
Hash Functions
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Introduction

– hash function computes a fixed-length fingerprint/digest/hash from a message/
document of (almost) arbitrary length

– ℎ : 𝑋 → 𝑌 function – deterministic, efficient (fast), without any key

– usually 𝑋 = {0, 1}∗, 𝑋 = {0, 1} ≤ 264 , 𝑋 = {0, 1} ≤ 2128 , …
𝑌 = {0, 1}160 for SHA-1, {0, 1}256 for SHA-256 and SHA3-256, …

– various uses of hash functions:
▫ digital signature schemes (digest of the message is signed)
▫ padding in public-key encryption schemes
▫ verifying integrity of data, MAC constructions
▫ instantiation of random oracles and pseudorandom functions
▫ proof of work, password storing methods, etc.

1 / 34

Basic requirements of hash functions (informally)

preimage resistance (one-way)
It is infeasible to compute 𝑥 ∈ 𝑋 given
𝑦 ∈ ℎ(𝑋) such that ℎ(𝑥) = 𝑦.

second preimage resistance
It is infeasible to compute 𝑥′ ∈ 𝑋 given
𝑥 ∈ 𝑋 such that 𝑥 ≠ 𝑥′ & ℎ(𝑥) = ℎ(𝑥′).

collision resistance
It is infeasible to compute 𝑥, 𝑥′ ∈ 𝑋 such
that 𝑥 ≠ 𝑥′ & ℎ(𝑥) = ℎ(𝑥′).

Remarks:

– |𝑋| ≫ |𝑌|, otherwise the h.f. is useless ⇒
large number of collisions

– 𝑌 is finite, ℎ is deterministic ⇒
(“hardcoded”) collisions can be found in
𝑂(1) time in theory

– formalizing the requirements is not
straightforward; hash function families

– the informal definitions are sufficient for
our needs

2 / 34

Properties of hash functions – discussion

– collision resistance ⇒ second preimage resistance
▫ if you can find a second preimage, then you have a collision

– collision resistance ⇏ preimage resistance
▫ identity: 𝑋 = 𝑌, ∀𝑥 ∈ 𝑋 : ℎ(𝑥) = 𝑥 (Coll, ¬Pre)
▫ let 𝑔 with range {0, 1}𝑛 be collision and preimage resistant; then

ℎ(𝑥) = {0 ‖ 𝑥 if |𝑥| = 𝑛
1 ‖ 𝑔(𝑥) otherwise

is collision resistant but not preimage resistant

– second preimage resistance ⇏ preimage resistance
▫ identity again (Sec, ¬Pre)

– however, in a “normal” situation …

3 / 34

Collision by inverting

– assumption: ℎ can be inverted efficiently

– algorithm to find a collision:
1. 𝑥 ← 𝑋 (random)
2. invert ℎ(𝑥) ↦ 𝑥′

3. if 𝑥′ ≠ 𝑥 … collision found

– let us estimate the probability of success

– notation:
▫ [𝑥] = {𝑥′ ∈ 𝑋 | ℎ(𝑥′) = ℎ(𝑥)}
▫ 𝐶 – set of all equivalence classes

Prsucc =
1

|𝑋|
∑
𝑥∈𝑋

|[𝑥]| − 1
|[𝑥]|

=
1

|𝑋|
∑
𝑐∈𝐶

∑
𝑥∈𝑐

|𝑐| − 1
|𝑐|

=
1

|𝑋|
∑
𝑐∈𝐶

(|𝑐| − 1)

=
1

|𝑋|
∑
𝑐∈𝐶

|𝑐|
⏟⏟⏟⏟⏟

|𝑋|

−
1

|𝑋|
∑
𝑐∈𝐶

1
⏟
≤ |𝑌|

≥ 1 −
|𝑌|
|𝑋|

– after 𝑘 repetitions:
Prsucc ≥ 1 − (|𝑌|/|𝑋|)𝑘

4 / 34

Generic attack for finding preimage/2nd preimage

– generic attack, finding a preimage for given 𝑦 ∈ ℎ(𝑋):

– algorithm:
1. choose 𝑥 ∈ 𝑋 (randomly or systematically)
2. if ℎ(𝑥) = 𝑦 then the preimage is found, otherwise repeat

– expected complexity 𝑂(2𝑛) for 𝑌 = {0, 1}𝑛

– similar generic attack for finding a second preimage

5 / 34

Birthday attack

– generic attack for finding collisions

– What is the probability that at least two people in a room share the same birthday?
▫ assumption: uniform distribution of birthdays

