Security of RSA

Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

RSA scheme

- $-n = p \cdot q$ (product of two distinct primes)
- $-e \cdot d \equiv 1 \pmod{\varphi(n)}$, where $\varphi(n) = (p-1)(q-1)$
- public key: (e, n)
- private exponent: *d*
- public/private transforms $E, D: \mathbb{Z}_n \to \mathbb{Z}_n$
 - $E(m) = m^e \mod n$
 - $D(c) = c^d \bmod n$

Hybrid encryption

- encrypting long messages
- encryption of message m for recipient A (his public key is pk_A):

$$\langle E_k(m), E_{\mathsf{pk}_A}^{\mathsf{RSA}}(k) \rangle$$

- notation:
 - *E* symmetric cipher (e.g. AES)
 - k random symmetric key for E
 - $E_{pk_A}^{RSA}$ RSA encryption with A's public key
- A can decrypt easily
- advantages: key management (asymmetric scheme), speed
- the security depends on both constructions

Real world – key transport (key encapsulation mechanism)

- usually wrapping symmetric keys, providing confidentiality and integrity
- key transport
 - RFC 5990: Use of the RSA-KEM Key Transport Algorithm in the Cryptographic Message Syntax (CMS)
 - NIST SP 800-56B rev. 2: Recommendation for Pair-Wise Key-Establishment Schemes Using Integer Factorization Cryptography;
 various schemes, e.g., KTS-OAEP: Key-Transport Using RSA-OAEP

Factorization and RSA

- factorization \Rightarrow compute the private key \Rightarrow decryption (trivial)
- decryption (knowing only the public key) =?⇒ factorization (open)
- knowledge of $\varphi(n)$ is equivalent to factorization
 - [←] trivial
 - □ [⇒] solving 2 equations with 2 variables:

$$n = p \cdot q$$
$$\varphi(n) = (p-1)(q-1)$$

- knowledge of d is equivalent to factorization
 - [←] trivial
 - [⇒] more complicated procedure needed
- corollary: do not share *n* among group of users

RSA problem

RSA problem

Given (e, n) and $c \in \mathbb{Z}_n$, compute m such that $m^e \equiv c \pmod{n}$.

- RSA problem is not more difficult than factorization
 - (open problem) Is the RSA problem as difficult as factorization or easier?

Problems with primes

- specific algorithms for factorization, when p, q satisfy some properties, for example:
 - small |p-q|,
 - p-1 (or q-1) without a large prime factor, etc.
- suspicious methods of generating primes, for example:
 - weak or poorly initialized PRNG
 - primes with some internal structure ("optimization")
- Lenstra et al. (2012)
 - 11.4 million RSA moduli (X.509 certificates, PGP keys)
 - 26965 (incl. 10 RSA-2048) vulnerable (shared a single common prime factor)

Problems with primes (2)

- Bernstein et al. (2013)
 - Taiwan's national Citizen Digital Certificate database
 - generated by government-issued smart cards (certified)
 - 3.2 million unique RSA moduli
 - 103 moduli factored by computing the gcd (sharing a prime divisor)
 - observing non-randomness in the primes ... 184 distinct 1024-bit RSA keys factored
- Nemec et al. (2017)
 - problem with "FastPrime" method for primes generation implemented in library for particular hardware chips
 - factor public modulus
 - ID cards Estonia (750.000), Slovakia (300.000), ...

General factorization algorithms

- General number field sieve (GNFS)
- heuristic complexity:

$$\exp\left(\left(\sqrt[3]{64/9} + o(1)\right)(\ln n)^{1/3}(\ln \ln n)^{2/3}\right)$$

- equivalent key lengths
 - NIST Recommendations (SP 800-57 part 1 rev. 5) (2020), see the table \rightarrow
- other estimates are compared at Keylength.com

symmetric	RSA	
80	1024	
112	2048	
128	3072	
192	7680	
256	15360	

Small message (plaintext) space

- RSA scheme is deterministic (the textbook version)
- small plaintext space:
 - such as {yes, no, maybe}
 - attacker can compute E(m) for any m and compare the result with the ciphertext
- potential plaintexts can be tested regardless of plaintext space
- randomization with padding

random plaintext

- is it secure (can you prove it)?
- see OAEP for provable security

Small public exponent – broadcast

- small exponent speed
- let e = 3 for three recipients A, B, C with moduli n_A, n_B, n_C
- broadcasting *m*:

$$c_A = m^3 \mod n_A$$

 $c_B = m^3 \mod n_B$
 $c_C = m^3 \mod n_C$

- an attacker solves the system of congruences (CRT):

$$x \equiv c_A \pmod{n_A}$$

 $x \equiv c_B \pmod{n_B}$
 $x \equiv c_C \pmod{n_C}$

Small public exponent – broadcast (2)

