RSA
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Public-key (asymmetric) cryptography

— problems with secret-key (symmetric) cryptography
= encryption - all parties need to know the key
= distributing the key

— idea of public-key cryptography
= user generates a related pair of keys — public and private
= private key can’t be computed from the public key efficiently

— public-key schemes
= encryption schemes, digital signature schemes, key agreement protocols, ...
= often built on computationally hard problems: factorization, discrete logarithm,
learning with errors, ...

1/29

Public vs. private key

— public-key
= encryption (in asymmetric encryption schemes)
= verification of signatures (in digital signature schemes), etc.

= can be distributed freely, anyone can encrypt data for the user or verify user’s
signatures

= How to ensure the authenticity of the public key? PKI?
— private-key
= decryption (asymmetric encryption schemes)

= signing (digital signature schemes), etc.
= should be kept private

2 /29

Public-key encryption scheme (informally): (Gen, Enc, Dec)

— Gen(1%) - a PPT algorithm; it produces a key pair (pk, sk)
=k is a security parameter
= plaintext space is fixed or implied by pk

- Enc,(m) - a PPT algorithm; it computes a ciphertext from a plaintext m and pk

- Decg(c) - (deterministic) PT algorithm; computes a plaintext from a ciphertext ¢ and
sk

- requirements:
= correctness: V(pk, sk) « Gen(1%¥) vm : Decsk(Encpk(m)) =m
= efficiency: (probabilistic) polynomial time
= security

3 /29

Initialization (key generation)

1.
2.
3.

choose large, distinct primes p, q (e.g. 1024 bits)
letn = p - g (public modulus)

choose e such that gcd(e, p(n)) =1

— @ is Euler’s totient function
-pm)=@E-D(@-1)

compute d such thate - d = 1 (mod ¢(n))

public key: (e, n); e public exponent
private key: (d,n); d private exponent

Ron Rivest, Adi Shamir,

Leonard Adleman (1977)

— Clifford Cocks (1973),
declassified in 1997

encryption scheme &
digital signature scheme

additional values are often stored as a part of the private key to speed up the

computation

4 /29

Encryption and decryption

- textbook/plain RSA
- encryption and decryption: E,D : Z,, = Z,

E(m) = m®modn

D(c) = c*modn

— small example:
= p=11,g =19,n=11-19 = 209, ¢(209) = 10-18 = 180
= e=7,d=7"1mod180 = 103
public key: (7,209); private key: (103, 209)
let m = 100: encryption E(100) = 100” mod 209 = 111
decryption D(111) = 11113 mod 209 = 100

5/ 29

Correctness of RSA

Basic facts from the number theory (1)

— notation (for positive integer n):
- 7, ={0,1,..,n — 1}
= Zy ={a|a €Z,ANgcd(a,n) =1}
- Euler’s totient function: ¢(n) = |Zj,]
= ¢(8) ={1,3,57}| =4
= o(p)=1{1,2,..,p—1}=p—1 forprimep
=« p(p-q) =(@—-1(@—-1) for product of two distinct primes

-~-a=b(modn) & n|(a-—b>b)

7 /29

Basic facts from the number theory (2)

Lemma 1. Let ka = kb (mod n) for positive integer n and integers a, b, k.
Let gcd(k,n) = 1. Then a = b (mod n).

Proof. ka = kb (modn) = n | k(a — b); since n and k are coprime, we haven | (a —b) m

8 /29

Basic facts from the number theory (2)

Lemma 1. Let ka = kb (mod n) for positive integer n and integers a, b, k.
Let gcd(k,n) = 1. Then a = b (mod n).

Proof. ka = kb (modn) = n | k(a — b); since n and k are coprime, we haven | (a —b) m

Lemma 2. Let Z;, = {al, oy a¢(n)}. Let k be an integer such that gcd(k,n) = 1.
Then {kal modn, ..., ka,x) mod n} = Zo,.

Proof.

1. gcd(a;,n) =1,gcd(k,n) =1 = gcd(ka;,n) =1
Hence {kal modn, ..., k@) mod n} C Zn,

2. ged(k,n) = 1,ka; = kaj (modn) = a; =a; (modn) (Lemma 1)
= [= j, and therefore all elements in the set are distinct. =

8 /29

Euler’s theorem

Theorem (Euler). Let n be a positive integer. Then for an arbitrary integer a coprime to
n, i.e, gcd(a,n) = 1:

a®™ =1 (modn).

Proof. Let Z;, = {al, . a<p(n)}. Then Z;, = {aal modn, ..., ady,) mod n} (Lemma 2).
Let’s compute the product of all elements:

a; = a-a; =a®®. a; (modn)
i=1 i=1 =1

Since gcd(a;, n) = 1, the product is coprime to n as well. Applying Lemma 1 we get
a®™ =1 (modn). m

9 /29

Euler’s theorem - remarks

— Fermat’s little theorem:
Let p be a prime, and a be an integer. If p { a then a?~! = 1 (mod p).