Pr2 = 1 −
365 ⋅ 364

3652 ≈ 0.0027

Pr3 = 1 −
365 ⋅ 364 ⋅ 363

3653 ≈ 0.0082

– 𝑘 people: Pr𝑘 = 1 − 365𝑘/365𝑘

– at least 23 people needed for probability ≥ 1/2

– “hash function” maps people to dates; |𝑌| = 365; shared birthday = collision

6 / 34

Birthday attack – graph

7 / 34

Birthday attack on hash functions

– choose (distinct, random) 𝑥1, …, 𝑥𝑘 ← 𝑋

– compute ℎ(𝑥1), …, ℎ(𝑥𝑘)

– find collisions, for example by sorting (ℎ(𝑥𝑖), 𝑥𝑖) and searching for collisions in
adjacent elements, or by storing (ℎ(𝑥𝑖), 𝑥𝑖) in a hash table using the hash value as a key

– linear time and memory complexity 𝑂(𝑘)
▫ we treat 𝑛 as a constant (for 𝑌 = {0, 1}𝑛); also assuming constant time to evaluate ℎ
▫ time: using Radixsort for sorting in 𝑂(𝑘) or using a hash table with 𝑘 × 𝑂(1)

operations
▫ memory complexity can be improved (see later)

8 / 34

Birthday attack – analysis (1)

– What is the probability of success?

– trivial observations – the probability of success increases:
▫ for increasing 𝑘
▫ for unbalanced distribution of images

– assume the worst situation: ℎ distributes the hash values uniformly, i.e.

Pr[ℎ(𝑥) = 𝑦] =
1

|𝑌|
∀𝑦 ∈ 𝑌

– let 𝑦1, …, 𝑦𝑘 be random, independent and uniform elements from 𝑌; notation: |𝑌| = 𝑁

– probability that all 𝑦𝑖 ’s are distinct:

Prdist =
𝑁(𝑁 − 1) ⋅ … ⋅ (𝑁 − 𝑘 + 1)

𝑁𝑘 = (1 −
1
𝑁

)(1 −
2
𝑁

) ⋅ … ⋅ (1 −
𝑘 − 1

𝑁
)

9 / 34

Birthday attack – analysis (2)

– probability of at least one collision:
Prcol = 1 − Prdist

– let’s estimate Prcol:

Prcol = 1 − ∏𝑘−1
𝑖=1 (1 − 𝑖

𝑁
)

≥ 1 − 𝑒− 1
𝑁− 2

𝑁−…−𝑘−1
𝑁 = 1 − 𝑒

−𝑘(𝑘−1)
2𝑁

Remark:

– we use inequality 1 − 𝑥 ≤ 𝑒−𝑥

– it follows from Taylor series:

𝑒−𝑥 = 1 − 𝑥 + 𝑥2

2!
− 𝑥3

3!
+ …

– or draw the graphs

– solve for 𝑘, such that Prcol ≥ 𝜀, for a constant 𝜀 ∈ (0, 1):

Prcol ≥ 1 − 𝑒−𝑘(𝑘−1)/(2𝑁) ≥ 𝜀 ⇒ 2𝑁 ⋅ ln(1 − 𝜀) ≥ −𝑘2 + 𝑘

solving quadratic inequality ⇒ 𝑘 ≥ √𝑁 ⋅ √2 ln (1 − 𝜀)−1 (⋆)
– (⋆) a very small constant ignored at the end

10 / 34

Birthday attack – remarks and implications

– the complexity is 𝑂(𝑁1/2) for reasonable
𝜀, e.g., 50%, 66%, 99%, …

𝜀 = 50% : 𝑘 ≈ 1.177 ⋅ 𝑁1/2

𝜀 = 99% : 𝑘 ≈ 3.035 ⋅ 𝑁1/2

𝜀 = 99.99% : 𝑘 ≈ 4.292 ⋅ 𝑁1/2

– for 𝑌 = {0, 1}𝑛 we get 𝑂(2𝑛/2)
▫ for SHA-1 ≈ 280, for SHA-256 ≈ 2128

– generic attack,
▫ any hash function can be attacked
▫ recall: generic attack for symmetric

encryption is brute-force, 𝑂(2𝑙), where
𝑙 is the length of the key

– the length of hash value should be twice
the length of symmetric key used for
encryption

– standardized parameters for AES and
SHA-2/SHA-3 families:

AES key length SHA-2/SHA-3
output length

224
128 256
192 384
256 512

11 / 34

“Meaningful” collisions

– prepare documents 𝑚, 𝑚′ with 𝑡 places that can be changed without changing the
meaning of the document
▫ one space vs. two spaces, synonyms etc.

