
Security of RSA
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

RSA scheme

– 𝑛 = 𝑝 ⋅ 𝑞 (product of two distinct primes)

– 𝑒 ⋅ 𝑑 ≡ 1 (mod𝜑(𝑛)), where 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)

– public key: (𝑒, 𝑛)

– private exponent: 𝑑

– public/private transforms 𝐸, 𝐷 : ℤ𝑛 → ℤ𝑛
▫ 𝐸(𝑚) = 𝑚𝑒 mod𝑛
▫ 𝐷(𝑐) = 𝑐𝑑 mod𝑛

1 / 23

Hybrid encryption

– encrypting long messages

– encryption of message 𝑚 for recipient 𝐴 (his public key is 𝗉𝗄𝐴):

⟨𝐸𝑘(𝑚), 𝐸RSA
𝗉𝗄𝐴

(𝑘)⟩

– notation:
▫ 𝐸 – symmetric cipher (e.g. AES)
▫ 𝑘 – random symmetric key for 𝐸
▫ 𝐸RSA

𝗉𝗄𝐴 – RSA encryption with 𝐴’s public key

– 𝐴 can decrypt easily

– advantages: key management (asymmetric scheme), speed

– the security depends on both constructions

2 / 23

Real world – key transport (key encapsulation mechanism)

– usually wrapping symmetric keys, providing confidentiality and integrity

– key transport
▫ RFC 5990: Use of the RSA-KEM Key Transport Algorithm in the Cryptographic

Message Syntax (CMS)
▫ NIST SP 800-56B rev. 2: Recommendation for Pair-Wise Key-Establishment

Schemes Using Integer Factorization Cryptography;
various schemes, e.g., KTS-OAEP: Key-Transport Using RSA-OAEP

3 / 23

Factorization and RSA

– factorization ⇒ compute the private key ⇒ decryption (trivial)

– decryption (knowing only the public key) =?⇒ factorization (open)

– knowledge of 𝜑(𝑛) is equivalent to factorization
▫ [⇐] trivial
▫ [⇒] solving 2 equations with 2 variables:

𝑛 = 𝑝 ⋅ 𝑞
𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)

– knowledge of 𝑑 is equivalent to factorization
▫ [⇐] trivial
▫ [⇒] more complicated procedure needed

– corollary: do not share 𝑛 among group of users

4 / 23

RSA problem

RSA problem

Given (𝑒, 𝑛) and 𝑐 ∈ ℤ𝑛, compute 𝑚 such that 𝑚𝑒 ≡ 𝑐 (mod𝑛).

– RSA problem is not more difficult than factorization
▫ (open problem) Is the RSA problem as difficult as factorization or easier?

5 / 23

Problems with primes

– specific algorithms for factorization, when 𝑝, 𝑞 satisfy some properties, for example:
▫ small |𝑝 − 𝑞|,
▫ 𝑝 − 1 (or 𝑞 − 1) without a large prime factor, etc.

– suspicious methods of generating primes, for example:
▫ weak or poorly initialized PRNG
▫ primes with some internal structure (“optimization”)

– Lenstra et al. (2012)
▫ 11.4 million RSA moduli (X.509 certificates, PGP keys)
▫ 26965 (incl. 10 RSA-2048) vulnerable (shared a single common prime factor)

6 / 23

Problems with primes (2)

– Bernstein et al. (2013)
▫ Taiwan’s national Citizen Digital Certificate database
▫ generated by government-issued smart cards (certified)
▫ 3.2 million unique RSA moduli
▫ 103 moduli factored by computing the gcd (sharing a prime divisor)
▫ observing non-randomness in the primes … 184 distinct 1024-bit RSA keys factored

– Nemec et al. (2017)
▫ problem with “FastPrime” method for primes generation implemented in library for

particular hardware chips
▫ factor public modulus
▫ ID cards – Estonia (750.000), Slovakia (300.000), …

7 / 23

General factorization algorithms

– General number field sieve (GNFS)

– heuristic complexity:

exp((3√64/9 + 𝑜(1))(ln 𝑛)1/3(ln ln 𝑛)2/3)

