Hash Functions

Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Introduction

- hash function computes a fixed-length fingerprint/digest/hash from a message/ document of (almost) arbitrary length
- $h: X \to Y$ function deterministic, efficient (fast), without any key
- usually $X = \{0, 1\}^*, X = \{0, 1\}^{\le 2^{64}}, X = \{0, 1\}^{\le 2^{128}}, ...$ $Y = \{0, 1\}^{160}$ for SHA-1, $\{0, 1\}^{256}$ for SHA-256 and SHA3-256, ...
- various uses of hash functions:
 - digital signature schemes (digest of the message is signed)
 - padding in public-key encryption schemes
 - verifying integrity of data, MAC constructions
 - instantiation of random oracles and pseudorandom functions
 - proof of work, password storing methods, etc.

Basic requirements of hash functions (informally)

preimage resistance (one-way)

It is infeasible to compute $x \in X$ given $y \in h(X)$ such that h(x) = y.

second preimage resistance

It is infeasible to compute $x' \in X$ given $x \in X$ such that $x \neq x' \& h(x) = h(x')$.

collision resistance

It is infeasible to compute $x, x' \in X$ such that $x \neq x' \& h(x) = h(x')$.

Remarks:

- |X| ≫ |Y|, otherwise the h.f. is useless ⇒ large number of collisions
- Y is finite, h is deterministic ⇒
 ("hardcoded") collisions can be found in
 O(1) time in theory
- formalizing the requirements is not straightforward; *hash function families*
- the informal definitions are sufficient for our needs

Properties of hash functions – discussion

- collision resistance ⇒ second preimage resistance
 - if you can find a second preimage, then you have a collision
- collision resistance ⇒ preimage resistance
 - identity: $X = Y, \forall x \in X : h(x) = x$ (Coll, $\neg Pre$)
 - let g with range $\{0,1\}^n$ be collision and preimage resistant; then

$$h(x) = \begin{cases} 0 \parallel x & \text{if } |x| = n \\ 1 \parallel g(x) & \text{otherwise} \end{cases}$$

is collision resistant but not preimage resistant

- second preimage resistance ⇒ preimage resistance
 - identity again (Sec, ¬Pre)
- however, in a "normal" situation ...

Collision by inverting

- algorithm to find a collision:
 - 1. $x \leftarrow X$ (random)
 - 2. invert $h(x) \mapsto x'$
 - 3. if $x' \neq x$... collision found
- let us estimate the probability of success
- notation:
 - $[x] = \{x' \in X \mid h(x') = h(x)\}$
 - C set of all equivalence classes

- assumption:
$$h$$
 can be inverted efficiently $\Pr_{\text{succ}} = \frac{1}{|X|} \sum_{x \in X} \frac{||x|| - 1}{||x||} = \frac{1}{|X|} \sum_{c \in C} \sum_{x \in c} \frac{|c| - 1}{|c|}$
- algorithm to find a collision:

1. $x \leftarrow X$ (random)
2. invert $h(x) \mapsto x'$
3. if $x' \neq x$... collision found
- let us estimate the probability of success
$$= \frac{1}{|X|} \sum_{c \in C} |c| - \frac{1}{|X|} \sum_{c \in C} 1 \ge 1 - \frac{|Y|}{|X|}$$

- after *k* repetitions:

$$\Pr_{\text{succ}} \ge 1 - (|Y|/|X|)^k$$

Generic attack for finding preimage/2nd preimage

- generic attack, finding a preimage for given $y \in h(X)$:
- algorithm:
 - 1. choose $x \in X$ (randomly or systematically)
 - 2. if h(x) = y then the preimage is found, otherwise repeat
- expected complexity $O(2^n)$ for $Y = \{0, 1\}^n$
- similar generic attack for finding a second preimage

Birthday attack

- generic attack for finding collisions
- What is the probability that at least two people in a room share the same birthday?
 - assumption: uniform distribution of birthdays

$$Pr_2 = 1 - \frac{365 \cdot 364}{365^2} \approx 0.0027$$

$$Pr_3 = 1 - \frac{365 \cdot 364 \cdot 363}{365^3} \approx 0.0082$$

- k people: $Pr_k = 1 365^{\frac{k}{2}}/365^{\frac{k}{2}}$
- at least 23 people needed for probability $\geq 1/2$
- "hash function" maps people to dates; |Y| = 365; shared birthday = collision

