Discrete logarithm and related schemes

Martin Stanek
Department of Computer Science
Comenius University
stanek@dcs.fmph.uniba.sk

Cryptology 1 (2023/24)

Content

Discrete logarithm problem examples, equivalent key lengths choosing a base for DLOG

Encryption schemes
ElGamal

Elliptic curves

Discrete logarithm problem

- Given a finite group (G, \cdot) and elements $g, y \in G$. Compute $x \in \mathbb{Z}$ such that $g^{x}=y$.
- usually cyclic (sub)groups with generator g are used
- DLOG is easy/hard depending on the group G
- Easy:
- $\left(\mathbb{Z}_{n},+\right)$ - DLOG by solving congruence $g x \equiv y(\bmod n)$
- Hard:
- $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ for prime p; usually with g generating a subgroup of large prime order q
- Elliptic curve groups (various curve types over various finite fields)

Example of DLOG in $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$

- let $p=11$
- case $1: g=5$

x	0	1	2	3	4	5	6	7	8	9	10
$5^{x} \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

- $\log _{5} 9=4 ; \log _{5} 7$ does not exist
- case 2: $g=7$

x	0	1	2	3	4	5	6	7	8	9	10
$7^{x} \bmod 11$	1	7	5	2	3	10	4	6	9	8	1

- $\log _{7} 2=3 ; \log _{7} 10=5$

Solving "hard" instances of DLOG

- $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
- Specific algorithms, e.g. when $p-1$ lacks large prime factor
- General algorithm: Number Field Sieve for DLOG - complexity as GNFS for factorization (\Rightarrow equal key length)
- Generic algorithms
- work for any cyclic group
- the best algorithms for some groups, e.g. elliptic curve groups
- complexity $O\left(n^{1 / 2}\right)$, for $n=|G|$
- algorithms: baby-step/giant-step, Pollard's ρ, Pohlig-Hellman

Equivalent key lengths

symmetric	modular (subgroup)	elliptic curves
80	$1024(160)$	160
112	$2048(224)$	224
128	$3072(256)$	256
192	$7680(384)$	384
256	$15360(512)$	512

NIST Recommendations (SP 800-57 part 1 rev. 5) (2020) various methods are compared at www.keylength.com

Selection of the base is irrelevant for DLOG

- g, h - generators of $G,|G|=n$
- y-input
- if DLOG w.r.t. the base h can be computed efficiently, then DLOG w.r.t the base g can be computed:

1. compute $a, b: h^{a}=g, h^{b}=y$
2. $g^{b a^{-1}}=\left(h^{a}\right)^{b a^{-1}}=h^{b}=y$, where the inverse is computed $\bmod n$

- since g, h are generators, the inverse $a^{-1} \bmod n$ must exist
- For some constructions, e.g. ElGamal digital signature scheme, it is important to choose the generator carefully (there are strong and weak ones)!

How to choose a generator of $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$

- generator of $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
- assume $p=2 q+1$ for a prime number q (p is called a "safe" prime)
$-\left|\mathbb{Z}_{p}^{*}\right|=p-1$, thus any element has order in $\{1,2, q, p-1\}$
- there are $\varphi(p-1)=\varphi(2) \varphi(q)=q-1$ generators
- the probability of a random element being a generator is

$$
(q-1) /(p-1)=(q-1) /(2 q) \approx 50 \%
$$

- testing: $g \notin\{1,-1\}$ is a generator $\Leftrightarrow g^{q} \bmod p \neq 1$
- generator of a subgroup
- assume a prime $q \mid(p-1)$
- choose random h and compute $g=h^{(p-1) / q} \bmod p$; if $g=1$ choose again
- trivially $g^{q} \equiv 1(\bmod p)($ FLT $)$, so we have $\operatorname{ord}(g) \mid q$
- since $\operatorname{ord}(g)>1$, it follows $\operatorname{ord}(g)=q$
- useful for working in smaller subgroup (shorter exponents are used)

Security of the last bit(s) of DLOG in $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$

- let g be a generator of $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
- we can write $p=2^{s} t+1$ for $s \geq 1$ and some odd t
- input: $y \in \mathbb{Z}_{p}^{*}$
- let x be the DLOG of y, i.e. $g^{x} \bmod p=y$
- we use the binary representation of $x=\left(x_{l} \ldots x_{1} x_{0}\right)_{2}=2^{l} x_{l}+\ldots+2 x_{1}+x_{0}$
- compute:

$$
y^{(p-1) / 2} \equiv g^{x(p-1) / 2} \equiv g^{x_{0}(p-1) / 2} \equiv\left\{\begin{array}{ll}
1 & \text { if } x_{0}=0 \\
-1 & \text { if } x_{0}=1
\end{array} \quad(\bmod p)\right.
$$

