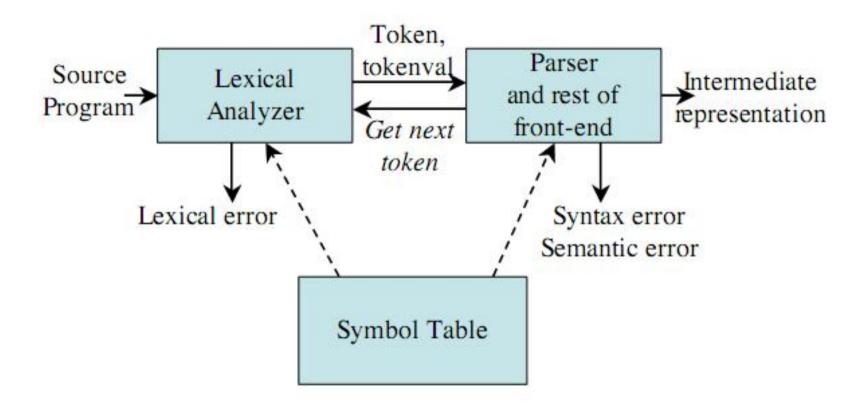
Syntaktická analýza

Ján Šturc

Zima 208

Position of a Parser in the Compiler Model



The parser

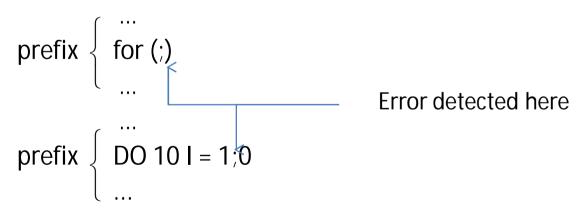
- The task of the parser is to check syntax
- The syntax-directed translation stage in the compiler's front-end checks static semantics a produces an intermediate representation (IR) of the source program
 - Abstract syntax trees (ASTs)
 - Control-flow graphs (CFGs) with triples, three-add code, or register transfer lists
 - WHIRL (SGI Pro64 compiler) has 5 IR levels!

Error handling

- A good compiler should assist in identifying and locating errors
 - Lexical errors: important, compiler can easily recover and continue
 - Syntax errors: most important for compiler, can almost always recover
 - Static semantic errors: important, can sometimes recover
 - Dynamic semantic errors: hard or impossible to detect at compile time, runtime checks are required
 - Logical errors: impossible to detect, in the majority of cases

Viable-prefix property

- The viable-prefix property of LL/LR parsers allows early detection of syntax errors
 - Goal: detection of an error as soon as possible without consuming unnecessary input
 - How: detect an error as soon as the prefix of the input does not match a prefix of any string in the language



Error Recovery Strategies

- Panic mode
 - Discard input until a token in a set of designated synchronizing tokens is found
- Phrase-level recovery
 - Perform local correction on the input to repair the error
- Error productions
 - Augment grammar with productions for erroneous constructs
- Global correction
 - Choose a minimal sequence of changes to obtain a global least-cost correction

Grammar (opakovanie)

- Context-free grammar is a 4-tuple G=(N,T,R,S)
 where
 - T is a finite set of tokens (terminal symbols),
 - N is a finite set of nonterminals,
 - R is a finite set of productions of the form $\alpha \rightarrow \beta$, where $\alpha \in (N \cup T)^* N (N \cup T)^*$ and $\beta \in (N \cup T)^*$ and
 - S is a designated start symbol $S \in N$.

