Podpora pocas behu

Runtime Environments

Jan Sturc

Zima 2010

Zahrnuje:

* Spravu pamatsi

» Volanie funkcii a procedur

« Adresaciu datovych struktur

» Standardné (zabudované funkcie)
* Podporu pre tabulku symbolov

Zima 2010 Runtime support

Binding of names

Name Storage Value
X 10 100): 23
Environment State

An enwmronment 1s a function that binds names to storage locations
(lvalues) that are either absolute or relative to a pointer (e.g. the
stack pointer). The environment changes when execution moves from

one scope to another.

A stafe 18 a function that maps lvalues to rvalues. The state changes

when the program executes an assignment statement.

The environment is controlled by the compiler, with help from the

linker and runtime system. The state is controlled by the program.

0-6
Zima 2010 Runtime support

Run-Time Environments

Static vs. Runtime

Mapping a high level language to low-level
machine environment implies generating
code for allocating, maintaining and
deallocating data objects to support this

activity.
Abstract machine.

Zima 2010 Runtime support 4

Procedures/Functions

Control Abstraction

— call/return semantics, parameters,
recursion

Controlled Namespace

— Scope (local/non-local), binding,
addressing

External Interface

— separate compilation, libraries (not dealing
with here)

Zima 2010 Runtime support

Example

var a: array [0 .. 10] of integer;
procedure readarray
var i: integer

begin ... afi] ... end

function partition(y,z: integer): integer
var i,j,x,v: integer

begin ... end

procedure quicksort(m,n: integer)
var i integer

begin i := partition(m,n); quicksort(m,i-1); quicksort(i+1,n) end
procedure main

begin readarray(); quicksort(1,9); end

Zima 2010 Runtime support

Procedure Call Issues

« Control flow (call and return)

» Data: (formal/actual) parameters and
return values

« Scope information

» Responsibilities of caller vs. callee
» Recursion

 Variable addressing

Zima 2010 Runtime support

Call Graphs

A call graph is a directed multi-graph where:

 the nodes are the procedures of the program
and

» the edges represent calls between these
procedures.

Used in optimization phase.
Acyclic = no recursion in the program
Can be computed statically.

Zima 2010 Runtime support

Call Graph for Example

qlliCkQ :@

Zima 2010 Runtime support

Run-time Control Flow
Call Tree - cannot be computed statically

main

r() q(1,9)
/'\

p(1,9) q(l,3) q(,9)

pUﬁyﬂ) p (5,9) %ﬁ)

p(23) a2l q@G3) p@9 a7 90,9

Zima 2010 Runtime support 10

Static Allocation

All space allocated at compile time.

— Code area — machine instructions for each
procedure

— Static area —

« single data area allocated for each procedure.
— local vars, parameters, return value

« return address for each procedure.
No recursion

Zima 2010 Runtime support 11

Static Allocation

Code area Activation Activation
for procedure for procedure

Code C A

gener at ed

for C return addr return addr
Local data Local data

Code for C for A

gener at ed

for A

Zima 2010 Runtime support

Static Allocation

Code area
C

call A
A:

call A

\

What happens???

Zima 2010

Activation

for procedure
C

return addr

Activation

for procedure
A

Local data

for C

return addr

Runtime support

Local data

for A

13

Stack Allocation

e Code area — machine code for
procedures

o Static data — not associated with
procedures

« Stack — runtime information
— Return addresses, scope information

* Activation records — allocated at call
time onto a runtime stack.

Zima 2010 Runtime support

14

Activation Records

Information needed by a single instance
of a procedure.

» Local data

« Parameter storage

* Return value storage
» Control links for stack
» Return address

Zima 2010 Runtime support 15

Activation records

Most plattorms have an Application Binary Intertface (ABI) standard

that dictates the form of ARs. They usually look similar to this:

actual parameters

return value
saved frame pointer o
_ direction
saved stack pointer of erowth

frame pointer {fp)—s= return address

local data

(emporaries

stack pointer {sp) —s

Zima 2010 Runtime support

16

Activation Records

Different procedures/functions will have
different size activation records.

Activation record size can be determined
at compile time.