- x_{0} can be found
- we can continue for s bits
- let us assume that x_{0}, \ldots, x_{i-1} are known $(i<s)$
- compute $(\bmod p)$:

$$
\begin{aligned}
\left(y \cdot g^{-\left(x_{0}+\ldots+2^{i-1} x_{i-1}\right)}\right)^{(p-1) / 2^{i+1}} & \equiv g^{\left(2^{i} x_{i}+\ldots+2^{l} x_{l}\right)(p-1) / 2^{i+1}} \\
& \equiv g^{x_{i}(p-1) / 2} \equiv \begin{cases}1 & \text { if } x_{i}=0 \\
-1 & \text { if } x_{i}=1\end{cases}
\end{aligned}
$$

- cannot be extended for more than s bits
- we can limit the "damage" to a single bit by choosing a safe prime

ElGamal encryption scheme

- ElGamal (1985)
- example: originally, a default algorithm in GPG (still an option for public-key encryption in GPG)
- variants exists (what (sub)groups are used)
- Initialization:

1. choose a large random prime p, and a generator g of $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
2. choose a random $x \in\{1, \ldots, p-2\}$
3. $y=g^{x} \bmod p$

- public key: y, p, g (the values p, g can be shared)
- private key: x

ElGamal - encryption and decryption

- Encryption (plaintext $m \in \mathbb{Z}_{p}^{*}$):

$$
(r, s)=\left(g^{k} \bmod p, y^{k} \cdot m \bmod p\right), \quad \text { for random } k \in \mathbb{Z}_{p-1}
$$

- Decryption (ciphertext (r, s), computation $\bmod p$):

$$
s \cdot r^{-x}=y^{k} \cdot m \cdot r^{-x}=g^{x k} \cdot g^{-x k} \cdot m=m
$$

- encryption: two exponentiations; decryption: single exponentiation
- $r=g^{k}$ and y^{k} can be precomputed
- randomized encryption: 1 plaintext maps to approx. p ciphertexts
- security of the private key: DLOG problem
- knowledge of k allows to decrypt without $x: s \cdot y^{-k}=m$
- computing k from r : DLOG problem

Remarks

- Reusing k :
$\checkmark m_{1} \mapsto\left(r, s_{1}\right), m_{2} \mapsto\left(r, s_{2}\right)$, we can compute $s_{1} / s_{2}=m_{1} / m_{2}$
- Homomorphic property:
- encryptions of two plaintexts m_{1}, m_{2} :

$$
m_{1} \mapsto\left(r_{1}, s_{1}\right)=\left(g^{k_{1}}, y^{k_{1}} \cdot m_{1}\right), m_{2} \mapsto\left(r_{2}, s_{2}\right)=\left(g^{k_{2}}, y^{k_{2}} \cdot m_{2}\right)
$$

- multiplying the ciphertexts:

$$
\left(r_{1} \cdot r_{2}, s_{1} \cdot s_{2}\right)=\left(g^{k_{1}+k_{2}}, y^{k_{1}+k_{2}} \cdot\left(m_{1} \cdot m_{2}\right)\right)
$$

- Simple malleability:
- $(r, s) \mapsto\left(r, s \cdot m^{\prime}\right)$ changes the plaintext from m to $m \cdot m^{\prime}$
- Blinding (CCA):
- access to a CCA oracle
- How to decrypt (r, s) if the oracle won't decrypt this message?
- use $\left(r g^{c}, s y^{c} \cdot m^{\prime}\right)$ for a random value c and m^{\prime}
- after decryption we get a message $m \cdot m^{\prime}$, so m can be recovered easily

ElGamal - security and CDH

- Computational Diffie-Hellman problem (CDH):
- compute $g^{a b}$ given g, g^{a}, g^{b} for random generator g, and random a, b
- DLOG $\Rightarrow \mathrm{CDH}$ (opposite direction is open in general)
- ElGamal decryption without the private key $\Leftrightarrow \mathrm{CDH}$
\Leftarrow use CDH to compute $g^{x k}$ from $r=g^{k}$ and $y=g^{x}$; then the plaintext can be computed: $m=s \cdot\left(g^{x k}\right)^{-1}$
\Rightarrow input: g^{a}, g^{b}
set $y=\left(g^{a}\right)^{-1}, r=g^{b}$ and $s=g^{c}$ for a random c use the decryption oracle for y and (r, s) to get the value $m=s \cdot r^{a}=g^{c+a b}$ finally, divide m by $s: m \cdot s^{-1}=g^{c+a b} \cdot g^{-c}=g^{a b}$

What is a quadratic residue?