Notational Conventions (nie veľmi dodržované)

Terminals

```
a,b,c,... \in T specific terminals: 0, 1, id, +
```

Nonterminals

$$A,B,C,... \in \mathbb{N}$$
 specific nonterminals: expr. term. stmt

Grammar symbols

$$X,Y,Z \in (N \cup T)$$

Strings of terminals

$$u,v,w,x,y,z \in T^*$$

• Strings of grammar symbols

$$\alpha, \beta, \gamma, ... \in (N \cup T)^*$$

Derivations (opakovanie)

- The one-step derivation is defined by $\alpha A \beta \Rightarrow \alpha \gamma \beta$ where $A \rightarrow \gamma$ is a production in the grammar
- In addition, we define
 - \Rightarrow is leftmost \Rightarrow Im if α does not contain a nonterminal
 - ⇒ is rightmost ⇒rm if β does not contain a nonterminal
 - Transitive closure ⇒* (zero or more steps)
 - Positive closure ⇒+ (one or more steps)
- The language generated by G is defined by
 L (G) = {w | S ⇒⁺ w}

Derivation (Example)

$$E \rightarrow E + E$$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow - E$

 $E \rightarrow id$

- 1. $E \Rightarrow -E \Rightarrow -id$
- 2. $E \Rightarrow_{rm} E + E \Rightarrow_{rm} E + id \Rightarrow_{rm} id + id$
- 3. $E \Rightarrow_{lm} E * E \Rightarrow_{lm} E * E + E \Rightarrow_{lm} id*id + id$

Grammar Classification

- A grammar G is said to be
 - Regular if it is right linear where each production is of the form $A \rightarrow w B$ or $A \rightarrow w$
 - or left linear where each production is of the form $A \rightarrow B$ w or $A \rightarrow w$
 - Context free if each production is of the form A → α where A ∈ N and α ∈ (NUT)*
 - Context sensitive if each production is of the form $\alpha A\beta \rightarrow \alpha\gamma\beta$, where $A \in \mathbb{N}$, $\alpha,\gamma,\beta \in (\mathbb{N} \cup \mathbb{T})^*$, $|\gamma| > 0$.
 - Unrestricted (Recursively enumerable).

Chomsky hierarchy

```
L(regular) \subseteq L(context free) \subseteq
              L(context sensitive) ⊆ L(unrestricted)
  where L(T) = \{ L(G) \mid G \text{ is of type } T \}
That is, the set of all languages generated by
  grammars G of type T
Examples:
  Every finite language is regular
  L_1 = \{ a^n b^n \mid n \ge 1 \} is context free
  L_2 = \{ a^n b^n c^n \mid n \ge 1 \}  is context sensitive
```

Parsing

- Universal (any CF grammar)
 - Cocke-Younger-Kasimi
 - Earley
- Top-down (CF | CS grammar with restrictions)
 - Recursive descent (predictive parsing)
 - LL (Left-to-right, Leftmost derivation) methods
- Bottom-up (CF | CS grammar with restrictions)
 - Operator precedence parsing
 - LR (Left-to-right, Rightmost derivation)
 - methods SLR, canonical LR, LALR

Top-Down Parsing

 Recursive-descent parsing and LL methods (Left-to-right, Leftmost derivation)

Grammar:

$$E \rightarrow T + T$$

$$T \rightarrow (E)$$

$$T \rightarrow -E$$

$$T \rightarrow id$$

Leftmost derivation:

$$\mathsf{E} \qquad \Rightarrow_{\mathsf{Im}} \quad \mathsf{T} + \mathsf{T}$$

$$\Rightarrow_{lm}$$
 id + T

$$\Rightarrow_{lm}$$
 id + id

Left Recursion

Productions of the form

are left recursive

 When one of the productions in a grammar is left recursive then a predictive parser may loop forever

Left Recursion Elimination

Arrange the nonterminals in some order A₁, A₂, ..., A_n

$$\begin{aligned} & \textbf{for } i = 1, ..., \, n \, \textbf{do} \\ & \textbf{for } j = 1, \, ..., \, i\text{-}1 \, \textbf{do} \\ & \text{replace each } A_i \rightarrow A_j \gamma \, \text{with } A_i \, \rightarrow \delta_1 \, \gamma \mid \delta_2 \, \gamma \mid ... \mid \delta_k \, \gamma \\ & \text{where } A_i \rightarrow \delta_1 \mid \delta_2 \mid ... \mid \delta_k \end{aligned}$$