– equivalent key lengths
▫ NIST Recommendations (SP 800-57 part 1 rev. 5)

(2020), see the table ⟶

– other estimates are compared at Keylength.com

symmetric RSA
80 1024

112 2048
128 3072
192 7680
256 15360

8 / 23

https://www.keylength.com

Small message (plaintext) space

– RSA scheme is deterministic (the textbook version)

– small plaintext space:
▫ such as {yes, no,maybe}
▫ attacker can compute 𝐸(𝑚) for any 𝑚 and compare the result with the ciphertext

– potential plaintexts can be tested regardless of plaintext space

– randomization with padding

▫ is it secure (can you prove it)?
▫ see OAEP for provable security

9 / 23

Small public exponent – broadcast

– small exponent – speed

– let 𝑒 = 3 for three recipients 𝐴, 𝐵, 𝐶 with moduli 𝑛𝐴, 𝑛𝐵, 𝑛𝐶

– broadcasting 𝑚:

𝑐𝐴 = 𝑚3 mod𝑛𝐴

𝑐𝐵 = 𝑚3 mod𝑛𝐵

𝑐𝐶 = 𝑚3 mod𝑛𝐶

– an attacker solves the system of congruences (CRT):

𝑥 ≡ 𝑐𝐴 (mod𝑛𝐴)
𝑥 ≡ 𝑐𝐵 (mod𝑛𝐵)
𝑥 ≡ 𝑐𝐶 (mod𝑛𝐶)

10 / 23

Small public exponent – broadcast (2)

– solution 𝑥 (obtained from CRT) and 𝑚3 satisfy the system of congruences, thus

𝑥 ≡ 𝑚3 (mod𝑛𝐴𝑛𝐵𝑛𝐶)

– 𝑥 = 𝑚3, since 𝑚 < 𝑛𝐴, 𝑛𝐵, 𝑛𝐶

– 𝑚 can be computed as a cube root of 𝑥

– padding as a prevention

11 / 23

Small public exponent – related messages

– 𝑚1, 𝑚2 linearly dependent messages; 𝑐1 = 𝐸(𝑚1), 𝑐2 = 𝐸(𝑚2)

– ∃𝑎, 𝑏 ∈ ℤ: 𝑚2 = 𝑎𝑚1 + 𝑏, the attacker knows 𝑎, 𝑏

– variable 𝑧 (𝑚1 is a root of the following polynomials):

𝑧𝑒 − 𝑐1 ≡ 0 (mod𝑛)
(𝑎𝑧 + 𝑏)𝑒 − 𝑐2 ≡ 0 (mod𝑛)

– (𝑧 − 𝑚1) divides both polynomials

– gcd(𝑧𝑒 − 𝑐1, (𝑎𝑧 + 𝑏)𝑒 − 𝑐2) reveals 𝑚1, and subsequently 𝑚2

– easy to generalize for any known polynomial relation

– prevention: suitable padding
▫ not every padding is secure (see Coppersmith’s attack)

12 / 23

Small private exponent

– motivation: fast decryption

– implementation: choose 𝑑 first, 𝑒 computed afterward

– results – 𝑑 can be computed from a public key:
▫ Wiener (1990): 𝑑 < 𝑛0.25/3 (continued fraction)
▫ Boneh, Durfee (1999): 𝑑 < 𝑛0.292 (Coppersmith, LLL)
▫ some other improvements exist

– do not “optimize” 𝑑 (!)

