterRound(1, 5, 9, 13)

QuarterRound(2, 6, 10, 14)
QuarterRound (3, 7, 11, 15)
QuarterRound(0, 5, 10, 15)
QuarterRound(1, 6, 11, 12)
QuarterRound(2, 7, 8, 13)
QuarterRound(3, 4, 9, 14)

> the output state is added (word by word) to the input state —
keystream block

> the output state is used again as an input to the block function
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Snow 3G - keystream generator

> SNOW 3G is the base of confidentiality and integrity algorithms UEA2
and UIA2 (for LTE)

> LSFR: 16 32-bit words; Sy, S, — s-boxes
> FSM (finite state machine): Ry, Ry, R3 — 32-bit values
> a is the root of some fixed polynomial
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