Birthday attack – graph

Birthday attack on hash functions

- choose (distinct, random) $x_1, ..., x_k \leftarrow X$
- compute $h(x_1)$, ..., $h(x_k)$
- find collisions, for example by sorting $(h(x_i), x_i)$ and searching for collisions in adjacent elements, or by storing $(h(x_i), x_i)$ in a hash table using the hash value as a key
- linear time and memory complexity O(k)
 - we treat n as a constant (for $Y = \{0, 1\}^n$); also assuming constant time to evaluate h
 - time: using Radixsort for sorting in O(k) or using a hash table with $k \times O(1)$ operations
 - memory complexity can be improved (see later)

Birthday attack – analysis (1)

- What is the probability of success?
- trivial observations the probability of success increases:
 - for increasing k
 - for unbalanced distribution of images
- assume the worst situation: *h* distributes the hash values uniformly, i.e.

$$\Pr[h(x) = y] = \frac{1}{|Y|} \quad \forall y \in Y$$

- let $y_1, ..., y_k$ be random, independent and uniform elements from Y; notation: |Y| = N
- probability that all y_i 's are distinct:

$$\Pr_{\text{dist}} = \frac{N(N-1) \cdot ... \cdot (N-k+1)}{N^k} = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \cdot ... \cdot \left(1 - \frac{k-1}{N}\right)$$

Birthday attack – analysis (2)

probability of at least one collision:

$$Pr_{col} = 1 - Pr_{dist}$$

- let's estimate Pr_{col}:

$$\begin{aligned} \Pr_{\text{col}} &= 1 - \prod_{i=1}^{k-1} \left(1 - \frac{i}{N} \right) \\ &\geq 1 - e^{-\frac{1}{N} - \frac{2}{N} - \dots - \frac{k-1}{N}} = 1 - e^{\frac{-k(k-1)}{2N}} \end{aligned}$$

Remark:

- we use inequality $1 x \le e^{-x}$
- it follows from Taylor series:

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

- or draw the graphs
- solve for k, such that $\Pr_{col} \ge \varepsilon$, for a constant $\varepsilon \in (0, 1)$:

$$\Pr_{\text{col}} \ge 1 - e^{-k(k-1)/(2N)} \ge \varepsilon \implies 2N \cdot \ln(1-\varepsilon) \ge -k^2 + k$$
 solving quadratic inequality $\Rightarrow k \ge \sqrt{N} \cdot \sqrt{2 \ln(1-\varepsilon)^{-1}}$ (*)

(*) a very small constant ignored at the end

Birthday attack – remarks and implications

- the complexity is $O(N^{1/2})$ for *reasonable* ε , e.g., 50%, 66%, 99%, ...

$$\varepsilon = 50\%: k \approx 1.177 \cdot N^{1/2}$$

$$\varepsilon = 99\% : k \approx 3.035 \cdot N^{1/2}$$

$$\varepsilon = 99.99\%: k \approx 4.292 \cdot N^{1/2}$$

- for $Y = \{0, 1\}^n$ we get $O(2^{n/2})$
 - for SHA-1 $\approx 2^{80}$, for SHA-256 $\approx 2^{128}$
- generic attack,
 - any hash function can be attacked
 - recall: generic attack for symmetric encryption is brute-force, $O(2^l)$, where l is the length of the key

- the length of hash value should be twice the length of symmetric key used for encryption
- standardized parameters for AES and SHA-2/SHA-3 families:

AES key length	SHA-2/SHA-3	
	output length	
	224	
128	256	
192	384	
256	512	

"Meaningful" collisions

- prepare documents m, m' with t places that can be changed without changing the meaning of the document
 - one space vs. two spaces, synonyms etc.
- 2^t variants of each document
- hash and find a collision between these two sets
- the same asymptotic time and memory complexity of birthday attack

Improving memory complexity of the birthday attack (1)

- assumption: h as a random function on h(X)
- sequence: $x_0, x_1, x_2, ...$, where $x_i = h(x_{i-1})$ for $i \ge 1$

- expected (as *N* → ∞): $\rho = \lambda + \mu = \sqrt{\pi N/2}$

Improving memory complexity of the birthday attack (2)