– 2𝑡 variants of each document

– hash and find a collision between these two sets

– the same asymptotic time and memory complexity of birthday attack

12 / 34

Improving memory complexity of the birthday attack (1)

– assumption: ℎ as a random function on ℎ(𝑋)

– sequence: 𝑥0, 𝑥1, 𝑥2, …, where 𝑥𝑖 = ℎ(𝑥𝑖−1) for 𝑖 ≥ 1

– expected (as 𝑁 → ∞): 𝜌 = 𝜆 + 𝜇 = √𝜋𝑁/2

13 / 34

Improving memory complexity of the birthday attack (2)

Finding collision in constant memory:

1. 𝑥0 ← 𝑋 (using 𝑋 ∖ 𝑌 guarantees the existence of a collision, 𝜆 ≥ 1)

2. compute (𝑥𝑖 , 𝑥2𝑖) for 𝑖 ≥ 1: 𝑥𝑖 = ℎ(𝑥𝑖−1), 𝑥2𝑖 = ℎ(ℎ(𝑥2(𝑖−1)))

3. if 𝑥𝑖 = 𝑥2𝑖 then ℎ𝑖(𝑥0) = ℎ2𝑖(𝑥0), we found a point on the cycle, 𝜆 ≤ 𝑖, and the collision
can be computed as follows:
3.1. compute (𝑥𝑗 , 𝑥𝑖+𝑗) for 𝑗 = 0, 1, …, 𝑖 starting with (𝑥0, 𝑥𝑖)
3.2. check for situation when 𝑥𝑗 ≠ 𝑥𝑖+𝑗 and 𝑥𝑗+1 = 𝑥𝑖+𝑗+1
3.3. collision ℎ(𝑥𝑗) = ℎ(𝑥𝑖+𝑗); remark: 𝜇 | (2𝑖 − 𝑖) ⇒ 𝑥𝜆 = 𝑥𝑖+𝜆

14 / 34

Improving memory complexity of birthday attack (3)

– only a constant number of values (e.g. 𝑥0, and the recent pair of values (𝑥𝑖 , 𝑥2𝑖) or
(𝑥𝑗 , 𝑥𝑖+𝑗)) should be stored

– complexity:

▫ cycle is detected (point is found) if 𝑖 ≥ 𝜆 and 𝜇 | 𝑖
▫ the difference 2𝑖 − 𝑖 increases by 1 in each iteration, i.e. the cycle is detected with

𝜆 + 𝜇 iterations maximum
▫ complexity 𝑂(𝜆 + 𝜇) = 𝑂(√𝑁)

– this method does not change the asymptotic time complexity of b.a.

– no control over the colliding messages/inputs

15 / 34

Collision resistance in practice

– collision resistance is not easy

– MD5:
▫ designed by Ron Rivest in 1991,
▫ collision published in 2005

– SHA-1
▫ designed by NSA, standard in 1995
▫ deprecated by web browsers in 2017
▫ first collision in 2017; two pdf files,

see https://shattered.io/
▫ attack complexity: 263.1 SHA-1

compressions

– SHA-1 was replaced fast (use of hash
function in signature schemes):

year SHA-1 SHA-256
01/2015 66.7% 33.3%
01/2016 13.2% 86.8%
01/2017 1.5% 98.4%
01/2018 0.0% 99.8%

16 / 34

https://shattered.io/

Constructions

Hash functions – variety of approaches

– hash functions based on hard computational problems (for example DLOG, SIS)
▫ provable properties (assuming the hardness of underlying problem)
▫ slow, impractical ⇒ not used in practice

– hash functions based on block ciphers

– dedicated constructions

18 / 34

Hash functions based on block ciphers

– 𝑚 = 𝑚1, 𝑚2, …, 𝑚𝑘 input divided into blocks

– sequential processing of input blocks

– ℎ0 – initialization vector

– ℎ𝑖 – intermediate hash value (1 ≤ 𝑖 ≤ 𝑘)

