Security of RSA
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

RSA scheme

- n =p - q (product of two distinct primes)

- e-d=1(moden)), wherep(n) =(p—1)(q—1)
— public key: (e, n)

— private exponent: d

— public/private transforms E,D : Z,, = Z,
=« E(m) =m®modn
= D(c) = c?*modn

1/23

Hybrid encryption

- encrypting long messages

— encryption of message m for recipient A (his public key is pky):

(Ere(m), Exeh (k)

- notation:
= F - symmetric cipher (e.g. AES)
=k - random symmetric key for E
" Eﬁf‘j — RSA encryption with A’s public key

— A can decrypt easily

— advantages: key management (asymmetric scheme), speed

— the security depends on both constructions

2 /23

Real world - key transport (key encapsulation mechanism)

— usually wrapping symmetric keys, providing confidentiality and integrity

— key transport
= RFC 5990: Use of the RSA-KEM Key Transport Algorithm in the Cryptographic
Message Syntax (CMS)
= NIST SP 800-56B rev. 2: Recommendation for Pair-Wise Key-Establishment
Schemes Using Integer Factorization Cryptography;
various schemes, e.g., KTS-OAEP: Key-Transport Using RSA-OAEP

3 /23

Factorization and RSA

— factorization = compute the private key = decryption (trivial)
— decryption (knowing only the public key) =?= factorization (open)

— knowledge of ¢(n) is equivalent to factorization
= [&] trivial
= [=] solving 2 equations with 2 variables:
n=p-q
p(n) =(P-D(@-1)
- knowledge of d is equivalent to factorization
= [&] trivial
= [=] more complicated procedure needed

— corollary: do not share n among group of users

4 /23

RSA problem

RSA problem

Given (e,n) and ¢ € Z,, compute m such that m¢ = ¢ (mod n).

— RSA problem is not more difficult than factorization
= (open problem) Is the RSA problem as difficult as factorization or easier?

5/ 23

Problems with primes

- specific algorithms for factorization, when p, g satisfy some properties, for example:
= small [p —q|,
= p—1(or q— 1) without a large prime factor, etc.

— suspicious methods of generating primes, for example:
= weak or poorly initialized PRNG
= primes with some internal structure (“optimization”)

- Lenstraetal. (2012)
= 11.4 million RSA moduli (X.509 certificates, PGP keys)
= 26965 (incl. 10 RSA-2048) vulnerable (shared a single common prime factor)

6 /23

Problems with primes (2)

— Bernstein et al. (2013)
= Taiwan’s national Citizen Digital Certificate database

= generated by government-issued smart cards (certified)
= 3.2 million unique RSA moduli

= 103 moduli factored by computing the gcd (sharing a prime divisor)
= observing non-randomness in the primes ... 184 distinct 1024-bit RSA keys factored

— Nemecetal. (2017)

= problem with “FastPrime” method for primes generation implemented in library for
particular hardware chips
= factor public modulus

= [D cards - Estonia (750.000), Slovakia (300.000), ...

7 /23

General factorization algorithms

— General number field sieve (GNFS)

— heuristic complexity: symmetric RSA
80 1024

3 1/3 2/3
exp((\/64/9 + 0(1))(lnn) (Inlnn)) 112 2048
- equivalent key lengths 128 3072
= NIST Recommendations (SP 800-57 part 1 rev. 5) 192 7680
(2020), see the table — 256 15360

— other estimates are compared at Keylength.com

8 /23

https://www.keylength.com

Small message (plaintext) space

— RSA scheme is deterministic (the textbook version)

— small plaintext space:
= such as {yes, no, maybe}
= attacker can compute E (m) for any m and compare the result with the ciphertext

— potential plaintexts can be tested regardless of plaintext space

— randomization with padding

random plaintext

= s it secure (can you prove it)?
= see OAEP for provable security

9 /23

Small public exponent - broadcast

— small exponent - speed
— let e = 3 for three recipients A, B, C with moduli ng4, ng, n,
— broadcasting m:
¢y, = m3 modny
cg = m3 modng
cc = m3modn,
— an attacker solves the system of congruences (CRT):

x = cy (modny)
x = cg (modng)

x = cc (modn,)