Zima 2010 Runtime support

17

Stack Allocation - 1

Call Tree Stack (growing downward)
Main Main
a: array
readarray readarray
1: Integer

Zima 2010 Runtime support

Stack Allocation - 2

Call Tree Stack (growing downward)
Main Main
a: array
readar}ay quick(1,9) quick(1,9)
1: Integer

Zima 2010 Runtime support

Stack Allocation - 3

Call Tree

Main

quick(1,9)
readarray

p(1,9) quick(1,3)

p(1.9) quick(1,0)

Zima 2010

Stack (growing downward)

Main
a: array

quick(1,9)
1: Integer

quick(1,3)
1: Integer

quick(1,0)
1: Integer

Runtime support

20

Call Processing: Caller

Create new (callee) activation record on stack.

Evaluates actual parameters and places them
in activation.

Save reqisters (—-callee) and other status data

Stores a return address, dynamic link (= current
stack pointer), and static link information into
callee activation then

Make stack pointer (SP) to point at new
activation.

Updates the program counter (PC) to the code
area for the called procedure.

Added at the point of the call

Zima 2010 Runtime support 21

Call Processing: Callee

* Initializes local data, including moving
parameters

» Begins local execution

Added at the start of the function

Zima 2010 Runtime support

22

Return Processing: Callee

» Place return value (if any) in activation.
— May be in to accumulator

« Restore SP and PC.

Added at the ‘return’ point(s) of
the function

Zima 2010 Runtime support

23

Return Processing: Caller

» Restore registers and status

« Copy the return value (if any) from
activation

e Continue local execution

Added after the point of the calli

Zima 2010 Runtime support

24

Variable numbers of arguments

Some functions, like printf, take a variable number of arguments.
Usually, there are fixed number (usually one or two) required
arguments (e.g. the format string) that determine how many other

arguments are expected.

Variable-length argument lists are easy to support if all arguments
are passed on the stack: you simply access the argument list as an
array. Support is much more complicated if some arguments are
passed in registers, which 1s why many compiler writers wish
ariable-length argument lists would go away.

Supporting such functions imposes restrictions on ABI designers. For
example, the ABI can’t say that the caller pushes the argnments but
the callee pops them (together with its own locals and temps),
because in the presence of bugs, the two may disagree on how many

arguments there are.

Zima 2010 Runtime support 25

Runtime Addressing

Given a variable reference in the code,
how can we find the correct instance of
that variable?

Tied to issues of scope

Zima 2010 Runtime support

26

Scope

The scope of a variable is that portion of the
programs to which the variable applies.

« A variable is local to a procedure if the
declaration occurs in that procedure.

« A variable is non-local to a procedure if it is
not local to that procedure but the declaration
occurs occurs in an enclosing scope of that
procedure.

* A variable is global if it occurs in the
outermost scope.

Zima 2010 Runtime support 27

Types of Scoping

» Static — scope of a variable determined
from the source code. Scope A'is
enclosed in scope B if A's source code
IS nested inside B's source code.

* Dynamic — current call tree determines
the relevant declaration of a variable
use.

Zima 2010 Runtime support 28

Most Closely Nested Rule

The scope of a particular declaration is given by
the most closely nested rule

* The scope of a variable declared in block B,
includes B.

* If x Is not declared in block B, then an
occurrence of x in B is in the scope of a
declaration of x in some enclosing block A,
such that A has a declaration of x and A is
more closely nested around B than any other
block with a declaration of x.

Zima 2010 Runtime support 29

Runtime Addressing in Static
Allocation

» Variable addresses hard-coded, usually
as offset from data area where variable
IS declared.

— addr(x) = start of x's local scope + x's offset

Zima 2010 Runtime support 30

Control Links in Stack
Allocation

Dynamic — points to caller’s activation (old
stack pointer)

« Static (access) link — points to enclosing
SCOpeE
— |If callee is directly enclosed by caller, static link =
caller’s activation

— |If callee has same enclosing scope as caller, static
link = static link in caller’s activation

— If callee is in a scope (k levels up) that encloses
the caller, need to traverse k static links from the
caller and use that static link.