– 𝐻(𝑚) = ℎ𝑘 – the hash value is the output of the
last iteration

– problem: small block length
▫ specific block ciphers, e.g., SHACAL-2 for

SHA-256
▫ double block length constructions

Examples:

– Matyas, Meyer, Oseas:
ℎ𝑖 = 𝐸𝑔(ℎ𝑖−1)(𝑚𝑖) ⊕ 𝑚𝑖

– Davies, Meyer:
ℎ𝑖 = 𝐸𝑚𝑖

(ℎ𝑖−1) ⊕ ℎ𝑖−1

– Miyaguchi, Preneel:
ℎ𝑖 = 𝐸𝑔(ℎ𝑖−1)(𝑚𝑖) ⊕ ℎ𝑖−1 ⊕ 𝑚𝑖

19 / 34

Dedicated constructions

– no proofs of security based on some “hard underlying problem”

– fast, usually one of the design goals

– most common design approaches:
▫ Merkle-Damgaå rd: SHA-1, SHA-2 family
▫ HAIFA: BLAKE2
▫ sponge: SHA-3 (Keccak)
▫ Merkle tree: BLAKE3

– usually an iterated construction (informally):
▫ message padding and slicing
▫ start with IV and sequentially process the slices
▫ result is the output of the final iteration (sometimes additional processing)

20 / 34

Merkle-Damgaå rd construction (1)

– collision resistance of compression function implies collision resistance of hash
function

– fixed input length compression function 𝑓 : {0, 1}𝑛+𝑟 → {0, 1}𝑛

– hash function 𝐻 : {0, 1}≤𝑙 → {0, 1}𝑛

– input 𝑥 = 𝑥1, 𝑥2, …, 𝑥𝑡 (block length 𝑟)
▫ last block padded by 10…0 (if needed)
▫ additional block 𝑥𝑡+1 = |𝑥|; in binary, thus 𝑙 < 2𝑟

– other variants of padding used in practice or proposed in the literature

– using the length in padding … MD strengthening
▫ improves security of the construction (for example: long message attack on second

preimage resistance – colliding intermediate values of a very long message and
another one)

21 / 34

Merkle-Damgaå rd construction (2)

Computation:
1. ℎ0 = 0𝑛 (IV)
2. ℎ𝑖 = 𝑓(ℎ𝑖−1 ‖ 𝑥𝑖), for 𝑖 = 1, …, 𝑡 + 1
3. 𝐻(𝑥) = ℎ𝑡+1

22 / 34

Collision resistance of MD construction

Let 𝑥 ≠ 𝑥′ be a collision in 𝐻: 𝐻(𝑥) = 𝐻(𝑥′), i.e., ℎ𝑡+1 = ℎ′
𝑡′+1

– if 𝑡 ≠ 𝑡′ then 𝑥𝑡+1 ≠ 𝑥′
𝑡′+1 and 𝑓(ℎ𝑡, 𝑥𝑡+1) = 𝑓(ℎ′

𝑡′ , 𝑥′
𝑡′+1) … collision in 𝑓

23 / 34

Collision resistance of MD construction

Let 𝑥 ≠ 𝑥′ be a collision in 𝐻: 𝐻(𝑥) = 𝐻(𝑥′), i.e., ℎ𝑡+1 = ℎ′
𝑡′+1

– if 𝑡 ≠ 𝑡′ then 𝑥𝑡+1 ≠ 𝑥′
𝑡′+1 and 𝑓(ℎ𝑡, 𝑥𝑡+1) = 𝑓(ℎ′

𝑡′ , 𝑥′
𝑡′+1) … collision in 𝑓

– 𝑡 = 𝑡′: 𝑥 = 𝑥1, …, 𝑥𝑡+1, 𝑥′ = 𝑥′
1, …, 𝑥′

𝑡+1

𝑓(ℎ𝑡, 𝑥𝑡+1) = 𝑓(ℎ′
𝑡, 𝑥′

𝑡+1) … either collision in 𝑓 or ℎ𝑡 = ℎ′
𝑡 ∧ 𝑥𝑡+1 = 𝑥′

𝑡+1

𝑓(ℎ𝑡−1, 𝑥𝑡) = 𝑓(ℎ′
𝑡−1, 𝑥′

𝑡) … either collision in 𝑓 or ℎ𝑡−1 = ℎ′
𝑡−1 ∧ 𝑥𝑡 = 𝑥′

𝑡

…

𝑓(IV, 𝑥1) = 𝑓(IV, 𝑥′
1) … either collision in 𝑓 or 𝑥1 = 𝑥′

1

– either we get a collision in 𝑓 or 𝑥 = 𝑥′

23 / 34

Merkle-Damgaå rd problems

– structural problems of MD construction

– hash is a complete information ↦ length extension attacks
▫ calculating hash of an extended message without knowing the original message