13 / 23

Some applications of Coppersmith’s theorem

– Coppersmith’s theorem – finding all small solutions of modular polynomial equation

– computing plaintext when using short/improper padding (and small 𝑒)

– computing primes given some fraction of their bits

– reconstructing 𝑑 given some fraction of its bits

14 / 23

Using homomorphism of RSA

– 𝐸(𝑚1 ⋅ 𝑚2) = 𝐸(𝑚1) ⋅ 𝐸(𝑚2), computations are mod𝑛

– let’s assume, that 𝑙-bit symmetric key 𝑘 is encrypted, i.e. 𝑘 < 2𝑙

– the attacker pre-computes 𝐸(1), 𝐸(2), 𝐸(3), …, 𝐸(2𝑙/2), and stores the values ⟨𝐸(𝑖), 𝑖⟩ in
a hash table

– if 𝑘 = 𝑘1 ⋅ 𝑘2, for 𝑘𝑖 ≤ 2𝑙/2:
▫ the attacker tries 𝑘1 = 1, 2, 3, …, 2𝑙/2, and searches 𝑐/𝐸(𝑘1) = 𝐸(𝑘/𝑘1) in the table
▫ a match yields 𝑘1, 𝑘2 (and therefore 𝑘)

– time complexity 𝑂(2𝑙/2)

– increasing the number of pre-computed values ⇒ higher probability of success

– (!) for small 𝑒, such as 𝑒 = 3, the attacker can compute 3√𝑐 directly (if 𝑘3 < 𝑛)

15 / 23

Half predicate

– Knowing a ciphertext – can anything be computed about the plaintext?

– (textbook) RSA is not semantically secure (e.g. testing any plaintext)

– oracle half(𝑐) = 0 if 0 ≤ 𝑚 < 𝑛/2, or 1 otherwise

– we decrypt any 𝑐 using predicate half():

half(𝑐) = 0 ⟺ 𝑚 ∈ {0,…, ⌊𝑛/2⌋}
half(𝑐 ⋅ 𝐸(2)) = 0 ⟺ 𝑚 ∈ {0,…, ⌊𝑛/4⌋} ∪ {⌈2𝑛/4⌉, …, ⌊3𝑛/4⌋}

half(𝑐 ⋅ 𝐸(22)) = 0 ⟺ 𝑚 ∈ {0,…, ⌊𝑛/8⌋} ∪ …

– we can compute 𝑚 by binary search; 𝑐 ⋅ 𝐸(2𝑙) = 𝐸(𝑚 ⋅ 2𝑙)

– remark: 𝑑 is not used nor computed in this attack

16 / 23

Parity predicate

– similarly to half(), we can use the predicate parity()
▫ parity(𝑐) = 𝑚 & 0x1

– relation between predicates: half(𝑐) = parity(𝑐 ⋅ 𝐸(2))

▫ if 0 ≤ 𝑚 < 𝑛/2:
then 0 ≤ 2𝑚 < 𝑛 and the plaintext corresponding to 𝑐 ⋅ 𝐸(2) is even

▫ if 𝑛/2 < 𝑚 < 𝑛:
then 𝑛 ≤ 2𝑚 < 2𝑛 ⇒ 2𝑚 mod𝑛 = 2𝑚 − 𝑛,
i.e. the plaintext corresponding to 𝑐 ⋅ 𝐸(2) is odd

17 / 23

Bleichenbacher’s attack on PKCS #1 v1.5 (1)

– chosen ciphertext attack (1998)

– PKCS#1 v1.5 oracle (error message, timing, etc.) ⇒ decryption of arbitrary ciphertext

– PKCS#1 v1.5 padding:

00 02 ≥ 8 non-zero bytes 00 message

– 𝑘 – byte length of 𝑛; 28(𝑘−1) ≤ 𝑛 < 28𝑘

– PKCS conforming block:
1. starts with bytes 00 02
2. bytes 3,…, 10 are non-zero
3. there is some 00 byte later (bytes 11,…, 𝑘)

– let’s denote 𝐵 = 28(𝑘−2), i.e. PKCS conforming block: 2𝐵 ≤ 𝑚 < 3𝐵

– ciphertext is called PKCS conforming if its decryption is PKCS conf.
18 / 23

Bleichenbacher’s attack on PKCS #1 v1.5 (2)

– given 𝑐 ∈ ℤ𝑛 the attacker wants to compute 𝑚 = 𝑐𝑑 mod𝑛

– modifying 𝑐 and testing PKCS conformity

– sequence of gradually narrower intervals for 𝑚

– single element 𝑚 at the end

19 / 23

Bleichenbacher’s attack on PKCS #1 v1.5 (3)