- $a \in \mathbb{Z}_{n}^{*}$ is called a quadratic residue modulo n if there exists an integer b such that $b^{2} \equiv a(\bmod n)$
- otherwise a is called a quadratic nonresidue modulo n
- QR_{n} - the set of all quadratic residues modulo n
- QNR_{n} - the set of all quadratic nonresidues modulo n
- trivially $\mathrm{QR}_{n} \cup \mathrm{QNR}_{n}=\mathbb{Z}_{n}^{*}$
- it is easy to test quadratic residuity modulo prime:
[Euler's criterion] Let $p>2$ be a prime and $a \in \mathbb{Z}_{p}^{*}$. Then $a \in \mathrm{QR}_{p} \Leftrightarrow a^{(p-1) / 2} \equiv 1(\bmod p)$.

Semantic "insecurity" of ElGamal

- we can test the parity of k (it is the last bit of discrete logarithm of r)
- another view: for a generator g we have $r \in \mathrm{QR}_{p} \Leftrightarrow k$ is even
- for even $k: s \in \mathrm{QR}_{p} \Leftrightarrow m \in \mathrm{QR}_{p}$
- for odd k :
- if $y \in \mathrm{QR}_{p}: s \in \mathrm{QR}_{p} \Leftrightarrow m \in \mathrm{QR}_{p}$
- if $y \in \mathrm{QNR}_{p}: s \in \mathrm{QR}_{p} \Leftrightarrow m \in \mathrm{QNR}_{p}$
- we can compute "something" about m from the ciphertext and y
- how to achieve semantic security:
- use a subgroup QR_{p} for a safe prime $p=2 q+1$ (or a general cyclic group of some prime order) and assume the hardness of a DDH problem in this group
- DDH (Decisional Diffie-Hellman) problem: efficiently distinguish triplets $\left(g^{a}, g^{b}, g^{a b}\right)$ and $\left(g^{a}, g^{b}, g^{c}\right)$ where c is random
- there are groups where CDH seems to be hard and DDH is easy (e.g. $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, elliptic-curve groups with pairing)

Some variants of ElGamal scheme

- ElGamal in a general cyclic group:
- $|G|=q$ (for prime q) with generator g
- private key: $x \in \mathbb{Z}_{q}^{*}$; public key $y=g^{x}$
- encryption of $m \in G:(r, s)=\left(g^{k}, m \cdot y^{k}\right)$ for random $k \in \mathbb{Z}_{q}^{*}$
- decryption of $(r, s): s \cdot r^{-x}=m \cdot y^{k} \cdot g^{-k x}=m$
- ElGamal with a hash function:
- overcoming the group encoding problem $(m \in G)$
- encryption $m \in\{0,1\}^{l}:(r, s)=\left(g^{k}, m \oplus H\left(y^{k}\right)\right)$ for random $k \in \mathbb{Z}_{q}^{*}$ and suitable H and l
- security depends on CDH and properties of H
- still malleable

Elliptic curves - introduction

- we start with elliptic curves over real numbers
- Weierstrass equation $(a, b \in \mathbb{R})$:

$$
y^{2}=x^{3}+a x+b
$$

- we are interested in non-singular curves, i.e. $4 a^{3}+27 b^{2} \neq 0$
- non-singular $\sim x^{3}+a x+b$ has no repeated roots
- points: $E=\left\{(x, y) \mid y^{2}=x^{3}+a x+b\right\} \cup\{0\}$, where 0 is an identity element (point at infinity)
- group $(E,+)$ uses a commutative "addition":
- notation: $P=\left(x_{P}, y_{P}\right), \bar{P}=\left(x_{P},-y_{P}\right)$
- $P+\bar{P}=0$
- $P+P=R=\left(x_{R}, y_{R}\right)$ such that the line $P \bar{R}$ is a tangent in P
- $P+Q=R=\left(x_{R}, y_{R}\right)$ such that \bar{R}, P and Q are collinear