— FLT is direct corollary of Euler’s theorem:
= ptaeged(a,p)=Lelp)=p-1
— Carmichael’s function A(n):

= smallest positive integer such that atm

= 1 (mod n) for every a € Z coprime ton
= A(p) =p—1,A(p") = p*1(p — 1) for a prime number p

= A(n) = lcm(A(pil),/l(péz A(p “)), where n = pfpéz e p,l{" is a prime
decomposition

= generalization of Euler’s theorem (a? = 1 (mod n) for a coprime to n)
= sometimes RSA is specified in terms of A(n); A(p - q) =lecm(p — 1,9 — 1)

10/ 29

Correctness of RSA

Theorem (Correctness of RSA). Let E and D be the encryption and decryption functions
in RSA scheme. Then

vm € Z, : D(E(m)) = m.

Remarks:
— E, D are two mutually inverse bijections
— some fixed points: E(0) = 0,E(1) =1, E(n—1)=n—-1

Proof.
Case 1: gcd(m,n) = 1; the most frequent case

D(E(m)) = (m®)* modn = m+**™ modn

=m-(m?™) modn (Euler's theorem)
1
=mmodn =m
11/ 29

Correctness of RSA 2 (proof cont.)

Case 2: gcd(m,n) > 1; rare event (you can factorize n if this happens for m # 0)
— trivially valid if m = 0
- wlog we assumem = m’ - p' for [> 1 and gcd(m',n) =1
- D(E(m)) = (m’pl)ed modn = m' - (p”kq’("))l modn (using Case 1)
- evaluating expression p*t¥¢™ modn :
p?~1 =1 (modgq) (FLT)
pka-D{-1) = pke() = 1 (mod q)
pkeM =1 4¢.q = pltke =—pit.p

1+kp(n)

— therefore p =p (modn) and D(E(m)) =m’ -p'modn=m =

12 /29

Implementation

Implementation — how?

— modular exponentiation

— primality testing

— computing private exponent (modular inverse)
— choosing public exponent for efficiency

— improving performance of private transformation by Chinese remainder theorem

14 /29

Modular exponentiation

- compute al mod n for (positive) integers a, t,n

- notethata - a - ...- amodn is an exponential algorithm w.r.t. |t]

t
polynomial time algorithm:
v=1
while (k > 0)
if kisodd: v =v-amodn
a = a’modn
k = k/2 (integer division)
return v

2

a’ modn: (k,v,a) values

before and after iteration

(21,1,a) (10,a,a?)
(10,a,a?) (5,a,a%)
(5a,a*) (2a°a®)
(2,a%a®) (1,a°al®)
(1,45 a'%) (0,a?!,a?)

— other improvements: sliding window, Montgomery reduction

15/ 29

Choosing primes

— primes should be secret (otherwise an attacker can easily compute d)
— procedure: random choice of odd integer & primality testing

— density of primes:
= 1(n) - number of primes less than or equal to n
= Prime number theorem: m(n) = n/In(n)

— experiment (average from 50 samples):

bit length avg. tests

256 137
512 171
786 325
1024 435

16 /29

Primality testing

- deciding primality is in P
= AKS primality test (2002); slow, not used in practice

— probabilistic tests offer better performance: Miller-Rabin, Lucas, etc.

— Miller-Rabin test (and its variants or combination with other tests) is the most
common choice

= FIPS 186-4 Digital Signature Standard
= openssl implementation, ...

17/ 29

Miller-Rabin test

— input: odd n; letn — 1 =t - 2° for odd integer t

— nis strong pseudoprime to a base a (where 1 < a < n) if:
at=1(modn) Vv 3Ire€Z.:at? =—-1(modn) *)

— prime n: strong pseudoprime to every base

— composite n: the probability that n is strong pseudoprime to a random base is < 1/4
= probability of error after k independent choices of the base is < 47
= much smaller for most n

— repeated squaring for the second part of (x)

18/ 29

Miller-Rabin test - remarks

— ifnis prime: a®! = at'? = 1 (mod n) for all a not divisible by n (FLT)

— if nis prime: 1 has exactly two square roots modulo n:
x?=1(modn) = n|kx+1)x-1 = x=41(modn)

— (%) ... we get 1 at the end, and we get it a “corect way”

19 /29

Computing private exponent: d = e~ mod ¢(n)

Extended Euclidean algorithm

- input: integers a, b

- output: gcd(a, b), integers x, y such that xa + yb = gcd(a, b)
— remark: returning gcd is redundant if x, y are known

— simple recursive version (for integers a, b = 0):

EEA(a, b) :
if b=0:return (a,1,0)
(d,x,y) = EEA(b,amod b)
return (d,y,x —y - |la/b])

- EEA(e,p(n)) » (1,x,y): xe+ypn) =1=d = xmodp(n)

20 /29

Choosing public exponent

— improving performance: small public exponent

— common choice e = 65537 = (1000...0001),
= jtis a prime and with high probability coprime to ¢ (n)
= ife = 65537 is desired, we can test gcd(e,p — 1) = 1 (and for g as well) while
generating the primes
= nice binary representation (short; small number of ones)

21/ 29

Chinese remainder theorem

— used in various constructions and implementations with modular arithmetic

Theorem (CRT). Let n4, ..., nj, are pairwise coprime positive integers. Then the following
system of congruences (where a4, ..., a; are arbitrary integers):

x = a; (modn,)
x = a; (modny)

has a solution. Additionally, all solutions of the system are mutualy congruent modulo
N=nq-.. ng..

