Relačný model

Základné pojmy:

- množina, charakteristická funkcia množiny
- multimnožina, rozplizlá (fuzzy množina)
- prienik, zjednotenie, rozdiel
- relácie a tabuľky
- nadklúč a kľúč

Základné definície:

Unárna relácia: $\langle D, R \subseteq D \rangle P(x) = X_R(x)$

 $X_R:D \rightarrow Boolean$, $X_R(x)=true$, práve vtedy keď $x \in R$.

Zovšeobecnenie n-árna relácia:

$$\langle D_1, ..., D_n, R \subseteq D_1 \times ... \times D_n \rangle$$

 $X_R(x_1, ..., x_n) = true$, práve vtedy keď $< x_1, ..., x_n > \in R$.

Z teoretického hľadiska rozlišovanie oborov definície nemá zmysel (je nepodstatnou variáciou). Prakticky n-tica oborov definície určuje typ relácie.

Skratka:
$$\mathbf{x} = \langle x_1, ..., x_n \rangle$$
;

Relačné operácie

Nech R_1 a R_2 sú relácie rovnakého typu. Potom:

$$R_1 \cap R_2 = \{ \mathbf{x} : P_1(\mathbf{x}) \land P_2(\mathbf{x}) \}$$

$$R_1 \cup R_2 = \{ \mathbf{x} : P_1(\mathbf{x}) \vee P_2(\mathbf{x}) \}$$

$$R_1 - R_2 = \{x: P_1(x) \land \neg P_2(x)\}$$

Nech *R* je typu **x**U**y** (Premenným priraďujeme typ podľa oboru, z ktorého môžu nadobúdať hodnoty.)

$$\Pi_{\mathbf{x}}R = \{\mathbf{x}: (\exists \mathbf{y})P(\mathbf{x}\mathbf{y})\}$$

Relačné operácie (pokračovanie)

Nech R_1 je typu \boldsymbol{x} a R_2 je typu \boldsymbol{y} a typy \boldsymbol{x} a \boldsymbol{y} sú disjunktné

• Kartézsky súčin $R_1 \times R_2 = \{xy: P_1(x) \land P_2(y)\}$

Nech R_1 je typu \boldsymbol{xy} a R_2 je typu \boldsymbol{y} a typy \boldsymbol{x} a \boldsymbol{y} sú disjunktné

Podiel

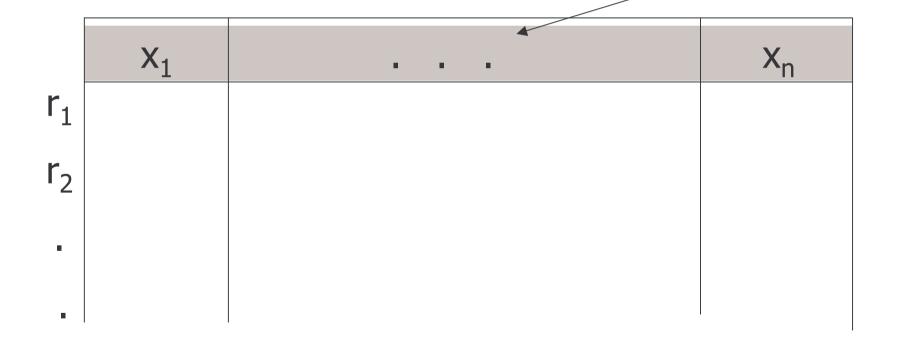
$$R_1:R_2=\{\boldsymbol{x}: (\exists \boldsymbol{y})P_1(\boldsymbol{x}\boldsymbol{y}) \land (\forall \boldsymbol{y})(P_1(\boldsymbol{x}\boldsymbol{y}) \Rightarrow P_2(\boldsymbol{y}))\}$$

Veta:
$$R_1:R_2 = \Pi_{\mathbf{x}}R_1 - \Pi_{\mathbf{x}}((\Pi_{\mathbf{x}}R_1) \times R_2 - R_1)$$

Tabuľky

Tabul'ka ako reprezentácia relácie

hlavička



Formalizácia pojmu tabuľka

Definícia:

Dvojicu $T = \langle H, R \rangle$, kde H je množina dvojíc $\{\langle meno_i, doména_i \rangle\}_{i=1}^n$ a R je podmultimnožina kartézskeho súčinu $\underset{i=1}{\times}$ doména; nazývane <u>tabuľkou</u>. Množinu H nazývame <u>hlavičkou tabuľky</u> a prvky kartézského súčinu R <u>riadkami tabuľky</u>. Na riadok r sa môžeme pozerať aj ako na funkciu z množiny mien (atribútov) do množiny hodnôt (jednotlivých domén).