- solution x (obtained from CRT) and m^3 satisfy the system of congruences, thus

$$x \equiv m^3 \pmod{n_A n_B n_C}$$

- $x = m^3$, since $m < n_A, n_B, n_C$
- m can be computed as a cube root of x
- padding as a prevention

Small public exponent – related messages

- m_1 , m_2 linearly dependent messages; $c_1 = E(m_1)$, $c_2 = E(m_2)$
- $-\exists a, b \in \mathbb{Z}$: $m_2 = am_1 + b$, the attacker knows a, b
- variable z (m_1 is a root of the following polynomials):

$$z^{e} - c_{1} \equiv 0 \pmod{n}$$
$$(az + b)^{e} - c_{2} \equiv 0 \pmod{n}$$

- $(z m_1)$ divides both polynomials
- $gcd(z^e c_1, (az + b)^e c_2)$ reveals m_1 , and subsequently m_2
- easy to generalize for any known polynomial relation
- prevention: suitable padding
 - not every padding is secure (see Coppersmith's attack)

Small private exponent

- motivation: fast decryption
- implementation: choose *d* first, *e* computed afterward
- results d can be computed from a public key:
 - Wiener (1990): $d < n^{0.25}/3$ (continued fraction)
 - Boneh, Durfee (1999): $d < n^{0.292}$ (Coppersmith, LLL)
 - some other improvements exist
- do not "optimize" d (!)

Some applications of Coppersmith's theorem

- Coppersmith's theorem finding all small solutions of modular polynomial equation
- computing plaintext when using short/improper padding (and small e)
- computing primes given some fraction of their bits
- reconstructing *d* given some fraction of its bits

Using homomorphism of RSA

- $E(m_1 \cdot m_2) = E(m_1) \cdot E(m_2)$, computations are mod n
- let's assume, that l-bit symmetric key k is encrypted, i.e. $k < 2^l$
- the attacker pre-computes E(1), E(2), E(3), ..., $E(2^{l/2})$, and stores the values $\langle E(i), i \rangle$ in a hash table
- if $k = k_1 \cdot k_2$, for $k_i \le 2^{l/2}$:
 - the attacker tries $k_1 = 1, 2, 3, ..., 2^{l/2}$, and searches $c/E(k_1) = E(k/k_1)$ in the table
 - a match yields k_1 , k_2 (and therefore k)
- time complexity $O(2^{l/2})$
- increasing the number of pre-computed values ⇒ higher probability of success
- (!) for small e, such as e = 3, the attacker can compute $\sqrt[3]{c}$ directly (if $k^3 < n$)

Half predicate

- Knowing a ciphertext can anything be computed about the plaintext?
- (textbook) RSA is not semantically secure (e.g. testing any plaintext)
- oracle half(c) = 0 if $0 \le m < n/2$, or 1 otherwise
- we decrypt any *c* using predicate half():

half
$$(c) = 0 \iff m \in \{0, ..., \lfloor n/2 \rfloor\}$$

half $(c \cdot E(2)) = 0 \iff m \in \{0, ..., \lfloor n/4 \rfloor\} \cup \{\lceil 2n/4 \rceil, ..., \lfloor 3n/4 \rfloor\}$
half $(c \cdot E(2^2)) = 0 \iff m \in \{0, ..., \lfloor n/8 \rfloor\} \cup ...$

- we can compute m by binary search; $c \cdot E(2^l) = E(m \cdot 2^l)$
- remark: *d* is not used nor computed in this attack