– Impact:
▫ SSL/TLS (≤ 1.2) RSA key exchange method: client sends pre-master secre encrypted

with server’s public key (PKCS#1 v1.5)
▫ decryption of the pre-master secret yields the session keys
▫ careful implementation needed, see TLS 1.2 (RFC 5246)
▫ when relevant, the attack allows to create a PKCS #1 v1.5 signature of arbitrary

message (using server’s private key)

– ROBOT (Return Of Bleichenbacher’s Oracle Threat)
▫ attack on TLS after 19 years (2018)
▫ advice: disable all TLS_RSA ciphersuits
▫ non-standard message flow (shortened)
▫ different responses: different alert codes, TCP FIN, TCP timeout, TCP reset, two

alerts …

20 / 23

Manger’s attack

– Does OAEP help (it is almost impossible to generate a valid ciphertext)?

– Manger’s attack (2001): compute 𝑚 = 𝑐𝑑 mod𝑛 for any 𝑐

– assumption: access to the following oracle:
▫ Given 𝑐′, is the first byte of (𝑐′)𝑑 mod𝑛 zero?
▫ let 𝑘 be the byte length of 𝑛, and 𝐵 = 28(𝑘−1)

▫ oracle: (𝑐′)𝑑 mod𝑛 < 𝐵

– recognizing bad first byte vs. bad internal integrity of decrypted block

– gradually reduce an interval of possible 𝑚 values

– can be adapted to PKCS #1 v1.5

– there are also improvements to Bleichenbacher’s attack

21 / 23

Other implementation attacks – examples

– Timing attacks
▫ straightforward implementation of modular exponentiation
▫ computation time of 𝐷(𝑐) depends on 𝑐, 𝑑, and 𝑛
▫ statistical correlation analysis to recover 𝑑 from many samples (𝑐𝑖 , time𝑖)
▫ variant used to attack SSL implementation (2003) with approx. million queries for

extracting private key and factoring 1024 bit modulus 𝑛
▫ prevention: blinding

– Fault attacks
▫ induce faults while executing sensitive operations
▫ heat, power spikes, clock glitches, etc.
▫ example: fault in a single value/computation in RSA CRT (signature computation) –

correct and fault signatures yield the factorization of 𝑛

22 / 23

Exercises

1. RSA scheme with 𝑒 = 65537 and 𝑛 =
801860847507624886140133839652815357828782094520183682479578080024452428859227726910
641423027603913983548331512602326350283474729111029742145073919363642249363628489895
795971753495533488935539263431687345671578410331881503525921663076124829259776184191
599781796929725453511167031504339786003096959600079792603853567758187849982210730797
2159780436264034774632677

Knowing that the primes are close to each other, decrypt this ciphertext:
345272911433393233437681526610827690130475598216057582763441544374951974921180826850
623863494836328668463889988389516103289343619762729430403328919877670058609537312197
662455100246209558619751831148971003251958868778730865744427012210921192526381651442
466713721312999131662908592801825844871441590869892748177511207116788459219268787996
2398266421762231336132205

2. Create and test an example for decrypting linearly dependent plaintext encrypted
without padding in RSA scheme with small public exponent.

23 / 23

	RSA scheme
	Hybrid encryption
	Real world – key transport (key encapsulation mechanism)
	Factorization and RSA
	RSA problem
	Problems with primes
	Problems with primes (2)
	General factorization algorithms
	Small message (plaintext) space
	Small public exponent – broadcast
	Small public exponent – broadcast (2)
	Small public exponent – related messages
	Small private exponent
	Some applications of Coppersmith's theorem
	Using homomorphism of RSA
	Half predicate
	Parity predicate
	Bleichenbacher's attack on PKCS #1 v1.5 (1)
	Bleichenbacher's attack on PKCS #1 v1.5 (2)
	Bleichenbacher's attack on PKCS #1 v1.5 (3)
	Manger's attack
	Other implementation attacks – examples
	Exercises