Finding collision in constant memory:

- 1. $x_0 \leftarrow X$ (using $X \setminus Y$ guarantees the existence of a collision, $\lambda \ge 1$)
- 2. compute (x_i, x_{2i}) for $i \ge 1$: $x_i = h(x_{i-1}), x_{2i} = h(h(x_{2(i-1)}))$
- 3. if $x_i = x_{2i}$ then $h^i(x_0) = h^{2i}(x_0)$, we found a point on the cycle, $\lambda \le i$, and the collision can be computed as follows:
 - 3.1. compute (x_j, x_{i+j}) for j = 0, 1, ..., i starting with (x_0, x_i)
 - 3.2. check for situation when $x_j \neq x_{i+j}$ and $x_{j+1} = x_{i+j+1}$
 - 3.3. collision $h(x_i) = h(x_{i+j})$; remark: $\mu \mid (2i i) \Rightarrow x_{\lambda} = x_{i+\lambda}$

Improving memory complexity of birthday attack (3)

- only a constant number of values (e.g. x_0 , and the recent pair of values (x_i, x_{2i}) or (x_i, x_{i+j})) should be stored
- complexity:
 - cycle is detected (point is found) if $i \ge \lambda$ and $\mu \mid i$
 - the difference 2i-i increases by 1 in each iteration, i.e. the cycle is detected with $\lambda + \mu$ iterations maximum
 - complexity $O(\lambda + \mu) = O(\sqrt{N})$
- this method does not change the asymptotic time complexity of b.a.
- no control over the colliding messages/inputs

Collision resistance in practice

- collision resistance is not easy
- MD5:
 - designed by Ron Rivest in 1991,
 - collision published in 2005
- SHA-1
 - designed by NSA, standard in 1995
 - deprecated by web browsers in 2017
 - first collision in 2017; two pdf files,see https://shattered.io/
 - attack complexity: 2^{63.1} SHA-1
 compressions

- SHA-1 was replaced fast (use of hash function in signature schemes):

year	SHA-1	SHA-256	
01/2015	66.7%	33.3%	
01/2016	13.2%	86.8%	
01/2017	1.5%	98.4%	
01/2018	0.0%	99.8%	

Constructions

Hash functions – variety of approaches

- hash functions based on hard computational problems (for example DLOG, SIS)
 - provable properties (assuming the hardness of underlying problem)
 - slow, impractical ⇒ not used in practice
- hash functions based on block ciphers
- dedicated constructions

Hash functions based on block ciphers

- $m = m_1, m_2, ..., m_k$ input divided into blocks
- sequential processing of input blocks
- h_0 initialization vector
- h_i intermediate hash value $(1 \le i \le k)$
- $H(m) = h_k$ the hash value is the output of the last iteration
- problem: small block length
 - specific block ciphers, e.g., SHACAL-2 for SHA-256
 - double block length constructions

Examples:

- Matyas, Meyer, Oseas:

$$h_i = E_{g(h_{i-1})}(m_i) \oplus m_i$$

- Davies, Meyer:

$$h_i = E_{m_i}(h_{i-1}) \oplus h_{i-1}$$

- Miyaguchi, Preneel:

$$h_i = E_{g(h_{i-1})}(m_i) \oplus h_{i-1} \oplus m_i$$

Dedicated constructions

- no proofs of security based on some "hard underlying problem"
- fast, usually one of the design goals
- most common design approaches:
 - Merkle-Damgård: SHA-1, SHA-2 family
 - HAIFA: BLAKE2
 - sponge: SHA-3 (Keccak)
 - Merkle tree: BLAKE3
- usually an iterated construction (informally):
 - message padding and slicing
 - start with IV and sequentially process the slices
 - result is the output of the final iteration (sometimes additional processing)

Merkle-Damgård construction (1)

- collision resistance of compression function implies collision resistance of hash function
- fixed input length compression function $f: \{0, 1\}^{n+r} \to \{0, 1\}^n$
- hash function $H : \{0, 1\}^{\leq l} \to \{0, 1\}^n$
- input $x = x_1, x_2, ..., x_t$ (block length r)
 - last block padded by 10...0 (if needed)
 - additional block $x_{t+1} = |x|$; in binary, thus $l < 2^r$
- other variants of padding used in practice or proposed in the literature
- using the length in padding ... MD strengthening
 - improves security of the construction (for example: long message attack on second preimage resistance – colliding intermediate values of a very long message and another one)