– minimal intermediate state – 𝑛-bit for 𝑛-bit output
▫ multicollisions: with less complexity than expected

– fixed points can be easily found in Davies-Meyer compression function
▫ allow more efficient 2nd preimage attacks

– no real-world attacks for suitable parameters, but classical MD constructions are less
secure than random functions (oracles)

24 / 34

Parameters of real-world hash function

family function length [bits]
max. input output block

SHA-1 264 − 1 160 512
SHA-2 SHA-256 264 − 1 256 512

SHA-384 2128 − 1 384 1024
SHA-512 2128 − 1 512 1024

SHA-3 SHA3-256 ∞ 256 1088
SHA3-384 ∞ 384 832
SHA3-512 ∞ 512 576

25 / 34

SHA-2

– SHA-2 family of hash function
▫ SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256

– similar design of SHA-256 (32-bit words, block size 512 bits) and SHA-512 (64-bit
words, block size 1024 bits)

– other variants are truncated versions with different initialization vectors

– Merkle-Damgaå rd construction

26 / 34

Example: SHA-256

– input message 𝑀; 𝑙 = |𝑀| (0 ≤ 𝑙 < 264 bits)

– padding and parsing:
▫ padding: 𝑀1 00…0⏟⏟⏟⏟⏟

𝑘

(𝑙)2⏟
64 bits

, where 𝑘 is the smallest value such that the overall length

is a multiple of 512
▫ parsing into 512-bit blocks: 𝑀(1), 𝑀(2), …, 𝑀(𝑁)

▫ each block consists of 16 32-bit words: 𝑀(𝑖) = 𝑀(𝑖)
0 , 𝑀(𝑖)

1 , …, 𝑀(𝑖)
15

– initialization vector (8 32-bit words): 𝐻(0)
0 , 𝐻(0)

1 , …, 𝐻(0)
7

– intermediate hash values: 𝐻(𝑖)
0 , 𝐻(𝑖)

1 , …, 𝐻(𝑖)
7

– SHA-256 digest: 𝐻(𝑁)
0 , 𝐻(𝑁)

1 , …, 𝐻(𝑁)
7

27 / 34

SHA-256 compression function

compression function (for 𝑖 = 1, …, 𝑁):

1. expanding a message block (↦ 𝑊0, …, 𝑊63)

𝑊𝑖 = {𝑀(𝑖)
𝑡 for 0 ≤ 𝑡 ≤ 15

𝜎1(𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎0(𝑊𝑡−15) + 𝑊𝑡−16 for 16 ≤ 𝑡 ≤ 63

2. (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ) ← (𝐻(𝑖−1)
0 , 𝐻(𝑖−1)

1 , …, 𝐻(𝑖−1)
7)

3. for 𝑡 = 0, …, 63:
1. 𝑇1 = ℎ + ∑1(𝑒) + Ch(𝑒, 𝑓, 𝑔) + 𝐾𝑡 + 𝑊𝑡, where 𝐾𝑡 is a round constant
2. 𝑇2 = ∑0(𝑎) + Maj(𝑎, 𝑏, 𝑐)
3. (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ) ← (𝑇1 + 𝑇2, 𝑎, 𝑏, 𝑐, 𝑑 + 𝑇1, 𝑒, 𝑓, 𝑔)

4. 𝐻(𝑖)
0 , 𝐻(𝑖)

1 , …, 𝐻(𝑖)
7 ← 𝑎 + 𝐻(𝑖−1)

0 , 𝑏 + 𝐻(𝑖−1)
1 , …, ℎ + 𝐻(𝑖−1)

7

– SHACAL-2 block cipher in Davies-Meyer mode
28 / 34

Functions used in SHA-256

– functions operate on 32-bit words, addition is computed mod 2{32}

– Ch(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (¬𝑥 ∧ 𝑧)

– Maj(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧)

– ∑0(𝑥) = ROTR2(𝑥) ⊕ ROTR13(𝑥) ⊕ ROTR22(𝑥)

– ∑1(𝑥) = ROTR6(𝑥) ⊕ ROTR11(𝑥) ⊕ ROTR25(𝑥)

