
Security of the RSA

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Factorization, RSA problem
Problems with primes

Small plaintext space, small public/private exponent

Small public/private key

Homomorphism of RSA

Partial decryption oracles
Half and parity predicates
Bleichenbacher’s attack on PKCS#1 v 1.5
Manger’s attack

Other implementation attacks

Security of the RSA 2 / 25

RSA scheme

▶ n = p · q (product of two distinct primes)
▶ e · d ≡ 1 (mod 𝜑 (n)), where 𝜑 (n) = (p − 1) (q − 1)
▶ public key: (e, n)
▶ private key: d
▶ public/private transforms E ,D : Zn → Zn

▶ E (m) = me mod n
▶ D(c) = cd mod n

Security of the RSA 3 / 25

Hybrid encryption

▶ encrypting long messages
▶ encryption of message m for recipient A (his public key is pkA):

⟨Ek (m), ERSA
pkA

(k)⟩

▶ notation:
▶ E – symmetric cipher (e.g. AES)
▶ k – random symmetric key for E
▶ ERSA

pkA
– RSA encryption with A’s public key

▶ A can decrypt easily
▶ advantages: key management (asymmetric scheme), speed
▶ disadvantages: the security depends on both constructions

Security of the RSA 4 / 25

Real world – key transport

▶ usually wrapping symmetric keys, providing confidentiality and
integrity

▶ key transport
▶ RFC 5990: Use of the RSA-KEM Key Transport Algorithm in the

Cryptographic Message Syntax (CMS)
▶ NIST SP 800-56B rev. 2: Recommendation for Pair-Wise

Key-Establishment Schemes Using Integer Factorization Cryptography;
various schemes, e.g. KTS-OAEP: Key-Transport Using RSA-OAEP

Security of the RSA 5 / 25

Factorization and RSA

▶ factorization⇒ compute the private key⇒ decryption (trivial)
▶ decryption (knowing only the public key) =?⇒ factorization (open)
▶ knowledge of 𝜑 (n) is equivalent to factorization

⇐ trivial
⇒ solving 2 equations with 2 variables:

n = p · q
𝜑 (n) = (p − 1) (q − 1)

▶ knowledge of d is equivalent to factorization
⇐ trivial
⇒ more complicated procedure needed

▶ corollary: do not share n among group of users

Security of the RSA 6 / 25

RSA problem

▶ RSA problem:
given (e, n) and c ∈ Zn; compute m such that me ≡ c (mod n)

▶ RSA problem is not more difficult than factorization
▶ (open problem) Is the RSA problem as difficult as factorization or easier?

Security of the RSA 7 / 25

Problems with primes

▶ specific algorithms for factorization, when p, q satisfy some properties,
for example:
▶ small |p − q |,
▶ p − 1 (or q − 1) without a large prime factor, etc.

▶ suspicious methods of generating primes, e.g.
▶ weak or poorly initialized PRNG
▶ primes with some internal structure (“optimization”)

▶ Lenstra et al. (2012)
▶ 11.4 million RSA moduli (X.509 certificates, PGP keys)
▶ 26965 (incl. 10 RSA-2048) vulnerable (shared a single common prime

factor)

Security of the RSA 8 / 25

Problems with primes (2)

▶ Bernstein et al. (2013)
▶ Taiwan’s national "Citizen Digital Certificate" database
▶ generated by government-issued smart cards (certified)
▶ 3.2 million unique RSA moduli
▶ 103 moduli factored by computing the gcd (sharing a non-trivial prime

divisor)
▶ observing non-randomness in the primes . . . 184 distinct 1024-bit RSA keys

factored
▶ Nemec et al. (2017)

▶ problem with “FastPrime” method for primes generation implemented in
library for particular hardware chips

▶ factor public modulus
▶ ID cards – e.g. Estonia (750.000), Slovakia (300.000)

Security of the RSA 9 / 25

General factorization algorithms

▶ General number field sieve (GNFS)

▶ heuristic complexity: exp
(
(3
√︁
64/9 + o(1)) (ln n)1/3(ln ln n)2/3

)
▶ equivalent key lengths:

symmetric RSA
80 1024
112 2048
128 3072
192 7680
256 15360

– NIST Recommendations (SP 800-57 part 1 rev. 5) (2020)
– various estimates are compared at www.keylength.com

Security of the RSA 10 / 25

Small message (plaintext) space

▶ RSA scheme is deterministic (the textbook version)
▶ small plaintext space:

▶ e.g. {“yes” , “no”, “maybe”}
▶ attacker can compute E (m) for any m and compare the result with the

ciphertext

▶ potential plaintexts can be tested regardless of plaintext space
▶ randomization with padding

plaintextrandom

▶ is it secure (can you prove it)?
▶ see OAEP for provable security

Security of the RSA 11 / 25

Small public exponent – broadcast

▶ small exponent – speed
▶ let e = 3 for three recipients A,B,C with moduli nA, nB, nC
▶ broadcasting m:

cA = m3 mod nA
cB = m3 mod nB
cC = m3 mod nC

▶ an attacker solves the system of congruences (CRT):

x ≡ cA (mod nA)
x ≡ cB (mod nB)
x ≡ cC (mod nC)

Security of the RSA 12 / 25

Small public exponent – broadcast (2)

▶ solution x (obtained from CRT) and m3 satisfy the system of
congruences, thus

x ≡ m3 (mod nAnBnC)
▶ x = m3, since m < nA, nB, nC
▶ m can be computed as a cube root of x
▶ padding as a prevention

Security of the RSA 13 / 25

Small public exponent – related messages
▶ m1, m2 linearly dependent messages; c1 = E (m1), c2 = E (m2)
▶ ∃a, b ∈ Z: m2 = am1 + b, the attacker knows a, b
▶ variable z (m1 is a root of the following polynomials):

ze − c1 ≡ 0 (mod n)
(az + b)e − c2 ≡ 0 (mod n)

▶ (z −m1) divides both polynomials; (ze − c1)/(z −m1) is irreducible
▶ gcd(ze − c1, (az + b)e − c2) reveals m1 and m2

▶ Example: n = 91, e = 5. Let c1 = 45, c2 = 28, and m2 = 30 · m1 + 11.

gcd(z5 − 45, (30z + 11)5 − 28) =
= gcd(z5 + 46, 88z5 + 40z4 + 90z3 + 33z2 + 47z + 44) = z + 37 = z − 54

Thus m1 = 54 and m2 = 30 · 54 + 11 = 84.
▶ easy to generalize for any known polynomial relation
▶ prevention: suitable padding

▶ not every padding is secure (see Coppersmith’s attack)
Security of the RSA 14 / 25

Small private exponent

▶ motivation: fast decryption
▶ implementation: choose d first, e computed afterward
▶ results – d can be computed from a public key:

▶ Wiener (1990): d < 1
3n

0.25 (continued fraction)
▶ Boneh, Durfee (1999): d < n0.292 (Coppersmith, LLL)
▶ some other improvements exist

▶ do not “optimize” d (!)

Security of the RSA 15 / 25

Some applications of Coppersmith’s theorem

▶ Coppersmith’s theorem – finding all small solutions of modular
polynomial equation

▶ computing plaintext when using short/improper padding (and small e)
▶ computing primes given some fraction of their bits
▶ reconstructing d given some fraction of its bits

Security of the RSA 16 / 25

Using homomorphism of RSA

▶ E (m1 · m2) = E (m1) · E (m2), computations are modn
▶ let’s assume, that l-bit symmetric key k is encrypted, i.e. k < 2l

▶ the attacker pre-computes E (1), E (2), E (3), … , E (2l/2), and stores the
values ⟨E (i), i⟩ in a hash table

▶ if k = k1 · k2, for ki ≤ 2l/2:
▶ the attacker tries k1 = 1, 2, 3, … , 2l/2, and searches c/E (k1) = E (k/k1) in

the table
▶ a match yields k1, k2, i.e. k

▶ time complexity O(2l/2)
▶ increasing the number of pre-computed values⇒ higher probability of

success

▶ (!) for small e, e.g. e = 3, the attacker can compute 3
√
c directly (if k3 < n)

Security of the RSA 17 / 25

Half predicate

▶ Knowing a ciphertext – can anything be computed about the plaintext?
▶ (textbook) RSA is not semantically secure (e.g. testing any plaintext)
▶ oracle half(c) = 0 if 0 ≤ m < n/2, or 1 otherwise
▶ we decrypt any c using predicate half()

half(c) = 0 ⇔ m ∈ {0, … , ⌊n/2⌋}
half(c · E (2)) = 0 ⇔ m ∈ {0, … , ⌊n/4⌋} ∪ {⌈2n/4⌉, … , ⌊3n/4⌋}
half(c · E (22)) = 0 ⇔ m ∈ {0, … , ⌊n/8⌋} ∪…

