RSA

Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Public-key (asymmetric) cryptography

- problems with secret-key (symmetric) cryptography
 - encryption all parties need to know the key
 - distributing the key
- idea of public-key cryptography
 - user generates a related pair of keys public and private
 - private key can't be computed from the public key efficiently
- public-key schemes
 - encryption schemes, digital signature schemes, key agreement protocols, ...
 - often built on computationally hard problems: factorization, discrete logarithm, learning with errors, ...

Public vs. private key

- public-key
 - encryption (in asymmetric encryption schemes)
 - verification of signatures (in digital signature schemes), etc.
 - can be distributed freely, anyone can encrypt data for the user or verify user's signatures
 - How to ensure the authenticity of the public key? PKI?
- private-key
 - decryption (asymmetric encryption schemes)
 - signing (digital signature schemes), etc.
 - should be kept private

Public-key encryption scheme (informally): (Gen, Enc, Dec)

- $Gen(1^k)$ a PPT algorithm; it produces a key pair (pk, sk)
 - *k* is a security parameter
 - plaintext space is fixed or implied by pk
- $Enc_{pk}(m)$ a PPT algorithm; it computes a ciphertext from a plaintext m and pk
- $Dec_{sk}(c)$ (deterministic) PT algorithm; computes a plaintext from a ciphertext c and sk
- requirements:
 - correctness: $\forall (pk, sk) \leftarrow Gen(1^k) \forall m : Dec_{sk}(Enc_{pk}(m)) = m$
 - efficiency: (probabilistic) polynomial time
 - security

Initialization (key generation)

- 1. choose large, distinct primes p, q (e.g. 1024 bits)
- 2. let $n = p \cdot q$ (public modulus)
- 3. choose *e* such that $gcd(e, \varphi(n)) = 1$
 - φ is Euler's totient function
 - $-\varphi(n) = (p-1)(q-1)$
- 4. compute d such that $e \cdot d \equiv 1 \pmod{\varphi(n)}$
- public key: (e, n); e public exponent
- private key: (d, n); d private exponent
- additional values are often stored as a part of the private key to speed up the computation

Ron Rivest, Adi Shamir, Leonard Adleman (1977)

 Clifford Cocks (1973), declassified in 1997

encryption scheme & digital signature scheme

Encryption and decryption

- textbook/plain RSA
- encryption and decryption: $E, D: \mathbb{Z}_n \to \mathbb{Z}_n$

$$E(m) = m^e \mod n$$

$$D(c) = c^d \mod n$$

- small example:
 - $p = 11, q = 19, n = 11 \cdot 19 = 209, \varphi(209) = 10 \cdot 18 = 180$
 - $e = 7, d = 7^{-1} \mod 180 = 103$
 - public key: (7, 209); private key: (103, 209)
 - let m = 100: encryption $E(100) = 100^7 \mod 209 = 111$
 - decryption $D(111) = 111^{103} \mod 209 = 100$

Correctness of RSA

Basic facts from the number theory (1)

- notation (for positive integer *n*):
 - $\mathbb{Z}_n = \{0, 1, ..., n-1\}$
 - $\mathbb{Z}_n^* = \{ a \mid a \in \mathbb{Z}_n \land \gcd(a, n) = 1 \}$
- Euler's totient function: $\varphi(n) = |\mathbb{Z}_n^*|$
 - $\varphi(8) = |\{1, 3, 5, 7\}| = 4$
 - $\varphi(p) = |\{1, 2, ..., p-1\}| = p-1$
- $-a \equiv b \pmod{n} \Leftrightarrow n \mid (a-b)$

for prime *p*

for product of two distinct primes

Basic facts from the number theory (2)

Lemma 1. Let $ka \equiv kb \pmod{n}$ for positive integer n and integers a, b, k. Let gcd(k, n) = 1. Then $a \equiv b \pmod{n}$.

Proof. $ka \equiv kb \pmod{n} \Rightarrow n \mid k(a-b)$; since n and k are coprime, we have $n \mid (a-b) \blacksquare$

Basic facts from the number theory (2)

Lemma 1. Let $ka \equiv kb \pmod{n}$ for positive integer n and integers a, b, k. Let gcd(k, n) = 1. Then $a \equiv b \pmod{n}$.

Proof. $ka \equiv kb \pmod{n} \Rightarrow n \mid k(a-b)$; since n and k are coprime, we have $n \mid (a-b) \mid$

Lemma 2. Let $\mathbb{Z}_n^* = \{a_1, ..., a_{\varphi(n)}\}$. Let k be an integer such that $\gcd(k, n) = 1$. Then $\{ka_1 \bmod n, ..., ka_{\varphi(n)} \bmod n\} = \mathbb{Z}_n^*$.