end

eliminate the immediate left recursion in A_i

enddo

Immediate Left-Recursion Elimination

Rewrite every left-recursive production

$$A \rightarrow A \alpha \mid \beta \mid \gamma \mid A \delta$$

$$A \rightarrow A (\alpha \mid \delta)$$

$$A \rightarrow (\beta \mid \gamma)$$

into a right-recursive production:

$$\begin{array}{lll} A \ \rightarrow \ \beta \ A_R \ | \ \gamma \ A_R & A \ \rightarrow (\beta \ | \ \gamma \) A_R \\ A_R \ \rightarrow \ \alpha \ A_R \ | \ \delta \ A_R \ | \ \epsilon & A_R \ \rightarrow (\alpha \ | \ \delta) \ A_R \ | \ \epsilon \end{array}$$

Here productions are writen in two forms black and blue one. I prefer the blue one.

Example Left Recursion Elimination

```
A \rightarrow BC \mid a
                                                               Choose arrangement: A, B, C
B \rightarrow C A \mid A \mathbf{b}
C \rightarrow A B \mid C C \mid a
i = 1: nothing to do
i = 2, j = 1: B \rightarrow C A | A b
                     \Rightarrow B \rightarrow C A | B C b | a b
                     \Rightarrow_{\text{(imm)}} B \Rightarrow C A B<sub>R</sub> | a b B<sub>R</sub>
                                         B_R \rightarrow C \mathbf{b} B_R \mid \varepsilon
i = 3, j = 1: C \rightarrow AB \mid CC \mid a
                     \Rightarrow C \rightarrow B C B | a B | C C | a
i = 3, j = 2: C \rightarrow B C B \mid a B \mid C C \mid a
                     \Rightarrow C \rightarrow C A B<sub>R</sub> C B | a b B<sub>R</sub> C B | a B | C C | a
                     \Rightarrow_{\text{(imm)}} C \rightarrow a b B<sub>R</sub> C B C<sub>R</sub> | a B CR | a C<sub>R</sub>
                                         C_p \rightarrow A B_p C B C_p \mid C C_p \mid \epsilon
```

Left Factoring

- When a nonterminal has two or more productions whose right-hand sides start with the same grammar symbols, the grammar is not LL(1) and cannot be used for predictive parsing
- Replace productions

$$A \rightarrow \alpha \beta_1 | \alpha \beta_2 | ... | \alpha \beta_n | \gamma$$

with

$$A \rightarrow \alpha A_R \mid \gamma$$

$$A_R \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

Predictive Parsing

- Eliminate left recursion from the grammar
- Left factor the grammar
- Compute FIRST and FOLLOW
- Two variants:
 - Recursive (recursive calls)
 - Non-recursive (table-driven)

FIRST (Revisited)

FIRST(α) = the set of terminals that begin all strings derived from α

```
FIRST(a) = {a} if a \in T

FIRST(A) = \bigcup_{A \to \alpha} \{FIRST(\alpha) : A \to \alpha \in R\} \cup \{\epsilon \text{ if } A \to \epsilon \in R\}

Computation of the FIRST(X_1X_2...X_k)

FIRST(X_1X_2...X_k) = FIRST(X_1);

j = 1; while \epsilon \in FIRST(X_j) do

\{FIRST(X_1X_2...X_k) : = FIRST(X_1X_2...X_k) \cup FIRST(X_j);
j++;
\}
```

FOLLOW

- FOLLOW(A) = the set of terminals that can immediately follow nonterminal A
- Computation of the FOLLOWS:

```
for all A do FOLLOW(A): = \emptyset;

FOLLOW(S) = {$};

repeat

for all (B \rightarrow \alpha A \beta) \in R do

{FOLLOW(A):= FOLLOW(A) \cup FIRST(\beta) - {\epsilon}}

for all (B \rightarrow \alpha A \beta) \in R and (\epsilon \in FIRST(\beta) or \beta = \epsilon) do

{FOLLOW(A):= FOLLOW(A) \cup FOLLOW(B)}

until something added;
```

LL(1) Grammar

A grammar G is LL(1) if it is not left-recursive and, if for each collections of productions

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$

for a nonterminal A the following holds:

- 1. $FIRST(\alpha_i) \cap FIRST(\alpha_j) = \emptyset$ for all $i \neq j$
- 2. if $\alpha_i \Rightarrow^* \epsilon$ then
 - a. $\alpha_j \Rightarrow^* \epsilon$ for all $i \neq j$
 - b. $FIRST(\alpha j) \cap FOLLOW(A) = \emptyset$ for all $i \neq j$

Non-LL(1) Examples

Grammar	Not LL(1) because
$S \rightarrow S \mathbf{a} \mid \mathbf{a}$	Left recursive
$S \rightarrow a S \mid a$	$FIRST(a S) \cap FIRST(a) \neq \emptyset$
$S \rightarrow \mathbf{a} R \mid \mathbf{\epsilon}$ $R \rightarrow S \mid \mathbf{\epsilon}$	For $R: S \rightarrow^* \varepsilon$ and $\varepsilon \rightarrow^* \varepsilon$
$S \rightarrow \mathbf{a} R \mathbf{a}$ $R \rightarrow S \mid \varepsilon$	For R : $FIRST(S) \cap FOLLOW(R) \neq \emptyset$

Recursive Descent Parsing

- Grammar must be LL(1)
- Every nonterminal has one (recursive) procedure responsible for parsing the nonterminal's syntactic category of input tokens
- When a nonterminal has multiple productions, each production is implemented in a branch of a selection statement based on input look-ahead information

Using FIRST and FOLLOW to Write a Recursive Descent Parser

```
S \rightarrow expr \$

expr \rightarrow term rest

rest \rightarrow + term rest

| - term rest

| \epsilon

term \rightarrow id

FIRST(+ term rest) = \{ + \}

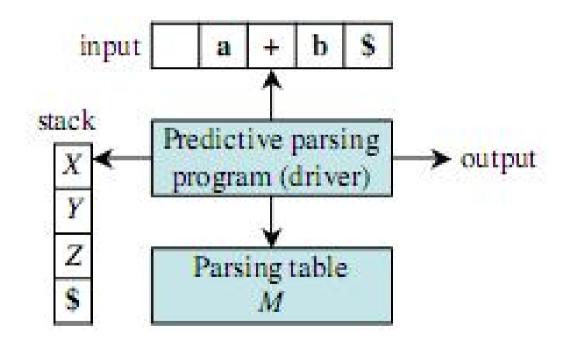
FIRST(- term rest) = \{ - \}

FOLLOW(rest) = \{ \$ \}
```

```
procedure rest();
begin
  if lookahead in FIRST(+ term rest)
    then match('+'); term(); rest()
  else if lookahead in FIRST(- term rest)
    then match('-'); term(); rest()
  else if lookahead in FOLLOW(rest)
    then return
  else error()
end;
```

Non-Recursive Predictive Parsing

Given an LL(1) grammar G=(N,T,P,S)
 construct a table M[A,a] for A ∈ N, a ∈ T and use a driver program with a stack



Constructing a Predictive Parsing Table

```
for each production A \rightarrow \alpha do
   for each a \in FIRST(\alpha) do
         add A \rightarrow \alpha to M[A,a]
   enddo
   if \varepsilon \in FIRST(\alpha) then
         for each b \in FOLLOW(A) do
                  add A \rightarrow \alpha to M[A,b]
         enddo
  endif
enddo
Mark each undefined entry in M error
```

Example Table

$$E \rightarrow T E_{R}$$

$$E_{R} \rightarrow + T E_{R} \mid \epsilon$$

$$T \rightarrow F T_{R}$$

$$T_{R} \rightarrow * F T_{R} \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$A \rightarrow \alpha$	FIRST(a)	FOLLOW(A)
$E \rightarrow TE_R$	(id	\$)
$E_R \rightarrow + T E_R$	U +	\$)
$E_R \rightarrow \epsilon$	Ε	
$T \rightarrow F T_R$	(id	+\$)
$T_R \rightarrow *F T_R$		+\$)
$T_R \rightarrow \epsilon$	Ε	
$F \rightarrow (E)$	(*+\$)
$F \rightarrow id$	id	

	id	+		()	\$
E	$E \rightarrow TE_R$			$E \rightarrow T E_R$		
E_R		$E_R \rightarrow + T E_R$	ļ.		$E_R \rightarrow \epsilon$	$E_R \rightarrow \epsilon$
T	$T \rightarrow F T_R$	51		$T \rightarrow F T_R$	8 10	
T_R		$T_R \rightarrow E$	$T_R \rightarrow *FT_R$	_	$T_R \rightarrow E$	$T_R \rightarrow E$
F	$F \rightarrow id$		ř.	$F \rightarrow (E)$		