Konvencia:

Z hľadiska významu považujeme tabuľky s rovnakými hlavičkami a rovnakými množinami riadkov za ekvivalentné

Operácie s tabuľkami

- Množinové operácie
- Projekcia
- Premenovanie (zmena hlavičky)
- Prirodzené spojenie (natural join)

Tabuľky sú skôr multimnožiny ako množiny riadkov.

Operácie sa niekedy vykonávajú s multimnožinami.

Na interpretáciu používame "množinovú ekvivalenciu".

"Množinové operácie"

Podmienkou pre nasledujúce operácie sú rovnaké hlavičky tabuliek a výsledku.

- Zjednotenie zachovanie hlavičky a zlúčenie multimnožín viet (riadkov).
- Rozdiel R₁- R₂ z tabuľky R₁ sa vynechajú všetky výskyty viet nachádzajúcich sa v tabuľke R₁.

Významove sú tieto operácie ekvivalentné rovnomenným relačným operáciam

Premenovanie a projekcia

(unárne operácie)

- **Premenovanie** Nech $T = \langle H_1, R \rangle$, kde $H_1 = \{\langle M_i, D_i \rangle : 1 \leq i \leq n\}$, nech $H_2 = \{\langle N_i, \Delta_i \rangle : 1 \leq i \leq n\}$ a pre každé $i, D_i \subseteq \Delta_i$. Potom tabuľku $T = \langle H_2, R \rangle$, nazývame premenovaním tabuľky T.
 - Premenovanie je technická operácia umožňujúca zníženie obmedzení na dáta a premenovanie premenných.
- Projekcia Odstránenie niektorých stĺpcov z hlavičky aj multimnožiny viet. Presnejšie povedané projekcia je obmedzenie tabuľky na podhlavičku.

Význam tejto operácie je rovnaký ako v relačných operáciách.

Prirodzené spojenie (join)

Nech $T_1 = \langle H_1, R_1 \rangle$, kde $H_1 = \{\langle M_i, D_i \rangle : 1 \le i \le m\}$ a $T_2 = \langle H_2, R_2 \rangle$, kde $H_2 = \{\langle N_i, D_i \rangle : 1 \le i \le n\}$ a $M_k = N_1 \Rightarrow D_k = D_1$.

• **Prirodzeným spojením** $T = T_1 \bowtie T_2$ rozumieme tabuľku $T = \langle H, R \rangle$ takú, že $H = H_1 \cup H_2$ a R je množina všetkých takých riadkov r, že projekcia (restrikcia) r na H_1 patrí do R_1 a projekcia r na H_2 patrí do R_2 .

Význam prirodzeného spojenia

Prirodzené spojenie realizuje logickú operáciu *and* v najvšeobecnejšom význame. Ak hlavičky relácií sú rovnaké prirodzené spojenie je prienikom, ak hlavičky relácií sú disjunktné prirodzené spojenie je kartézskym súčinom.

Pojem hlavičky spresňuje, čo je to typ relácie a premennej. Až na toto spresnenie sú tabuľky a relácie to isté.