Zima 2010 Runtime support 31

Runtime Addressing in Stack
Allocation

« At runtime, we can’'t know where the
relevant activation record holding the
variable exists on the stack

» Use static (access) links to enable quick
location

— addr(x) = # static links + x's offset
— Local: (0,offset)

— Immediately enclosing scope: (1,offset)

Zima 2010 Runtime support 32

Example Program

Program main;
a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);
d: real;
body of sub2
procedure sub3(a:int)
body of sub3
body of sub1

body of main

Zima 2010 Runtime support

33

Variables from Example

Procedure | Enclosing | Local:addr | Non-local: addr
= offset =(scope,offset)
main - a:0,b:1.c:2 |-
subl main a:0,d:1 b:(main,1),c:(main,2)
sub2 subl c:0,d:1 b:(main,1)
a:(subl,0)
sub3 sub2 a:0 b:(main,1),c:(main,2)
d:(subl,1)

Zima 2010 Runtime support 34

Example Program

Program main;

procedure sub1(a: int,b:int);
procedure sub2(c: int);
if c > 0 call sub2(c-1)
procedure sub3()
body of sub3
call sub3(b); call sub2(a);

call sub1(3,4),

Zima 2010 Runtime support 35

Example Program at runtime 1

stack

Zima 2010

PC

Runtime support

Code
area

mai n:
call subl(3,4)
sl:

subl:

cal |l sub3(b)
s2:call sub2(a)
s3.

sSubZ:
call sub2(c-1)
s4:

UUUUU

36

Example Program at runtime 2

AN

sl

DP

—_—

stack SP

Zima 2010

PC

Runtime support

Code
area

mai n:
cal |
sl:

subl(3, 4)

subl:

cal |
s2:call
s3:

sub3(b)
sub2(a)

sub?Z:
cal |
s4:

sub2(c-1)

sub3:

37

Example Program at runtime 3

DP| main

AN

—_—

stack SP| main

RA | 2

DP subl

\\\\\\\\\\\\“\\-ﬂ

SP subl

Zima 2010

Code
area

mai
cal
sl:

n:
| subl(3,4)

subl:

S2:
s3:

cal |
cal |

sub3(b)
sub2(a)

PC

sub?2:

cal |

4:

w unm

uh
J

sub2(c-1)

U

.
J.

Runtime support

38

Example Program at runtime 4

AN

A

a
bl 4
RA| sl
DP| main
stack SP| main
RA| 3
DP subl
SP subl
C 3
Zima 2010

Code | i n-
aréa | call subl(3, 4)
| sil
subl;
cal | sub3(b)
| s2:call sub2(a)
\ s3:
PC sub?2:
T "call sub2(c-1)
s4:
c1ith?2

UMY,

Runtime support

39

Example Program at runtime 5

AN

al 3 Code S
bl 4 aréa |call subl(3, 4)
RA| s o s1:
DP
stack SP subl:
¥ cal |l sub3(b)
RA| —— s2:call sub2(a)
DP \ s3:
SP
C | 3 PC sub?2:
5 B cal | sub2(c-1)
RA | i s4:
DP \ sub3:
SP
C 2
Zima 2010 Runtime support 40

Display

Alternate representation for access
information.

* The current static chain kept in a single
location

« Advantages: faster addressing

» Disadvantages: additional data structure
to store and maintain.

Zima 2010 Runtime support 41

Parameter Passing

Call-by-value — data is copied at the callee and any
item changes do not affect values in the caller.

Call-by-reference — pointer to to data is given to the
callee and any changes made by the callee are
indirect references to the actual value in the caller.

Call-by-value-result (copy-restore) — hybrid of call-by-
value and call-by-reference. Data copied at the
callee. During the call, changes do not affect the
actual parameter. After the call, the actual value is
updated.

Call-by-name — the actual parameter is in-line
substituted into the called procedure. This means it
IS not evaluated until it is used.

Zima 2010 Runtime support 42

Call-by-value vs.
Call-by-reference

var a,b : integer
procedure swap(x,y : integer);
var t: integer;
begin t:=x;x:=vy;y:=t; end;

begin

a=1; b:=2;

swap(a,b); value | reference
write (a =",a); |write(a) | 1 2

write (‘b =',b); :

— write(b) | 2 1

Zima 2010 Runtime support

Call-by-value-result vs.
Call-by-reference

var a: integer
procedure foo(x: integer);
begin a:=a+1;, x:=x+1; end;

begin

a=1:

foo(a); Value-result | reference
write (‘a ="a); |write(a) |2 3

end.

