
RSA
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Public-key (asymmetric) cryptography

– problems with secret-key (symmetric) cryptography
▫ encryption – all parties need to know the key
▫ distributing the key

– idea of public-key cryptography
▫ user generates a related pair of keys – public and private
▫ private key can’t be computed from the public key efficiently

– public-key schemes
▫ encryption schemes, digital signature schemes, key agreement protocols, …
▫ often built on computationally hard problems: factorization, discrete logarithm,

learning with errors, …

1 / 29

Public vs. private key

– public-key
▫ encryption (in asymmetric encryption schemes)
▫ verification of signatures (in digital signature schemes), etc.
▫ can be distributed freely, anyone can encrypt data for the user or verify user’s

signatures
▫ How to ensure the authenticity of the public key? PKI?

– private-key
▫ decryption (asymmetric encryption schemes)
▫ signing (digital signature schemes), etc.
▫ should be kept private

2 / 29

Public-key encryption scheme (informally): ⟨Gen, Enc, Dec⟩

– Gen(1𝑘) – a PPT algorithm; it produces a key pair (𝗉𝗄, 𝗌𝗄)
▫ 𝑘 is a security parameter
▫ plaintext space is fixed or implied by 𝗉𝗄

– Enc𝗉𝗄(𝑚) – a PPT algorithm; it computes a ciphertext from a plaintext 𝑚 and 𝗉𝗄

– Dec𝗌𝗄(𝑐) – (deterministic) PT algorithm; computes a plaintext from a ciphertext 𝑐 and
𝗌𝗄

– requirements:
▫ correctness: ∀(𝗉𝗄, 𝗌𝗄) ← Gen(1𝑘) ∀𝑚 : Dec𝗌𝗄(Enc𝗉𝗄(𝑚)) = 𝑚
▫ efficiency: (probabilistic) polynomial time
▫ security

3 / 29

RSA

Initialization (key generation)
1. choose large, distinct primes 𝑝, 𝑞 (e.g. 1024 bits)
2. let 𝑛 = 𝑝 ⋅ 𝑞 (public modulus)
3. choose 𝑒 such that gcd(𝑒, 𝜑(𝑛)) = 1

– 𝜑 is Euler’s totient function
– 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)

4. compute 𝑑 such that 𝑒 ⋅ 𝑑 ≡ 1 (mod 𝜑(𝑛))

Ron Rivest, Adi Shamir,
Leonard Adleman (1977)
– Clifford Cocks (1973),

declassified in 1997

encryption scheme &
digital signature scheme

– public key: (𝑒, 𝑛); 𝑒 public exponent
– private key: (𝑑, 𝑛); 𝑑 private exponent
– additional values are often stored as a part of the private key to speed up the

computation

4 / 29

Encryption and decryption

– textbook/plain RSA

– encryption and decryption: 𝐸, 𝐷 : ℤ𝑛 → ℤ𝑛

𝐸(𝑚) = 𝑚𝑒 mod 𝑛

𝐷(𝑐) = 𝑐𝑑 mod 𝑛

– small example:
▫ 𝑝 = 11, 𝑞 = 19, 𝑛 = 11 ⋅ 19 = 209, 𝜑(209) = 10 ⋅ 18 = 180
▫ 𝑒 = 7, 𝑑 = 7−1 mod 180 = 103
▫ public key: (7, 209); private key: (103, 209)
▫ let 𝑚 = 100: encryption 𝐸(100) = 1007 mod 209 = 111
▫ decryption 𝐷(111) = 111103 mod 209 = 100

5 / 29

Correctness of RSA

Basic facts from the number theory (1)

– notation (for positive integer 𝑛):
▫ ℤ𝑛 = {0, 1, …, 𝑛 − 1}
▫ ℤ∗

𝑛 = {𝑎 | 𝑎 ∈ ℤ𝑛 ∧ gcd(𝑎, 𝑛) = 1}

– Euler’s totient function: 𝜑(𝑛) = |ℤ∗
𝑛|

▫ 𝜑(8) = |{1, 3, 5, 7}| = 4
▫ 𝜑(𝑝) = |{1, 2, …, 𝑝 − 1}| = 𝑝 − 1 for prime 𝑝
▫ 𝜑(𝑝 ⋅ 𝑞) = (𝑝 − 1)(𝑞 − 1) for product of two distinct primes