Proof.

- 1. $\gcd(a_i, n) = 1, \gcd(k, n) = 1 \implies \gcd(ka_i, n) = 1$ Hence $\{ka_1 \mod n, ..., ka_{\varphi(n)} \mod n\} \subseteq \mathbb{Z}_n^*$
- 2. $\gcd(k,n) = 1$, $ka_i \equiv ka_j \pmod{n} \Rightarrow a_i \equiv a_j \pmod{n}$ (Lemma 1) $\Rightarrow i = j$, and therefore all elements in the set are distinct.

Euler's theorem

Theorem (Euler). Let n be a positive integer. Then for an arbitrary integer a coprime to n, i.e., gcd(a, n) = 1:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Proof. Let $\mathbb{Z}_n^* = \{a_1, ..., a_{\varphi(n)}\}$. Then $\mathbb{Z}_n^* = \{aa_1 \bmod n, ..., aa_{\varphi(n)} \bmod n\}$ (Lemma 2). Let's compute the product of all elements:

$$\prod_{i=1}^{\varphi(n)} a_i \equiv \prod_{i=1}^{\varphi(n)} a \cdot a_i \equiv a^{\varphi(n)} \cdot \prod_{i=1}^{\varphi(n)} a_i \pmod{n}$$

Since $gcd(a_i, n) = 1$, the product is coprime to n as well. Applying Lemma 1 we get $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Euler's theorem – remarks

- Fermat's little theorem: Let p be a prime, and a be an integer. If $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$.
- FLT is direct corollary of Euler's theorem:
 - $p \nmid a \Leftrightarrow \gcd(a, p) = 1; \varphi(p) = p 1$
- Carmichael's function $\lambda(n)$:
 - smallest positive integer such that $a^{\lambda(n)} \equiv 1 \pmod{n}$ for every $a \in \mathbb{Z}$ coprime to n
 - $\lambda(p) = p 1$, $\lambda(p^l) = p^{l-1}(p-1)$ for a prime number p
 - $^{\bullet} \lambda(n) = \operatorname{lcm}(\lambda(p_1^{l_1}), \lambda(p_2^{l_2}), ..., \lambda(p_k^{l_k})), \text{ where } n = p_1^{l_1} p_2^{l_2} \cdot ... \cdot p_k^{l_k} \text{ is a prime decomposition}$
 - generalization of Euler's theorem $(a^{\lambda(n)} \equiv 1 \pmod{n})$ for a coprime to n)
 - sometimes RSA is specified in terms of $\lambda(n)$; $\lambda(p \cdot q) = \text{lcm}(p-1, q-1)$

Correctness of RSA

Theorem (Correctness of RSA). Let *E* and *D* be the encryption and decryption functions in RSA scheme. Then

$$\forall m \in \mathbb{Z}_n : D(E(m)) = m.$$

Remarks:

- *E*, *D* are two mutually inverse bijections
- some fixed points: E(0) = 0, E(1) = 1, E(n 1) = n 1

Proof.

Case 1: gcd(m, n) = 1; the most frequent case

$$D(E(m)) = (m^e)^d \mod n = m^{1+k\varphi(n)} \mod n$$

$$= m \cdot (\underbrace{m^{\varphi(n)}}_{1})^k \mod n \quad \text{(Euler's theorem)}$$

$$= m \mod n = m$$

Correctness of RSA 2 (proof cont.)

Case 2: gcd(m, n) > 1; rare event (you can factorize n if this happens for $m \neq 0$)

- trivially valid if m = 0
- wlog we assume $m = m' \cdot p^l$ for $l \ge 1$ and $\gcd(m', n) = 1$
- $-D(E(m)) = (m'p^l)^{ed} \bmod n = m' \cdot (p^{1+k\varphi(n)})^l \bmod n \quad \text{(using Case 1)}$
- evaluating expression $p^{1+k\varphi(n)} \mod n$:

$$p^{q-1} \equiv 1 \pmod{q} \quad \text{(FLT)}$$

$$p^{k(q-1)(p-1)} \equiv p^{k\varphi(n)} \equiv 1 \pmod{q}$$

$$p^{k\varphi(n)} = 1 + t \cdot q \quad \Rightarrow \quad p^{1+k\varphi(n)} = p + t \cdot n$$

- therefore $p^{1+k\varphi(n)} \equiv p \pmod{n}$ and $D(E(m)) = m' \cdot p^l \pmod{n} = m$

Implementation

Implementation – how?