Parity predicate

- similarly to half(), we can use the predicate parity()
 - parity(c) = m & 0x1
- relation between predicates: half(c) = parity($c \cdot E(2)$)
 - if $0 \le m < n/2$: then $0 \le 2m < n$ and the plaintext corresponding to $c \cdot E(2)$ is even
 - if n/2 < m < n: then $n \le 2m < 2n \implies 2m \mod n = 2m - n$, i.e. the plaintext corresponding to $c \cdot E(2)$ is odd

Bleichenbacher's attack on PKCS #1 v1.5 (1)

- chosen ciphertext attack (1998)
- PKCS#1 v1.5 oracle (error message, timing, etc.) \Rightarrow decryption of arbitrary ciphertext
- PKCS#1 v1.5 padding:

00 02	≥ 8 non-zero bytes	00	message
-------	--------------------	----	---------

- k byte length of n; $2^{8(k-1)} \le n < 2^{8k}$
- PKCS conforming block:
 - 1. starts with bytes 00 02
 - 2. bytes 3, ..., 10 are non-zero
 - 3. there is some 00 byte later (bytes 11, ..., k)
- let's denote $B = 2^{8(k-2)}$, i.e. PKCS conforming block: $2B \le m < 3B$
- ciphertext is called PKCS conforming if its decryption is PKCS conf.

Bleichenbacher's attack on PKCS #1 v1.5 (2)

- given $c \in \mathbb{Z}_n$ the attacker wants to compute $m = c^d \mod n$
- modifying c and testing PKCS conformity
- sequence of gradually narrower intervals for m
- single element *m* at the end

Bleichenbacher's attack on PKCS #1 v1.5 (3)

- Impact:

- SSL/TLS (≤ 1.2) RSA key exchange method: client sends *pre-master secre* encrypted with server's public key (PKCS#1 v1.5)
- decryption of the pre-master secret yields the session keys
- careful implementation needed, see TLS 1.2 (RFC 5246)
- when relevant, the attack allows to create a PKCS #1 v1.5 signature of arbitrary message (using server's private key)
- ROBOT (Return Of Bleichenbacher's Oracle Threat)
 - attack on TLS after 19 years (2018)
 - advice: disable all TLS_RSA ciphersuits
 - non-standard message flow (shortened)
 - different responses: different alert codes, TCP FIN, TCP timeout, TCP reset, two alerts ...

Manger's attack

- Does OAEP help (it is almost impossible to generate a valid ciphertext)?
- Manger's attack (2001): compute $m = c^d \mod n$ for any c
- assumption: access to the following oracle:
 - Given c', is the first byte of $(c')^d \mod n$ zero?
 - let k be the byte length of n, and $B = 2^{8(k-1)}$
 - oracle: $(c')^d \mod n < B$
- recognizing bad first byte vs. bad internal integrity of decrypted block
- gradually reduce an interval of possible m values
- can be adapted to PKCS #1 v1.5
- there are also improvements to Bleichenbacher's attack

Other implementation attacks – examples

- Timing attacks
 - straightforward implementation of modular exponentiation
 - computation time of D(c) depends on c, d, and n
 - statistical correlation analysis to recover d from many samples $(c_i, time_i)$
 - variant used to attack SSL implementation (2003) with approx. million queries for extracting private key and factoring 1024 bit modulus n
 - prevention: blinding
- Fault attacks
 - induce faults while executing sensitive operations
 - heat, power spikes, clock glitches, etc.
 - example: fault in a single value/computation in RSA CRT (signature computation) correct and fault signatures yield the factorization of n

Exercises

1. RSA scheme with e = 65537 and n =

8018608475076248861401338396528153578287820945201836824795780800244524288592277269106414230276039139835483315126023263502834747291110297421450739193636422493636284898957959717534955334889355392634316873456715784103318815035259216630761248292597761841915997817969297254535111670315043397860030969596000797926038535677581878499822107307972159780436264034774632677

Knowing that the primes are close to each other, decrypt this ciphertext:

 $345272911433393233437681526610827690130475598216057582763441544374951974921180826850\\623863494836328668463889988389516103289343619762729430403328919877670058609537312197\\662455100246209558619751831148971003251958868778730865744427012210921192526381651442\\466713721312999131662908592801825844871441590869892748177511207116788459219268787996\\2398266421762231336132205$

2. Create and test an example for decrypting linearly dependent plaintext encrypted without padding in RSA scheme with small public exponent.