– 𝑎 ≡ 𝑏 (mod 𝑛) ⇔ 𝑛 | (𝑎 − 𝑏)

7 / 29

Basic facts from the number theory (2)

Lemma 1. Let 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑛) for positive integer 𝑛 and integers 𝑎, 𝑏, 𝑘.
Let gcd(𝑘, 𝑛) = 1. Then 𝑎 ≡ 𝑏 (mod 𝑛).

Proof. 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑛) ⇒ 𝑛 | 𝑘(𝑎 − 𝑏); since 𝑛 and 𝑘 are coprime, we have 𝑛 | (𝑎 − 𝑏) ∎

8 / 29

Basic facts from the number theory (2)

Lemma 1. Let 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑛) for positive integer 𝑛 and integers 𝑎, 𝑏, 𝑘.
Let gcd(𝑘, 𝑛) = 1. Then 𝑎 ≡ 𝑏 (mod 𝑛).

Proof. 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑛) ⇒ 𝑛 | 𝑘(𝑎 − 𝑏); since 𝑛 and 𝑘 are coprime, we have 𝑛 | (𝑎 − 𝑏) ∎

Lemma 2. Let ℤ∗
𝑛 = {𝑎1, …, 𝑎𝜑(𝑛)}. Let 𝑘 be an integer such that gcd(𝑘, 𝑛) = 1.

Then {𝑘𝑎1 mod 𝑛, …, 𝑘𝑎𝜑(𝑛) mod 𝑛} = ℤ∗
𝑛.

Proof.
1. gcd(𝑎𝑖 , 𝑛) = 1, gcd(𝑘, 𝑛) = 1 ⇒ gcd(𝑘𝑎𝑖 , 𝑛) = 1

Hence {𝑘𝑎1 mod 𝑛, …, 𝑘𝑎𝜑(𝑛) mod 𝑛} ⊆ ℤ∗
𝑛

2. gcd(𝑘, 𝑛) = 1, 𝑘𝑎𝑖 ≡ 𝑘𝑎𝑗 (mod 𝑛) ⇒ 𝑎𝑖 ≡ 𝑎𝑗 (mod 𝑛) (Lemma 1)
⇒ 𝑖 = 𝑗, and therefore all elements in the set are distinct. ∎

8 / 29

Euler’s theorem

Theorem (Euler). Let 𝑛 be a positive integer. Then for an arbitrary integer 𝑎 coprime to
𝑛, i.e., gcd(𝑎, 𝑛) = 1:

𝑎𝜑(𝑛) ≡ 1 (mod 𝑛).

Proof. Let ℤ∗
𝑛 = {𝑎1, …, 𝑎𝜑(𝑛)}. Then ℤ∗

𝑛 = {𝑎𝑎1 mod 𝑛, …, 𝑎𝑎𝜑(𝑛) mod 𝑛} (Lemma 2).
Let’s compute the product of all elements:

∏
𝜑(𝑛)

𝑖=1

𝑎𝑖 ≡ ∏
𝜑(𝑛)

𝑖=1

𝑎 ⋅ 𝑎𝑖 ≡ 𝑎𝜑(𝑛) ⋅ ∏
𝜑(𝑛)

𝑖=1

𝑎𝑖 (mod 𝑛)

Since gcd(𝑎𝑖 , 𝑛) = 1, the product is coprime to 𝑛 as well. Applying Lemma 1 we get
𝑎𝜑(𝑛) ≡ 1 (mod 𝑛). ∎

9 / 29

Euler’s theorem – remarks

– Fermat’s little theorem:
Let 𝑝 be a prime, and 𝑎 be an integer. If 𝑝 ∤ 𝑎 then 𝑎𝑝−1 ≡ 1 (mod 𝑝).