Zákony relačnej algebry

- Prirodzené spojenie a zjednotenie sú operácie komutatívne, asociatívne a idempotentné
- Platia distributívne zákony
 - $R\bowtie (S\cup T)=(R\bowtie S)\cup (R\bowtie T)$
 - $R\bowtie (S-T)=(R\bowtie S)-(R\bowtie T)$
- Ak $\mathbf{y} \subseteq \mathbf{x}$. Potom $\Pi_{\mathbf{y}} \Pi_{\mathbf{x}} R = \Pi_{\mathbf{y}} R$
- Ak \boldsymbol{x} nepatrí medzi spoločné R a S. Potom $\boldsymbol{x} = \boldsymbol{y} \cup \boldsymbol{z}$, kde \boldsymbol{y} sú atribúty R a \boldsymbol{z} sú atribúty S a platí $\Pi_{\boldsymbol{x}}(R \bowtie S) = (\Pi_{\boldsymbol{y}}R) \bowtie (\Pi_{\boldsymbol{z}}R)$

Efektívnosť relácií konečné a nekonečné relácie

Hoci domény môžu byť nekonečné spočitateľné množiny. Databázové relácie sú vždy konečné - tabuľky s konečným počtom riadkov.

Zaujíma nás či dokážeme tabuľku vypísať. Príklady nekonečných tabuliek:

- =(x,y), <(x,y), arcsin $(x, \sin x)$
- ≠(x,y)
- perverse(a,b,c,n) \Leftrightarrow aⁿ + bⁿ = cⁿ

Vstupné množiny, generátor, rozpoznávač

Selekcia

Nech $T = \langle H_1, R_1 \rangle$ je databázová relácia a nech $F = \langle H_2, R_2 \rangle$ je nekonečná relácia a $H_2 \subseteq H_1$. Potom namiesto $R \bowtie F$ píšeme $\sigma_F R$.

• Selekcia $\sigma_F R = \{ \mathbf{x} : (\mathbf{x} \in R) \land (\mathbf{x} \in F) \}$

Veta: Nech $T = T_1 \bowtie T_2$ a nech $T_1 = \langle H_1, R_1 \rangle$, kde $H_1 = \{\langle M_i, D_i \rangle : 1 \le i \le m\}$ a $T_2 = \langle H_2, R_2 \rangle$, kde $H_2 = \{\langle N_i, D_i \rangle : 1 \le i \le n\}$. Označme $F = \omega M_k = N_l$ pre $M_k \in H_1 \land H_2$. Nech $T = \langle H_1, R_2 \rangle$ a $\mathbf{z} = H_1 \land H_2$, potom $R = \Pi_{\mathbf{z}}(\sigma_F(R_1 \times R_2))$.

Databáza

Databáza je množina domén a konečných relácií nad týmito doménami.

Dotazy sú výrazy relačnej algebry.

Odpoveď na dotaz získame výpočtom príslušného výrazu.

Je zjavný súvis medzi formulami predikátového počtu a výrazmi relačnej algebry.

Relačný kalkul

Formule predikátového kalkulu:

- Negácia sa používa len v pozitívnom kontexte t.j. $E_1(\mathbf{x}) \land \neg E_2(\mathbf{x})$ (to platí rekurzívne aj pre podformuly).
- Kontext univerzálneho kvantifikátoru je relativizovaný na nejaký pozitívny kontext $(\exists y)E_1(xy) \land (\forall y)(E_1(xy) \Rightarrow E_2(y))$ (znovu sa to používa rekurzívne).

Nededuktívny charakter dotazy sa vzťahujú na konkretný model.

Teória dotazov

Databáza je štruktúra pre predikátový kalkul

Dotaz je formula $\varphi(x)$ s množinou volných premenných x

Odpoved' na dotaz $\varphi(\mathbf{x})$ je $\{\mathbf{x}: DB \models \varphi(\mathbf{x})\}$ $\phi = false; \{\phi\} = true$

Funkčné závislosti, kľúče

Hovoríme, že v relácií $R(\mathbf{x}, \mathbf{y}, \mathbf{z})$ platí funkčná závislosť $\mathbf{x} \rightarrow \mathbf{y}$ práve vtedy, keď

$$(\forall xy_1y_2z_1z_2) R(x, y_1, z_1) \land R(x, y_2, z_2) \Rightarrow y_1 = y_2$$

Nech R(x) je relácia a $k \subseteq x$ a platí $k \to x$. Potom k sa nazýva nadkľúč.

Minimálny (v zmysle množinovej inklúzie) nadkľúč sa nazýva klúč.