Zima 2010 Runtime support

Call-by-name vs
Call-by-reference

var a : array of integer; i: integer
procedure swap(x,y : integer);
var t: integer;
begin t:=x;x:=y;y:=t; end;

begin

1:=1;

swap(i,a[i)]);

write (‘i,a[i] = ',i,a[i]);

end.

Zima 2010 Runtime support

45

Parameter passing conventions

Formal parameters are always lvalues. Actual parameters are rvalues

that may or may not also be lvalues.

All languages insist on the actual parameters and formal parameters
agreeing in number (at least if the function expects a fixed number)

and in type (if the language has types).

However, different lanpuages have different ideas of what passing a
1 - v r
parameter means. These ideas are formalized in parameter passing

conventions, of which the following three are the most popular:

Call by value C, ML
Call by value-result Ada, some Fortran

Call by reterence Pascal

Zima 2010 Runtime support

46

Argument evaluation order

When passing arguments on the stack, it it usually most convenient
tor callers to evaluate arguments right to left. That way, each
evaluated actual parameter can be pushed on the stack. with the last
pushed parameter being the first parameter. This parameter ends up
on top, where the callees with variable-length argument lists can use

it to figure out how many other arguments there are.

When passing arguments in registers, it it usually most convenient
for callers to evaluate arguments left to right. That way, when
evaluating argument N into (say) register N, all the registers with

numbers higher than N are available for subexpressions.

To leave themselves freedom to pick either of these approaches,
language designers usually explicitly leave the argument evaluation

order undehned.

Zima 2010 Runtime support 47

Adresovanie poli

* Po riadkoch

» Po stipcoch

* Od prveho elementu

« Od fiktivhej adresy A [O, ..., O]

 Oba spo6soby sa daju efektivne
optimalizovat

Zima 2010 Runtime support

48

Arrays

month: array[l..12] of integer

var: array|lo. hi] of type

The amount of memory required by the array is the number of
elements (hi — lo + 1) multiplied by the size of the element type

(eltsize).
If the memory allocated to var starts at start, then the address of
var(i] is start + (i — lo) * eltsize.

Some languages, such as C, require {o to be zero to avoid the
subtraction. The multiplication is usually done using shifts, even if
eltsize 1s not a power of 2. For example, multiplication by 12 can be

done using two shifts and an add:

rx 12 ==grx8+4+rxd==—=grg << I3+ << 2

Zima 2010 Runtime support 49

Multidimensional arrays

N-dimensional arrays can be handled as arrayvs whose elements are

themselves (N-1)-dimensional arrays.
var: array|lol. hi2 lo2. hi2, lo3. hi3] of type
The address of varli, j, k] is

start
+ (i —lol) * ((hi2 — 02 4+ 1) = (hid — o3 + 1) = eltsize)
+ (§ — 102) # ((hi3 — 103 + 1) * eltsize)
+ (k — lo3) = (eltsize)

This can be more easily computed as

start + (((((i — lol) = s2) + (j — l02)) % 83) + (k — lo3)) = eltsize

using the constants 52 = hi2 — lo2 + 1 and 53 = hid — lod + 1.

Zima 2010 Runtime support

50

Structures

The layout of structures is also governed by alignment considerations,
since most languages don't allow fields to be reordered. In the

structure below, bytes 5-7 and 12-15 are padding.

The alignment requirement on a structure is the most severe
alignment requirement of any of its fields, so the structure below
must have an address divisible by 8. Even though one structure
needs only 25 bytes, arrays of it need 32 byvtes per element.,

/* size bytes */
typedef struct {

int f1; f* 4 0=-3 =/

char f2: f* 1 4 */

int f3: f* 4 8=-11 =/

double f4; /* 8 16=23 =/

char f5; f* 1 24 */
} padded;

Zima 2010 Runtime support 51

Heap Allocation

Dynamic allocation may be explicit or implicit in
the language.

 How can we keep track of what areas are
free”?

 How can we prevent fragmentation?

« Garbage -- storage location that becomes
unreachable

» Dangling reference -- pointer to a memory
location that is free

Zima 2010 Runtime support 52

Storage Organization

Code

Static data

Stack

Heap

Zima 2010

Runtime support

53

Garbage Collection

Garbage collection is the process of locating
and reclaiming unused memory.

« Three major classes of garbage collectors:
mark-scan, copying, reference count.

A collector that requires the program to halt
during the collection is a stop/start collector;
else it is a concurrent collector.