Elliptic curves - addition formulas

- $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right)$
- case 1: $P+(-P)=\left(x_{P}, y_{P}\right)+\left(x_{P},-y_{P}\right)=0$
- case 2 and case 3: $P+Q=\left(x_{R}, y_{R}\right)$

$$
\begin{aligned}
x_{R} & =\lambda^{2}-x_{P}-x_{Q} \\
y_{R} & =\lambda\left(x_{P}-x_{R}\right)-y_{P} \\
\lambda & = \begin{cases}\left(3 x_{P}^{2}+a\right)\left(2 y_{P}\right)^{-1} & P=Q \\
\left(y_{Q}-y_{P}\right)\left(x_{Q}-x_{P}\right)^{-1} & x_{P} \neq x_{Q}\end{cases}
\end{aligned}
$$

Elliptic curves over finite field

- $\operatorname{GF}(p)=\left(\mathbb{Z}_{p},+, \cdot\right)$, for prime $p>3$
- other finite fields can be used, e.g. GF $\left(2^{n}\right)$, with different forms, conditions and addition formulas
- $E=\left\{(x, y) \mid y^{2}=x^{3}+a x+b \bmod p\right\} \cup\{0\}$, for $a, b \in \mathbb{Z}_{p}$ satisfying $4 a^{3}+27 b^{2} \not \equiv 0(\bmod p)$
- addition of points still "works" $(\bmod p)$, i.e. $(E,+)$ is an abelian group
- no geometric interpretation anymore
- Hasse's theorem: $||E|-p-1| \leq 2 \sqrt{p}$
- counting the exact number of points: Schoof's algorithm with $O\left(\log ^{5} p\right)$ operations in \mathbb{Z}_{p} or improved version Schoof-Elkies-Atkin algorithm with $O\left(\log ^{4} p\right)$ operations in \mathbb{Z}_{p}
- remark: a point $P=\left(x_{P}, y_{P}\right)$ can be uniquely represented by x_{P} and the sign of y_{P}

Real world examples (1): NIST P-256 curve

- prime: $p=2^{256}-2^{224}+2^{192}+2^{96}-1$
- the curve:

$$
\begin{aligned}
y^{2}= & x^{3}-3 x+ \\
& 41058363725152142129326129780047268409 \\
& 114441015993725554835256314039467401291
\end{aligned}
$$

- number of points (prime):

> 11579208921035624876269744694940757352999 6955224135760342422259061068512044369

Real world examples (2): NIST P-384 curve

- prime: $p=2^{384}-2^{128}-2^{96}+2^{32}-1$
- the curve:

$$
\begin{aligned}
y^{2}= & x^{3}-3 x+ \\
& 275801935599597058778490118403890480930 \\
& 569058563615685214287073019886892413098 \\
& 60865136260764883745107765439761230575
\end{aligned}
$$

- number of points (prime):

> 3940200619639447921227904010014361380507973927046544666794 6905279627659399113263569398956308152294913554433653942643

- required for TOP SECRET classification (NSA - Commercial National Security Algorithm Suite, 2015)
- critique: Failures in NIST's ECC standards (Bernstein, Lange, 2016)

Real world examples (3): Curve25519

- prime: $p=2^{255}-19$
- the curve:

$$
y^{2}=x^{3}+486662 x^{2}+x
$$

- number of points $8 \cdot p_{1}$ for a prime

$$
p_{1}=2^{252}+27742317777372353535851937790883648493
$$

- Montgomery form (different addition formulas, it can be translated into Weierstrass form)
- used (along other curves) in various applications (OpenSSH, Signal, Threema, etc.)
- (equivalent) curve Ed25519 standardized for a signature scheme (FIPS 186-5, see also NIST SP 800-186)

DLOG in elliptic curve groups

- $(E,+)$ - elliptic curve group
- point $P \in E$
- $k P=\underbrace{P+P+\ldots+P}_{k}$, for an integer $k \geq 0$
- DLOG: given a point $k P$, compute k
- CDH: given $a P$ and $b P$, compute $(a b) P$

EC version of ElGamal scheme

- $(E,+)$ - elliptic curve group
- $G \in E$ - generator of some subgroup of $E, \operatorname{ord}(G)=q$ (prime)
- private key: random $x \in \mathbb{Z}_{q}$
- public key: $Y=x G$
- Encryption $(M \in E):(R, S)=(k G, k Y+M)$ for random $k \in \mathbb{Z}_{q}$
- Decryption $((R, S) \in E \times E)$:

$$
S-x R=(k Y+M)-x R=(k x) G+M-(k x) G=M
$$

- group encoding