10/ 23

Small public exponent - broadcast (2)

— solution x (obtained from CRT) and m? satisfy the system of congruences, thus

x = m3 (modnyngnc)
— 3 i
- x =m?,sincem < ny,ng,Nc
— m can be computed as a cube root of x

— padding as a prevention

11/ 23

Small public exponent - related messages

- m4, m, linearly dependent messages; c; = E(m4), c, = E(mm,)
- da,b € Z: m, = amq + b, the attacker knows a, b
— variable z (m; is a root of the following polynomials):
z¢ — ¢y =0 (modn)

(az+ b)¢ —c, = 0 (modn)
- (z — m,) divides both polynomials
- gcd(z® — ¢4, (az + b)® — ¢,) reveals m4, and subsequently m,
— easy to generalize for any known polynomial relation

— prevention: suitable padding
= not every padding is secure (see Coppersmith’s attack)

12 /23

Small private exponent

— motivation: fast decryption
— implementation: choose d first, e computed afterward

— results - d can be computed from a public key:
= Wiener (1990): d < n%%°/3 (continued fraction)

= Boneh, Durfee (1999): d < n%2°? (Coppersmith, LLL)
= some other improvements exist

— do not “optimize” d (!)

13 /23

Some applications of Coppersmith’s theorem

— Coppersmith’s theorem - finding all small solutions of modular polynomial equation
- computing plaintext when using short/improper padding (and small e)
— computing primes given some fraction of their bits

— reconstructing d given some fraction of its bits

14 /23

Using homomorphism of RSA

- E(my -my) = E(m4) - E(m,), computations are mod n
— let’s assume, that [-bit symmetric key k is encrypted, i.e. k < 2

— the attacker pre-computes E (1), E(2), E(3), ..., E(Zl/z), and stores the values (E (i), i) in
a hash table

— ifk = ky - ky, for k; < 2U/2:
= the attacker tries k; = 1,2, 3, ..., 2/?, and searches c¢/E (k) = E(k/k,) in the table
= a match yields k4, k, (and therefore k)

- time complexity 0(2Y2)
— increasing the number of pre-computed values = higher probability of success

— (1) for small e, such as e = 3, the attacker can compute 3/c directly (if k> < n)

15/ 23

Half predicate

- Knowing a ciphertext — can anything be computed about the plaintext?
— (textbook) RSA is not semantically secure (e.g. testing any plaintext)
— oracle half(c) = 0if 0 < m < n/2, or 1 otherwise

- we decrypt any c using predicate half():

half(c) =0 < me{0,..|n/2|}
half(c- E(2)) =0 < me{0,..|n/4]}u{[2n/4],..|3n/4]}
half(c - E(22)) =0 & me{0,..|n/8]}U ..

~ we can compute m by binary search; ¢ - E(2!) = E(m - 2!)

- remark: d is not used nor computed in this attack

16 /23

Parity predicate

— similarly to half(), we can use the predicate parity()
= parity(c) = m & 0x1

- relation between predicates: half(c) = parity(c - E(2))

= if0 <m < n/2:
then 0 < 2m < n and the plaintext corresponding to c - E(2) is even

= ifn/2 <m < n:
thenn<2m<2n = 2mmodn=2m —n,
i.e. the plaintext corresponding to ¢ - E(2) is odd

17 /23

Bleichenbacher’s attack on PKCS #1 v1.5 (1)

— chosen ciphertext attack (1998)
— PKCS#1 v1.5 oracle (error message, timing, etc.) = decryption of arbitrary ciphertext

- PKCS#1 v1.5 padding:

00 | 02 | = 8 non-zero bytes | 00 | message

- k - byte length of n; 28¢¢—1) < n < 28k

— PKCS conforming block:
1. starts with bytes 00 02
2. bytes 3, ..., 10 are non-zero
3. there is some 00 byte later (bytes 11, ..., k)