– FLT is direct corollary of Euler’s theorem:
▫ 𝑝 ∤ 𝑎 ⇔ gcd(𝑎, 𝑝) = 1; 𝜑(𝑝) = 𝑝 − 1

– Carmichael’s function 𝜆(𝑛):

▫ smallest positive integer such that 𝑎𝜆(𝑛) ≡ 1 (mod 𝑛) for every 𝑎 ∈ ℤ coprime to 𝑛

▫ 𝜆(𝑝) = 𝑝 − 1, 𝜆(𝑝𝑙) = 𝑝𝑙−1(𝑝 − 1) for a prime number 𝑝

▫ 𝜆(𝑛) = lcm(𝜆(𝑝𝑙1
1), 𝜆(𝑝𝑙2

2), …, 𝜆(𝑝𝑙𝑘
𝑘)), where 𝑛 = 𝑝𝑙1

1 𝑝𝑙2
2 ⋅ … ⋅ 𝑝𝑙𝑘

𝑘 is a prime
decomposition

▫ generalization of Euler’s theorem (𝑎𝜆(𝑛) ≡ 1 (mod 𝑛) for 𝑎 coprime to 𝑛)

▫ sometimes RSA is specified in terms of 𝜆(𝑛); 𝜆(𝑝 ⋅ 𝑞) = lcm(𝑝 − 1, 𝑞 − 1)

10 / 29

Correctness of RSA

Theorem (Correctness of RSA). Let 𝐸 and 𝐷 be the encryption and decryption functions
in RSA scheme. Then

∀𝑚 ∈ ℤ𝑛 : 𝐷(𝐸(𝑚)) = 𝑚.

Remarks:
– 𝐸, 𝐷 are two mutually inverse bijections
– some fixed points: 𝐸(0) = 0, 𝐸(1) = 1, 𝐸(𝑛 − 1) = 𝑛 − 1

Proof.
Case 1: gcd(𝑚, 𝑛) = 1; the most frequent case

𝐷(𝐸(𝑚)) = (𝑚𝑒)𝑑 mod 𝑛 = 𝑚1+𝑘𝜑(𝑛) mod 𝑛

= 𝑚 ⋅ (𝑚𝜑(𝑛)⏟⏟⏟⏟⏟
1

)𝑘 mod 𝑛 (Euler's theorem)

= 𝑚 mod 𝑛 = 𝑚
11 / 29

Correctness of RSA 2 (proof cont.)

Case 2: gcd(𝑚, 𝑛) > 1; rare event (you can factorize 𝑛 if this happens for 𝑚 ≠ 0)

– trivially valid if 𝑚 = 0

– wlog we assume 𝑚 = 𝑚′ ⋅ 𝑝𝑙 for 𝑙 ≥ 1 and gcd(𝑚′, 𝑛) = 1

– 𝐷(𝐸(𝑚)) = (𝑚′𝑝𝑙)𝑒𝑑 mod 𝑛 = 𝑚′ ⋅ (𝑝1+𝑘𝜑(𝑛))
𝑙

mod 𝑛 (using Case 1)

– evaluating expression 𝑝1+𝑘𝜑(𝑛) mod 𝑛 :

𝑝𝑞−1 ≡ 1 (mod 𝑞) (FLT)

𝑝𝑘(𝑞−1)(𝑝−1) ≡ 𝑝𝑘𝜑(𝑛) ≡ 1 (mod 𝑞)

𝑝𝑘𝜑(𝑛) = 1 + 𝑡 ⋅ 𝑞 ⇒ 𝑝1+𝑘𝜑(𝑛) = 𝑝 + 𝑡 ⋅ 𝑛

– therefore 𝑝1+𝑘𝜑(𝑛) ≡ 𝑝 (mod 𝑛) and 𝐷(𝐸(𝑚)) = 𝑚′ ⋅ 𝑝𝑙 mod 𝑛 = 𝑚 ∎

12 / 29

Implementation

Implementation – how?