« Garbage collection is a big deal in functional
or logic languages which use a lot of dynamic
data.

« Avoid if possible!

Zima 2010 Runtime support

54

Tabulka symbolov

« Jediny dovod udrzovat ju aj pocCas behu je ladenie
(debugging).

+ Ma byt mala a kompaktna. Doporucuje sa informaciu
premennej dlzky (identifikatory, konstanty) udrzovat
v heape a v tabulke symbolov len smerniky.

« Z dovodov jednoduchosti je najvhodnejsie jednoduche
hasovanie alebo linearne vyhladavanie.

« Ak jazyk umoznuje ,nested scopes” (vhorené bloky)
musi to podporovat aj tabulfka symbolov.

Zima 2010 Runtime support 55

Symbol table structure

Each symbaol table stores
e a pointer to the symbol table of the enclosing scope (if any)
e pointers to the syvmbol tables of the scopes it encloses
e whether it has its own stack frame (e.g. blocks don't)

¢ information about the named entities (such as tvpes, variables,

functions) declared in its scope.

The information associated with each name depends on what it is
declared to be; yvou need to record different information for e.g.

functions than for variables.

In C, only the global scope may contain function definitions. Other

languages don’t have this restriction.

Zima 2010 Runtime support 56

symbol tables

The symbol table for a scope should map each name declared in the
scope to all the information the compiler has about that name. This
includes information given in the declaration (e.g. type) as well as

information computed by the compiler: size, alignment requirement,

and address, as offset from the frame pointer or the start of this

maodule’s rodata, data or bss section.

The counters von need for memory allocation are logically also part

of the symbol table.

structure of the syvmhbol table should allow guick access not only

when the table s which 1s typical for human-written code) but

also when it is very big (which ca yen when the source code

itselt is created antomatically, by tools such as lex—=

This usually requires a balanced tree or an expandable hash table.

Preferoval by som separatnu kompilaciu. Program sa ma skladat z relativne
malych nezavislych blokov.

Zima 2010 Runtime support 57

Handling nested scopes

In most languages, scopes can nest inside each other. For example, C
has three kinds of scopes: global, function and block, and they all

nest.

The compiler needs to keep a separate symbol table for each scope.
Each of these symbol tables maps each name declared in the

corresponding scope to information about that declaration.

The symbol tables themselves form a tree based on the nesting. At
any point in the code, there is a current symbol table. the symbol

table for the current scope.

Looking up a name requires looking in the current symbol table, and

if not found, searching its ancestors in turn.

A declaration in an inside scope can hide a declaration in an outer

SCOPEe.

Zima 2010 Runtime support

58

HasSovanie C (P. J. Weinberger)

#define PRIME 211
#define EOS '\0'
Int hashpjw(s)
char =*s;
{ char *p;

unsigned h=0, g;

for(p=s;*p = EOS; p++)

{h=(h<<4)+ (+p);
If (g < h&0xfO0O00000)}{ h=h"(g>>24);
h=h"g;
}

}
return h % PRIME;

}

Zima 2010 Runtime support

59

	Lecture 9: Runtime Environments
	Slide 2
	Slide 3
	Run-Time Environments
	Procedures/Functions
	Example
	Procedure Call Issues
	Call Graphs
	Call Graph for Example
	Run-time Control Flow
	Static Allocation
	Slide 12
	Slide 13
	Stack Allocation
	Activation Records
	Slide 16
	Slide 17
	Stack Allocation - 1
	Stack Allocation - 2
	Stack Allocation - 3
	Call Processing: Caller
	Call Processing: Callee
	Return Processing: Callee
	Return Processing: Caller
	Slide 25
	Runtime Addressing
	Scope
	Types of Scoping
	Most Closely Nested Rule
	Runtime Addressing in Static Allocation
	Control Links in Stack Allocation
	Runtime Addressing in Stack Allocation
	Example Program
	Variables from Example
	Slide 35
	Example Program at runtime 1
	Example Program at runtime 2
	Example Program at runtime 3
	Example Program at runtime 4
	Example Program at runtime 5
	Display
	Parameter Passing
	Call-by-value vs Call-by-reference
	Call-by-value-result vs Call-by-reference
	Call-by-name vs Call-by-reference
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Heap Allocation
	Storage Organization
	Garbage Collection
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