— let’s denote B = 28(¢=2) je. PKCS conforming block: 2B < m < 3B

— ciphertext is called PKCS conforming if its decryption is PKCS conf.
18 /23

Bleichenbacher’s attack on PKCS #1 v1.5 (2)

- given c € Z, the attacker wants to compute m = ¢
- modifying ¢ and testing PKCS conformity
— sequence of gradually narrower intervals for m

— single element m at the end

d

modn

19 /23

Bleichenbacher’s attack on PKCS #1 v1.5 (3)

- Impact:
= SSL/TLS (< 1.2) RSA key exchange method: client sends pre-master secre encrypted
with server’s public key (PKCS#1 v1.5)
= decryption of the pre-master secret yields the session keys
= careful implementation needed, see TLS 1.2 (RFC 5246)
= when relevant, the attack allows to create a PKCS #1 v1.5 signature of arbitrary
message (using server’s private key)

— ROBOT (Return Of Bleichenbacher’s Oracle Threat)
= attack on TLS after 19 years (2018)
= advice: disable all TLS_RSA ciphersuits
= non-standard message flow (shortened)
= different responses: different alert codes, TCP FIN, TCP timeout, TCP reset, two
alerts ...

20 /23

Manger’s attack

— Does OAEP help (it is almost impossible to generate a valid ciphertext)?

d

— Manger’s attack (2001): compute m = ¢* modn for any ¢

— assumption: access to the following oracle:
= Given ¢, is the first byte of (c’)d mod n zero?
= let k be the byte length of n, and B = 28(*—1)
= oracle: (c’)d modn < B

— recognizing bad first byte vs. bad internal integrity of decrypted block
— gradually reduce an interval of possible m values
— can be adapted to PKCS #1 v1.5

— there are also improvements to Bleichenbacher’s attack

21/23

Other implementation attacks - examples

— Timing attacks
= straightforward implementation of modular exponentiation
= computation time of D(c) dependsonc, d, and n
= statistical correlation analysis to recover d from many samples (c;, time;)
= variant used to attack SSL implementation (2003) with approx. million queries for
extracting private key and factoring 1024 bit modulus n
= prevention: blinding

— Fault attacks
= induce faults while executing sensitive operations
= heat, power spikes, clock glitches, etc.
= example: fault in a single value/computation in RSA CRT (signature computation) -
correct and fault signatures yield the factorization of n

22 /23

Exercises

1. RSA scheme with e = 65537 and n =

801860847507624886140133839652815357828782094520183682479578080024452428859227726910
641423027603913983548331512602326350283474729111029742145073919363642249363628489895
795971753495533488935539263431687345671578410331881503525921663076124829259776184191
599781796929725453511167031504339786003096959600079792603853567758187849982210730797
2159780436264034774632677

Knowing that the primes are close to each other, decrypt this ciphertext:

345272911433393233437681526610827690130475598216057582763441544374951974921180826850
623863494836328668463889988389516103289343619762729430403328919877670058609537312197
662455100246209558619751831148971003251958868778730865744427012210921192526381651442
466713721312999131662908592801825844871441590869892748177511207116788459219268787996
2398266421762231336132205

2. Create and test an example for decrypting linearly dependent plaintext encrypted
without padding in RSA scheme with small public exponent.,

23 /23

	RSA scheme
	Hybrid encryption
	Real world – key transport (key encapsulation mechanism)
	Factorization and RSA
	RSA problem
	Problems with primes
	Problems with primes (2)
	General factorization algorithms
	Small message (plaintext) space
	Small public exponent – broadcast
	Small public exponent – broadcast (2)
	Small public exponent – related messages
	Small private exponent
	Some applications of Coppersmith's theorem
	Using homomorphism of RSA
	Half predicate
	Parity predicate
	Bleichenbacher's attack on PKCS #1 v1.5 (1)
	Bleichenbacher's attack on PKCS #1 v1.5 (2)
	Bleichenbacher's attack on PKCS #1 v1.5 (3)
	Manger's attack
	Other implementation attacks – examples
	Exercises