– modular exponentiation

– primality testing

– computing private exponent (modular inverse)

– choosing public exponent for efficiency

– improving performance of private transformation by Chinese remainder theorem

14 / 29

Modular exponentiation

– compute 𝑎𝑡 mod 𝑛 for (positive) integers 𝑎, 𝑡, 𝑛

– note that 𝑎 ⋅ 𝑎 ⋅ … ⋅ 𝑎⏟⏟⏟⏟⏟⏟⏟
𝑡

mod 𝑛 is an exponential algorithm w.r.t. |𝑡|

polynomial time algorithm:

𝑣 = 1
while (𝑘 > 0)

if 𝑘 is odd : 𝑣 = 𝑣 ⋅ 𝑎 mod 𝑛
𝑎 = 𝑎2 mod 𝑛
𝑘 = 𝑘/2 (integer division)

return 𝑣

𝑎21 mod 𝑛: (𝑘, 𝑣, 𝑎) values
before and after iteration
(21, 1, 𝑎) (10, 𝑎, 𝑎2)
(10, 𝑎, 𝑎2) (5, 𝑎, 𝑎4)
(5, 𝑎, 𝑎4) (2, 𝑎5, 𝑎8)
(2, 𝑎5, 𝑎8) (1, 𝑎5, 𝑎16)
(1, 𝑎5, 𝑎16) (0, 𝑎21, 𝑎32)

– other improvements: sliding window, Montgomery reduction

15 / 29

Choosing primes

– primes should be secret (otherwise an attacker can easily compute 𝑑)

– procedure: random choice of odd integer & primality testing

– density of primes:
▫ 𝜋(𝑛) – number of primes less than or equal to 𝑛
▫ Prime number theorem: 𝜋(𝑛) ≈ 𝑛/ ln(𝑛)

– experiment (average from 50 samples):

bit length avg. tests
256 137
512 171
786 325

1024 435

16 / 29

Primality testing

– deciding primality is in P
▫ AKS primality test (2002); slow, not used in practice

– probabilistic tests offer better performance: Miller-Rabin, Lucas, etc.

– Miller-Rabin test (and its variants or combination with other tests) is the most
common choice
▫ FIPS 186-4 Digital Signature Standard
▫ openssl implementation, …

17 / 29

Miller-Rabin test

– input: odd 𝑛; let 𝑛 − 1 = 𝑡 ⋅ 2𝑠 for odd integer 𝑡

– 𝑛 is strong pseudoprime to a base 𝑎 (where 1 ≤ 𝑎 < 𝑛) if:

𝑎𝑡 ≡ 1 (mod 𝑛) ∨ ∃𝑟 ∈ ℤ𝑠 : 𝑎𝑡⋅2𝑟 ≡ −1 (mod 𝑛) (⋆)

– prime 𝑛: strong pseudoprime to every base

– composite 𝑛: the probability that 𝑛 is strong pseudoprime to a random base is ≤ 1/4
▫ probability of error after 𝑘 independent choices of the base is ≤ 4−𝑘

▫ much smaller for most 𝑛

– repeated squaring for the second part of (⋆)

18 / 29

Miller-Rabin test – remarks

– if 𝑛 is prime: 𝑎𝑛−1 ≡ 𝑎𝑡⋅2𝑠 ≡ 1 (mod 𝑛) for all 𝑎 not divisible by 𝑛 (FLT)

– if 𝑛 is prime: 1 has exactly two square roots modulo 𝑛:
𝑥2 ≡ 1 (mod 𝑛) ⇒ 𝑛 | (𝑥 + 1)(𝑥 − 1) ⇒ 𝑥 ≡ ±1 (mod 𝑛)

– (⋆) … we get 1 at the end, and we get it a “corect way”

19 / 29

Computing private exponent: 𝑑 = 𝑒−1 mod 𝜑(𝑛)

Extended Euclidean algorithm

– input: integers 𝑎, 𝑏

– output: gcd(𝑎, 𝑏), integers 𝑥, 𝑦 such that 𝑥𝑎 + 𝑦𝑏 = gcd(𝑎, 𝑏)

– remark: returning gcd is redundant if 𝑥, 𝑦 are known

– simple recursive version (for integers 𝑎, 𝑏 ≥ 0):