22 /29

Chinese remainder theorem - proof

1. LetN; = N/n; fori =1, .., k,and M; = N, modn;.
Solution x = Y¥_, a;N;M; can be easily verified (for j € {1, ..., k}):

k

x =a; NiM; + Z aM;- N; =gq (mod nj).
e — =1 —~
1modn; i%j 0 modn;

2. Let x and x’ are two solutions. Therefore

x = x' (modn,)

= Vi:n;|(x—x")

x = x' (modny,)

Since n; are pairwise coprime wehave N | (x —x'). =

23 /29

Corollary of the CRT

-n=p-qgcdpq) =1
x = a (modp)

x = a (modn)
x = a (modq)

- (=) value a is a solution;
according to the CRT, if x is also a solution, then x = a (mod n)
- (&) trivial:

x=a+t-pgq = x=a+(tq)-p = x=a(modp) (similarly forq)

24 /29

Optimization of D(c)

d

— idea: instead of ¢ mod n compute c% mod p, c? mod q and combine results (CRT)

— for unknown m:

m = c% (mod
() & m = c? (modn)
m = ¢ (mod q)

we can obtain m as follows:
m =m, -q(q ' modp) +m, - p(p~' mod q) modn
where m,, = ¢? modp = ¢?™m°4 P~ modp, and m; = c¢? mod g = ¢?™m°4 @~ mod g
— two “half-size” modular exponentiations are faster than one full-size

- p, q - part of private key; pre-computed inverses

25 /29

Real world optimization

— private key includes: p, q, d, = dmod (p — 1), d, = d mod (¢ — 1), gjny = ¢~ modp
— computation of D(¢):
1. my, = c% modp, mg = c% mod q
2. m=mgy+ q(qinv(mp — mq) modp)
— the correctness of the result can be easily verified by checking:
mmodp = m,

mmodq = m,

and noticing that 0 < m < pq

26 /29

PKCS#1 v1.5 padding

- why padding at all?
= to randomize encryption (plain RSA is deterministic)
= prove the security of the scheme (OAEP)

— PKCS#1 v1.5 (still used, potential implementation problems, not recommended)
— padded plaintext m: 00 || 02 || PS || 00 || m
— PS - string of pseudorandom nonzero bytes of length = 8

— various recommendation on using this padding (see RFC 8017)

27 /29

OAEP (Optimal Asymmetric Encryption Padding)

- recommended, PKCS#1 v2.2, RFC 8017
— provable secure (in some sense, in some security model)

— slightly simplified presentation of OAEP (empty “label”)

- 2round Feistel const. |00...01| m
= 7 —random seed
= MGF - mask generation function, hash function r
based (RO
(RO) +—> MGF —O
— padding verified in decryption
. . o . P+ MGE~—¢
- impossible to create valid ciphertext without . .
encryption 00 X Y

Ve

input to RSA encryption

28 /29

Exercises

1. Use openssl CLI to generate RSA key pair.
a) Inspect the text representation of both keys.
b) Encrypt and decrypt a short text.

2. Find a non-trivial fixed point for RSA encryption scheme. Use a concrete parameters for
your computation. Non-trivial means “not in {0,1, —1}".

3. Perform an experiment in your preferred programming language, and test if two “half-
size” exponentiations are faster than one full-size exponentiation.

29 /29

	Public-key (asymmetric) cryptography
	Public vs. private key
	Public-key encryption scheme (informally): ⟨ Gen, Enc, Dec ⟩
	RSA
	Encryption and decryption
	Correctness of RSA
	Basic facts from the number theory (1)
	Basic facts from the number theory (2)
	Euler's theorem
	Euler's theorem – remarks
	Correctness of RSA
	Correctness of RSA 2 (proof cont.)

	Implementation
	Implementation – how?
	Modular exponentiation
	Choosing primes
	Primality testing
	Miller-Rabin test
	Miller-Rabin test – remarks
	Computing private exponent: d=e−1 mod φ(n)
	Choosing public exponent
	Chinese remainder theorem
	Chinese remainder theorem – proof
	Corollary of the CRT
	Optimization of D(c)
	Real world optimization
	PKCS#1 v1.5 padding
	OAEP (Optimal Asymmetric Encryption Padding)
	Exercises