– 𝜎0(𝑥) = ROTR7(𝑥) ⊕ ROTR18(𝑥) ⊕ SHR3(𝑥)

– 𝜎1(𝑥) = ROTR17(𝑥) ⊕ ROTR19(𝑥) ⊕ SHR10(𝑥)

– ROTR – circular shift rotation to the right

– SHR – shift to the right

29 / 34

SHA-3 overview

– Keccak – winner of SHA-3 competition (2012)

– standard: NIST FIPS 202 (2015)
▫ 4 hash functions with fixed-length output:

SHA3-224, SHA3-256, SHA3-384, SHA3-512
▫ 2 functions with variable-length output (XOF – extendable-output functions):

SHAKE128, SHAKE256

– different approach than SHA-1 or SHA-2 hash functions
▫ Keccak is not an MD-construction

– sponge construction

– other functions/variants proposed:
▫ SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash

30 / 34

SHA-3 structure

Sponge

– absorbing & squeezing
– arbitrary output length
– padding for SHA3-256: 𝑥 ‖ 01 ‖ 10∗1

𝑓 – permutation on {0, 1}𝑟+𝑐

𝑟 – bitrate (1088 for SHA3-256)
𝑐 – capacity (512 for SHA3-256)

31 / 34

SHA-3 inside permutation 𝑓 (1)

– state: 5 × 5 × 2𝑙 bits
▫ 2𝑙 = 64 for SHA3-256

– 12 + 2𝑙 rounds
▫ 24 rounds for SHA3-256

– round function (𝜃 is applied first):
𝑅 = 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌 ∘ 𝜃

32 / 34

SHA-3 inside permutation 𝑓 (2)

– 𝜃 (theta) – xor each bit of a column with parities of two
neighboring columns

– 𝜌 (rho) – rotate each lane by a constant value

– 𝜋 (pi) – permute the positions of the lanes

– 𝜒 (chi) – flip bit if neighbors to the right are 0, 1
▫ 𝜒 operates on rows (independently, in parallel)

– 𝜄 (iota) – xor a round specific constant to lane[0,0]
▫ destroying symmetry

33 / 34

Exercises

1. Show how we can find fixed points in Davies-Meyer compression function, i.e., how to find
𝑚, ℎ such that 𝑓(𝑚, ℎ) = ℎ.

2. Discuss the security of a hash function (MD construction) that uses the following
compression function, where 𝐸 is a block cipher with 256-bit block and 256-bit key:
a) ℎ𝑖 = 𝐸ℎ𝑖−1

(𝑚𝑖) ⊕ ℎ𝑖−1
b) ℎ𝑖 = 𝐸𝑚𝑖

(𝑚𝑖) ⊕ ℎ𝑖−1

3. Let ℎ : {0, 1}2𝑛 → {0, 1}𝑛 be a collision resistant hash function. Let 𝑓 : {0, 1}4𝑛 → {0, 1}𝑛

is defined as follows: 𝑓(𝑥) = ℎ(ℎ(𝑥1) ‖ ℎ(𝑥2)), where 𝑥 = 𝑥1 ‖ 𝑥2 and |𝑥1| = |𝑥2| = 2𝑛.
Prove or disprove: 𝑓 is collision resistant.

34 / 34

	Introduction
	Basic requirements of hash functions (informally)
	Properties of hash functions – discussion
	Collision by inverting
	Generic attack for finding preimage/2nd preimage
	Birthday attack
	Birthday attack – graph
	Birthday attack on hash functions
	Birthday attack – analysis (1)
	Birthday attack – analysis (2)
	Birthday attack – remarks and implications
	"Meaningful" collisions
	Improving memory complexity of the birthday attack (1)
	Improving memory complexity of the birthday attack (2)
	Improving memory complexity of birthday attack (3)
	Collision resistance in practice
	Constructions
	Hash functions – variety of approaches
	Hash functions based on block ciphers
	Dedicated constructions
	Merkle-Damgård construction (1)
	Merkle-Damgård construction (2)
	Collision resistance of MD construction
	Merkle-Damgård problems
	Parameters of real-world hash function
	SHA-2
	Example: SHA-256
	SHA-256 compression function
	Functions used in SHA-256
	SHA-3 overview
	SHA-3 structure
	SHA-3 inside permutation f (1)
	SHA-3 inside permutation f (2)
	Exercises