EEA(𝑎, 𝑏) :
if 𝑏 = 0 : return (𝑎, 1, 0)
(𝑑, 𝑥, 𝑦) = EEA(𝑏, 𝑎 mod 𝑏)
return (𝑑, 𝑦, 𝑥 − 𝑦 ⋅ ⌊𝑎/𝑏⌋)

– EEA(𝑒, 𝜑(𝑛)) ↦ (1, 𝑥, 𝑦): 𝑥𝑒 + 𝑦𝜑(𝑛) = 1 ⇒ 𝑑 = 𝑥 mod 𝜑(𝑛)

20 / 29

Choosing public exponent

– improving performance: small public exponent

– common choice 𝑒 = 65537 = (1000…0001)2
▫ it is a prime and with high probability coprime to 𝜑(𝑛)
▫ if 𝑒 = 65537 is desired, we can test gcd(𝑒, 𝑝 − 1) = 1 (and for 𝑞 as well) while

generating the primes
▫ nice binary representation (short; small number of ones)

21 / 29

Chinese remainder theorem

– used in various constructions and implementations with modular arithmetic

Theorem (CRT). Let 𝑛1, …, 𝑛𝑘 are pairwise coprime positive integers. Then the following
system of congruences (where 𝑎1, …, 𝑎𝑘 are arbitrary integers):

𝑥 ≡ 𝑎1 (mod 𝑛1)
…

𝑥 ≡ 𝑎𝑘 (mod 𝑛𝑘)

has a solution. Additionally, all solutions of the system are mutualy congruent modulo
𝑁 = 𝑛1 ⋅ … ⋅ 𝑛𝑘 .

22 / 29

Chinese remainder theorem – proof

1. Let 𝑁𝑖 = 𝑁/𝑛𝑖 for 𝑖 = 1, …, 𝑘, and 𝑀𝑖 = 𝑁−1
𝑖 mod 𝑛𝑖 .

Solution 𝑥 = ∑𝑘
𝑖=1 𝑎𝑖𝑁𝑖𝑀𝑖 can be easily verified (for 𝑗 ∈ {1, …, 𝑘}):

𝑥 ≡ 𝑎𝑗 𝑁𝑗𝑀𝑗⏟
1 mod 𝑛𝑗

+ ∑
𝑘

𝑖=1
𝑖≠𝑗

𝑎𝑖𝑀𝑖 ⋅ 𝑁𝑖⏟
0 mod 𝑛𝑗

≡ 𝑎𝑗 (mod 𝑛𝑗).

2. Let 𝑥 and 𝑥′ are two solutions. Therefore

𝑥 ≡ 𝑥′ (mod 𝑛1)
… ⟹ ∀𝑖 : 𝑛𝑖 | (𝑥 − 𝑥′)

𝑥 ≡ 𝑥′ (mod 𝑛𝑘)

Since 𝑛𝑖 are pairwise coprime we have 𝑁 | (𝑥 − 𝑥′). ∎

23 / 29

Corollary of the CRT

– 𝑛 = 𝑝 ⋅ 𝑞, gcd(𝑝, 𝑞) = 1

𝑥 ≡ 𝑎 (mod 𝑝)
𝑥 ≡ 𝑎 (mod 𝑞)

⟺ 𝑥 ≡ 𝑎 (mod 𝑛)

– (⟹) value 𝑎 is a solution;
according to the CRT, if 𝑥 is also a solution, then 𝑥 ≡ 𝑎 (mod 𝑛)

– (⟸) trivial:
𝑥 = 𝑎 + 𝑡 ⋅ 𝑝𝑞 ⇒ 𝑥 = 𝑎 + (𝑡𝑞) ⋅ 𝑝 ⇒ 𝑥 ≡ 𝑎 (mod 𝑝) (similarly for 𝑞)

24 / 29

Optimization of 𝐷(𝑐)

– idea: instead of 𝑐𝑑 mod 𝑛 compute 𝑐𝑑 mod 𝑝, 𝑐𝑑 mod 𝑞 and combine results (CRT)

– for unknown 𝑚:

𝑚 ≡ 𝑐𝑑 (mod 𝑝)