- modular exponentiation
- primality testing
- computing private exponent (modular inverse)
- choosing public exponent for efficiency
- improving performance of private transformation by Chinese remainder theorem

Modular exponentiation

- compute $a^t \mod n$ for (positive) integers a, t, n
- note that $\underbrace{a \cdot a \cdot ... \cdot a}_{t} \mod n$ is an exponential algorithm w.r.t. |t|

polynomial time algorithm:

```
v = 1
while (k > 0)
if k is odd : v = v \cdot a \mod n
a = a^2 \mod n
k = k/2 \quad \text{(integer division)}
return v
```

$a^{21} \mod n$:	(k, v, a) values
before and after iteration	
(21, 1, a)	$(10, a, a^2)$
$(10, a, a^2)$	$(5, a, a^4)$
$(5, a, a^4)$	$(2, a^5, a^8)$
$(2, a^5, a^8)$	$(1, a^5, a^{16})$
$(1, a^5, a^{16})$	$(0, a^{21}, a^{32})$

- other improvements: sliding window, Montgomery reduction

Choosing primes

- primes should be secret (otherwise an attacker can easily compute d)
- procedure: random choice of odd integer & primality testing
- density of primes:
 - $\pi(n)$ number of primes less than or equal to n
 - Prime number theorem: $\pi(n) \approx n/\ln(n)$
- experiment (average from 50 samples):

bit length	avg. tests
256	137
512	171
786	325
1024	435

Primality testing

- deciding primality is in P
 - AKS primality test (2002); slow, not used in practice
- probabilistic tests offer better performance: Miller-Rabin, Lucas, etc.
- Miller-Rabin test (and its variants or combination with other tests) is the most common choice
 - FIPS 186-4 Digital Signature Standard
 - openssl implementation, ...

Miller-Rabin test

- input: odd n; let $n 1 = t \cdot 2^s$ for odd integer t
- n is *strong pseudoprime* to a base a (where $1 \le a < n$) if:

$$a^t \equiv 1 \pmod{n} \quad \forall \quad \exists r \in \mathbb{Z}_s : a^{t \cdot 2^r} \equiv -1 \pmod{n} \quad (\star)$$

- prime n: strong pseudoprime to every base
- composite n: the probability that n is strong pseudoprime to a random base is $\leq 1/4$
 - probability of error after k independent choices of the base is $\leq 4^{-k}$
 - much smaller for most n
- repeated squaring for the second part of (*)

Miller-Rabin test – remarks

- if *n* is prime: $a^{n-1} \equiv a^{t \cdot 2^s} \equiv 1 \pmod{n}$ for all *a* not divisible by *n* (FLT)
- if *n* is prime: 1 has exactly two square roots modulo *n*: $x^2 \equiv 1 \pmod{n} \implies n \mid (x+1)(x-1) \implies x \equiv \pm 1 \pmod{n}$
- (*) ... we get 1 at the end, and we get it a "corect way"

Computing private exponent: $d = e^{-1} \mod \varphi(n)$

Extended Euclidean algorithm

- input: integers *a*, *b*
- output: gcd(a, b), integers x, y such that xa + yb = gcd(a, b)
- remark: returning gcd is redundant if x, y are known
- simple recursive version (for integers $a, b \ge 0$):

```
EEA(a, b):

if b = 0: return (a, 1, 0)

(d, x, y) = \text{EEA}(b, a \mod b)

return (d, y, x - y \cdot \lfloor a/b \rfloor)
```

- EEA $(e, \varphi(n)) \mapsto (1, x, y)$: $xe + y\varphi(n) = 1 \Rightarrow d = x \mod \varphi(n)$

Choosing public exponent

- improving performance: small public exponent
- common choice $e = 65537 = (1000...0001)_2$
 - it is a prime and with high probability coprime to $\varphi(n)$
 - if e = 65537 is desired, we can test gcd(e, p 1) = 1 (and for q as well) while generating the primes
 - nice binary representation (short; small number of ones)

Chinese remainder theorem

- used in various constructions and implementations with modular arithmetic

Theorem (CRT). Let $n_1, ..., n_k$ are pairwise coprime positive integers. Then the following system of congruences (where $a_1, ..., a_k$ are arbitrary integers):

$$x \equiv a_1 \pmod{n_1}$$
...
$$x \equiv a_k \pmod{n_k}$$

has a solution. Additionally, all solutions of the system are mutualy congruent modulo $N=n_1\cdot...\cdot n_k$.