Merkle-Damgård construction (2)

Computation:

- 1. $h_0 = 0^n$ (IV)
- 2. $h_i = f(h_{i-1} || x_i)$, for i = 1, ..., t + 1
- 3. $H(x) = h_{t+1}$

Collision resistance of MD construction

Let $x \neq x'$ be a collision in H: H(x) = H(x'), i.e., $h_{t+1} = h'_{t'+1}$ - if $t \neq t'$ then $x_{t+1} \neq x'_{t'+1}$ and $f(h_t, x_{t+1}) = f(h'_{t'}, x'_{t'+1})$... collision in f

Collision resistance of MD construction

```
Let x \neq x' be a collision in H: H(x) = H(x'), i.e., h_{t+1} = h'_{t'+1}
- if t \neq t' then x_{t+1} \neq x'_{t'+1} and f(h_t, x_{t+1}) = f(h'_{t'}, x'_{t'+1}) ... collision in f
-t = t': x = x_1, ..., x_{t+1}, x' = x'_1, ..., x'_{t+1}
   f(h_t, x_{t+1}) = f(h'_t, x'_{t+1}) ... either collision in f or h_t = h'_t \land x_{t+1} = x'_{t+1}
   f(h_{t-1}, x_t) = f(h'_{t-1}, x'_t) ... either collision in f or h_{t-1} = h'_{t-1} \land x_t = x'_t
   ...
   f(IV, x_1) = f(IV, x_1') ... either collision in f or x_1 = x_1'
- either we get a collision in f or x = x'
```

Merkle-Damgård problems

- structural problems of MD construction
- hash is a complete information \mapsto length extension attacks
 - calculating hash of an extended message without knowing the original message
- minimal intermediate state n-bit for n-bit output
 - multicollisions: with less complexity than expected
- fixed points can be easily found in Davies-Meyer compression function
 - allow more efficient 2nd preimage attacks
- no real-world attacks for suitable parameters, but classical MD constructions are less secure than random functions (oracles)

Parameters of real-world hash function

family	function	length [bits]		
		max. input	output	block
	SHA-1	$2^{64} - 1$	160	512
SHA-2	SHA-256	$2^{64} - 1$	256	512
	SHA-384	$2^{128} - 1$	384	1024
	SHA-512	$2^{128} - 1$	512	1024
SHA-3	SHA3-256	∞	256	1088
	SHA3-384	∞	384	832
	SHA3-512	∞	512	576

- SHA-2 family of hash function
 - SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256
- similar design of SHA-256 (32-bit words, block size 512 bits) and SHA-512 (64-bit words, block size 1024 bits)
- other variants are truncated versions with different initialization vectors
- Merkle-Damgård construction

Example: SHA-256

- input message *M*; $l = |M| (0 \le l < 2^{64} \text{ bits})$
- padding and parsing:
 - padding: $M1\underbrace{00...0}_{k}\underbrace{(l)_2}_{64 \text{ bits}}$, where k is the smallest value such that the overall length is a multiple of 512
 - parsing into 512-bit blocks: $M^{(1)}$, $M^{(2)}$, ..., $M^{(N)}$
 - each block consists of 16 32-bit words: $M^{(i)} = M_0^{(i)}$, $M_1^{(i)}$, ..., $M_{15}^{(i)}$
- initialization vector (8 32-bit words): $H_0^{(0)}$, $H_1^{(0)}$, ..., $H_7^{(0)}$
- intermediate hash values: $H_0^{(i)}$, $H_1^{(i)}$, ..., $H_7^{(i)}$
- SHA-256 digest: $H_0^{(N)}$, $H_1^{(N)}$, ..., $H_7^{(N)}$

SHA-256 compression function

compression function (for i = 1, ..., N):

1. expanding a message block ($\mapsto W_0$, ..., W_{63})

$$W_{i} = \begin{cases} M_{t}^{(i)} & \text{for } 0 \le t \le 15\\ \sigma_{1}(W_{t-2}) + W_{t-7} + \sigma_{0}(W_{t-15}) + W_{t-16} & \text{for } 16 \le t \le 63 \end{cases}$$