𝑚 ≡ 𝑐𝑑 (mod 𝑞)
⟺ 𝑚 ≡ 𝑐𝑑 (mod 𝑛)

we can obtain 𝑚 as follows:

𝑚 = 𝑚𝑝 ⋅ 𝑞(𝑞−1 mod 𝑝) + 𝑚𝑞 ⋅ 𝑝(𝑝−1 mod 𝑞) mod 𝑛

where 𝑚𝑝 = 𝑐𝑑 mod 𝑝 = 𝑐𝑑 mod (𝑝−1) mod 𝑝, and 𝑚𝑞 = 𝑐𝑑 mod 𝑞 = 𝑐𝑑 mod (𝑞−1) mod 𝑞

– two “half-size” modular exponentiations are faster than one full-size

– 𝑝, 𝑞 – part of private key; pre-computed inverses

25 / 29

Real world optimization

– private key includes: 𝑝, 𝑞, 𝑑𝑝 = 𝑑 mod (𝑝 − 1), 𝑑𝑞 = 𝑑 mod (𝑞 − 1), 𝑞inv = 𝑞−1 mod 𝑝

– computation of 𝐷(𝑐):
1. 𝑚𝑝 = 𝑐𝑑𝑝 mod 𝑝, 𝑚𝑞 = 𝑐𝑑𝑞 mod 𝑞
2. 𝑚 = 𝑚𝑞 + 𝑞(𝑞inv(𝑚𝑝 − 𝑚𝑞) mod 𝑝)

– the correctness of the result can be easily verified by checking:

𝑚 mod 𝑝 = 𝑚𝑝

𝑚 mod 𝑞 = 𝑚𝑞

and noticing that 0 ≤ 𝑚 < 𝑝𝑞

26 / 29

PKCS#1 v1.5 padding

– why padding at all?
▫ to randomize encryption (plain RSA is deterministic)
▫ prove the security of the scheme (OAEP)

– PKCS#1 v1.5 (still used, potential implementation problems, not recommended)

– padded plaintext 𝑚: 00 ‖ 02 ‖ PS ‖ 00 ‖ 𝑚

– PS – string of pseudorandom nonzero bytes of length ≥ 8

– various recommendation on using this padding (see RFC 8017)

27 / 29

OAEP (Optimal Asymmetric Encryption Padding)

– recommended, PKCS#1 v2.2, RFC 8017

– provable secure (in some sense, in some security model)

– slightly simplified presentation of OAEP (empty “label”)

– 2 round Feistel
▫ 𝑟 – random seed
▫ MGF – mask generation function, hash function

based (RO)

– padding verified in decryption

– impossible to create valid ciphertext without
encryption

28 / 29

Exercises

1. Use openssl CLI to generate RSA key pair.
a) Inspect the text representation of both keys.
b) Encrypt and decrypt a short text.

2. Find a non-trivial fixed point for RSA encryption scheme. Use a concrete parameters for
your computation. Non-trivial means “not in {0, 1, −1}”.

3. Perform an experiment in your preferred programming language, and test if two “half-
size” exponentiations are faster than one full-size exponentiation.

29 / 29

	Public-key (asymmetric) cryptography
	Public vs. private key
	Public-key encryption scheme (informally): ⟨ Gen, Enc, Dec ⟩
	RSA
	Encryption and decryption
	Correctness of RSA
	Basic facts from the number theory (1)
	Basic facts from the number theory (2)
	Euler's theorem
	Euler's theorem – remarks
	Correctness of RSA
	Correctness of RSA 2 (proof cont.)

	Implementation
	Implementation – how?
	Modular exponentiation
	Choosing primes
	Primality testing
	Miller-Rabin test
	Miller-Rabin test – remarks
	Computing private exponent: d=e−1 mod φ(n)
	Choosing public exponent
	Chinese remainder theorem
	Chinese remainder theorem – proof
	Corollary of the CRT
	Optimization of D(c)
	Real world optimization
	PKCS#1 v1.5 padding
	OAEP (Optimal Asymmetric Encryption Padding)
	Exercises