Chinese remainder theorem – proof

1. Let $N_i = N/n_i$ for i = 1, ..., k, and $M_i = N_i^{-1} \mod n_i$. Solution $x = \sum_{i=1}^k a_i N_i M_i$ can be easily verified (for $j \in \{1, ..., k\}$):

$$x \equiv a_j \underbrace{N_j M_j}_{1 \bmod n_j} + \sum_{\substack{i=1 \ i \neq j}}^k a_i M_i \cdot \underbrace{N_i}_{0 \bmod n_j} \equiv a_j \pmod {n_j}.$$

2. Let x and x' are two solutions. Therefore

$$x \equiv x' \pmod{n_1}$$
... $\Rightarrow \forall i : n_i \mid (x - x')$
 $x \equiv x' \pmod{n_k}$

Since n_i are pairwise coprime we have $N \mid (x - x')$.

Corollary of the CRT

$$-n = p \cdot q, \gcd(p, q) = 1$$

$$x \equiv a \pmod{p}$$

$$x \equiv a \pmod{q}$$

$$x \equiv a \pmod{q}$$

$$x \equiv a \pmod{q}$$

$$x \equiv a \pmod{q}$$

- (\Longrightarrow) value a is a solution; according to the CRT, if x is also a solution, then $x \equiv a \pmod{n}$
- (\Leftarrow) trivial: $x = a + t \cdot pq \implies x = a + (tq) \cdot p \implies x \equiv a \pmod{p}$ (similarly for q)

Optimization of D(c)

- idea: instead of $c^d \mod n$ compute $c^d \mod p$, $c^d \mod q$ and combine results (CRT)
- for unknown *m*:

$$m \equiv c^d \pmod{p}$$

 $m \equiv c^d \pmod{q}$ $\iff m \equiv c^d \pmod{n}$

we can obtain *m* as follows:

$$m = m_p \cdot q(q^{-1} \bmod p) + m_q \cdot p(p^{-1} \bmod q) \bmod n$$

where $m_p = c^d \mod p = c^{d \mod (p-1)} \mod p$, and $m_q = c^d \mod q = c^{d \mod (q-1)} \mod q$

- two "half-size" modular exponentiations are faster than one full-size
- -p,q part of private key; pre-computed inverses

Real world optimization

- private key includes: p, q, $d_p = d \mod (p-1)$, $d_q = d \mod (q-1)$, $q_{inv} = q^{-1} \mod p$
- computation of D(c):
 - 1. $m_p = c^{d_p} \mod p$, $m_q = c^{d_q} \mod q$
 - 2. $m = m_q + q(q_{inv}(m_p m_q) \operatorname{mod} p)$
- the correctness of the result can be easily verified by checking:

$$m \mod p = m_p$$

$$m \mod q = m_q$$

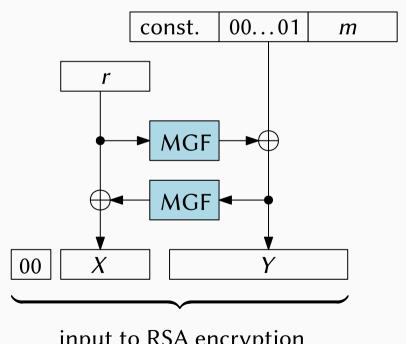
and noticing that $0 \le m < pq$

PKCS#1 v1.5 padding

- why padding at all?
 - to randomize encryption (plain RSA is deterministic)
 - prove the security of the scheme (OAEP)
- PKCS#1 v1.5 (still used, potential implementation problems, not recommended)
- padded plaintext m: 00 || 02 || PS || 00 || m
- PS string of pseudorandom nonzero bytes of length ≥ 8
- various recommendation on using this padding (see RFC 8017)

OAEP (Optimal Asymmetric Encryption Padding)

- recommended, PKCS#1 v2.2, RFC 8017
- provable secure (in some sense, in some security model)
- slightly simplified presentation of OAEP (empty "label")
- 2 round Feistel
 - r random seed
 - MGF mask generation function, hash function based (RO)
- padding verified in decryption
- impossible to create valid ciphertext without encryption



input to RSA encryption

Exercises

- 1. Use openss l CLI to generate RSA key pair.
 - a) Inspect the text representation of both keys.
 - b) Encrypt and decrypt a short text.
- 2. Find a non-trivial fixed point for RSA encryption scheme. Use a concrete parameters for your computation. Non-trivial means "not in $\{0, 1, -1\}$ ".
- 3. Perform an experiment in your preferred programming language, and test if two "half-size" exponentiations are faster than one full-size exponentiation.