▶ we can compute m by binary search (c · E (2l) = E (m · 2l))
▶ remark: d is not used nor computed in this attack

Security of the RSA 18 / 25

Parity predicate

▶ similarly to half(), we can use the predicate parity()
▶ parity(c) = m & 0x1

▶ relation between predicates: half(c) = parity(c · E (2))
▶ if 0 ≤ m < n/2:

then 0 ≤ 2m < n and the plaintext corresponding to c · E (2) is even
▶ if n/2 < m < n:

then n ≤ 2m < 2n ⇒ 2m mod n = 2m − n,
i.e. the plaintext corresponding to c · E (2) is odd

Security of the RSA 19 / 25

Bleichenbacher’s attack on PKCS#1 v1.5 (1)

▶ chosen ciphertext attack (1998)
▶ PKCS#1 v1.5 oracle (error message, timing, etc.) ⇒ decryption of

arbitrary ciphertext
▶ PKCS#1 v1.5 padding:

00 02 ≥ 8 random non-zero bytes 00 message

▶ k – byte length of n; 28(k−1) ≤ n < 28k

▶ PKCS conforming block:
1. starts with bytes 00 02
2. bytes 3… 10 are non-zero
3. there is some 00 byte later (bytes 11… k)

▶ let’s denote B = 28(k−2) , i.e. PKCS conforming block: 2B ≤ m < 3B
▶ ciphertext is called PKCS conforming if its decryption is PKCS conf.

Security of the RSA 20 / 25

Bleichenbacher’s attack on PKCS#1 v1.5 (2)

▶ given c ∈ Zn the attacker wants to compute m = cd mod n
▶ modifying c and testing PKCS conformity
▶ sequence of gradually narrower intervals for m
▶ single element m at the end

Security of the RSA 21 / 25

Bleichenbacher’s attack on PKCS#1 v1.5 (3)

▶ Impact:
▶ SSL/TLS RSA key exchange method: client sends pre-master secret

encrypted with server’s public key (PKCS#1 v1.5)
▶ decryption of the pre-master secret yields the session keys
▶ careful implementation needed, see TLS 1.2 (RFC 5246)
▶ when relevant, the attack allows to create a PKCS#1 v1.5 signature of

arbitrary message (using server’s private key)
▶ ROBOT (Return Of Bleichenbacher’s Oracle Threat)

▶ attack on TLS after 19 years (2018)
▶ advice: disable all TLS_RSA ciphersuits
▶ non-standard message flow (shortened)
▶ different responses: different alert codes, TCP FIN, TCP timeout, TCP

reset, two alerts . . .

Security of the RSA 22 / 25

Manger’s attack

▶ Does OAEP help (it is almost impossible to generate a valid ciphertext)?
▶ Manger’s attack (2001): compute m = cd mod n for any c
▶ assumption: access to the following oracle:

▶ Given c′, is the first byte of (c′)d mod n zero?
▶ let k be the byte length of n, and B = 28(k−1)
▶ oracle: (c′)d mod n < B

▶ recognizing bad first byte vs. bad internal integrity of decrypted block
▶ gradually reduce an interval of possible m values

▶ can be adapted to PKCS#1 v1.5
▶ there are also improvements to Bleichenbacher’s attack

Security of the RSA 23 / 25

Combining various attack ideas

▶ The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS
Implementations (2018)

▶ cache-based attack techniques for side channel
▶ . . . leading to Manger’s oracle, Bleichenbacher’s oracle and several other

types of oracles
▶ optimizations to speed up the attacks
▶ most TLS implementations were vulnerable

Security of the RSA 24 / 25

Other implementation attacks – examples

▶ Timing attacks
▶ straightforward implementation of modular exponentiation
▶ computation time of D(c) depends on c, d , and n
▶ statistical correlation analysis to recover d from many samples (ci , timei)
▶ variant used to attack SSL implementation (2003) with approx. million

queries for extracting private key and factoring 1024 bit modulus n
▶ prevention: blinding

▶ Fault attacks
▶ induce faults while executing sensitive operations
▶ heat, power spikes, clock glitches, etc.
▶ example: fault in a single value/computation in RSA CRT (signature

computation) – correct and fault signatures yield the factorization of n

Security of the RSA 25 / 25

	Factorization, RSA problem
	Problems with primes

	Small plaintext space, small public/private exponent
	Small public/private key
	Homomorphism of RSA
	Partial decryption oracles
	Half and parity predicates
	Bleichenbacher's attack on PKCS#1 v 1.5
	Manger's attack

	Other implementation attacks