- 2. $(a,b,c,d,e,f,g,h) \leftarrow (H_0^{(i-1)},H_1^{(i-1)},...,H_7^{(i-1)})$
- 3. for t = 0, ..., 63:
 - 1. $T_1 = h + \sum_i (e) + \text{Ch}(e, f, g) + K_t + W_t$, where K_t is a round constant
 - 2. $T_2 = \sum_0 (a) + \text{Maj}(a, b, c)$
 - 3. $(a, b, c, d, e, f, g, h) \leftarrow (T_1 + T_2, a, b, c, d + T_1, e, f, g)$
- 4. $H_0^{(i)}, H_1^{(i)}, ..., H_7^{(i)} \leftarrow a + H_0^{(i-1)}, b + H_1^{(i-1)}, ..., h + H_7^{(i-1)}$
- SHACAL-2 block cipher in Davies-Meyer mode

Functions used in SHA-256

- functions operate on 32-bit words, addition is computed mod $2^{\{32\}}$
- $\operatorname{Ch}(x, y, z) = (x \wedge y) \oplus (\neg x \wedge z)$
- Maj $(x, y, z) = (x \land y) \oplus (x \land z) \oplus (y \land z)$
- $-\sum_{0}(x) = ROTR^{2}(x) \oplus ROTR^{13}(x) \oplus ROTR^{22}(x)$
- $-\sum_{1}(x) = ROTR^{6}(x) \oplus ROTR^{11}(x) \oplus ROTR^{25}(x)$
- $-\sigma_0(x) = ROTR^7(x) \oplus ROTR^{18}(x) \oplus SHR^3(x)$
- $\sigma_1(x) = ROTR^{17}(x) \oplus ROTR^{19}(x) \oplus SHR^{10}(x)$
- ROTR circular shift rotation to the right
- SHR shift to the right

SHA-3 overview

- Keccak winner of SHA-3 competition (2012)
- standard: NIST FIPS 202 (2015)
 - 4 hash functions with fixed-length output:
 SHA3-224, SHA3-256, SHA3-384, SHA3-512
 - 2 functions with variable-length output (XOF extendable-output functions):
 SHAKE128, SHAKE256
- different approach than SHA-1 or SHA-2 hash functions
 - Keccak is not an MD-construction
- sponge construction
- other functions/variants proposed:
 - SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash

SHA-3 structure

Sponge

- absorbing & squeezing
- arbitrary output length
- padding for SHA3-256: $x \parallel 01 \parallel 10^*1$

f – permutation on $\{0,1\}^{r+c}$

r – bitrate (1088 for SHA3-256)

c – capacity (512 for SHA3-256)

SHA-3 inside permutation f (1)

- state: $5 \times 5 \times 2^l$ bits
 - $2^{l} = 64 \text{ for SHA} 256$
- -12 + 2l rounds
 - 24 rounds for SHA3-256
- round function (θ is applied first):

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

SHA-3 inside permutation f (2)

- θ (theta) xor each bit of a column with parities of two neighboring columns
- $-\rho$ (rho) rotate each lane by a constant value
- π (pi) permute the positions of the lanes
- χ (chi) flip bit if neighbors to the right are 0, 1
 - χ operates on rows (independently, in parallel)
- ι (iota) xor a round specific constant to lane[0,0]
 - destroying symmetry

Exercises

- 1. Show how we can find fixed points in Davies-Meyer compression function, i.e., how to find m, h such that f(m,h) = h.
- 2. Discuss the security of a hash function (MD construction) that uses the following compression function, where E is a block cipher with 256-bit block and 256-bit key:
 - a) $h_i = E_{h_{i-1}}(m_i) \oplus h_{i-1}$
 - b) $h_i = E_{m_i}(m_i) \oplus h_{i-1}$
- 3. Let $h: \{0,1\}^{2n} \to \{0,1\}^n$ be a collision resistant hash function. Let $f: \{0,1\}^{4n} \to \{0,1\}^n$ is defined as follows: $f(x) = h(h(x_1) || h(x_2))$, where $x = x_1 || x_2$ and $|x_1| = |x_2| = 2n$. Prove or disprove: f is collision resistant.