Parsing Ambigous Grammar

An ambiguous

grammar $S \rightarrow i E t S S_R \mid a$ $S_R \rightarrow e S \mid \varepsilon$ $E \rightarrow b$

$A \rightarrow \alpha$	FIRST(a)	FOLLOW(A)
$S \rightarrow i E t S S_R$	1	e \$
$S \rightarrow a$	а	
$S_R \rightarrow e S$	e	e\$
$S_R \rightarrow \epsilon$	Ε	
$E \rightarrow \mathbf{b}$	b	t

- 3	a	b	e	i	t	\$
S	$S \rightarrow \mathbf{a}$			$S \rightarrow i E t S S_R$		
S_R			$\begin{array}{c} S_R \to E \\ S_R \to e S \end{array}$			$S_R \rightarrow$
Ε		$E \rightarrow b$				

Strictly spoken the grammar is not LL(1). LL(1) grammars are unambigous. We give priority to the rules with longer right-hand side.

Predictive Parsing Program (Driver)

```
push($);
push(S);
a := lookahead;
repeat
   X := pop();
   if X is a terminal or X = $ then match(X)
         /* move to next token, a := lookahead */
   else if M[X,a] = X \rightarrow Y_1Y_2...Y_k
                  then {push(Y_k, Y_{k-1}, ..., Y_2, Y_1) // such that Y_1 is on top
                         produce output and/or invoke actions}
   else error()
   endif
until X = $;
```

Example: Table-Driven Parsing

Stack	Input	Production applied
\$ <i>E</i>	id+id*id\$	
$\$E_RT$	id+id*id\$	$E \rightarrow T E_R$
$\$E_RT_RF$	id+id*id\$	$T \to F T_R$
$E_R T_R$ id	id+id*id\$	$F \rightarrow id$
$\$E_RT_R$	+id*id\$	
$\$E_R$	+id*id\$	$T_R \rightarrow \varepsilon$
E_RT+	+id*id\$	$E_R \rightarrow + T E_R$
$\$E_RT$	id*id\$	
$\$E_RT_RF$	id*id\$	$T \to F T_R$
$E_R T_R$ id	id*id\$	$F \rightarrow id$
$\$E_RT_R$	*id\$	
$E_RT_RF^*$	*id\$	$T_R \rightarrow *FT_R$
$\$E_RT_RF$	id\$	1110 1110 1110
$E_R T_R$ id	id\$	$F \rightarrow id$
$\$E_RT_R$	\$	
$\$E_R$	\$	$T_R \rightarrow \varepsilon$
\$	\$	$E_R \rightarrow \varepsilon$

Panic Mode Recovery

Add synchronizing actions to undefined entries based on FOLLOW synch: pop A and skip input till synch token or skip until FIRST(A)

found

```
FOLLOW(E) = \{\$,\}

FOLLOW(E<sub>R</sub>) = \{\$,\}

FOLLOW(T) = \{+,\$\}

FOLLOW(T<sub>R</sub>) = \{+,\$\}

FOLLOW(F) = \{*,+,\$\}
```

Α	id	+	蛛	()	\$
E	$E \rightarrow T E_R$			$E \rightarrow T E_R$	synch	synch
E_R		$E_R \rightarrow + TE_R$		10	$E_R \rightarrow \varepsilon$	$E_R \rightarrow \varepsilon$
T	$T \rightarrow F T_R$	synch		$T \rightarrow F T_R$	synch	synch
T_R		$T_R \rightarrow \epsilon$	$T_R \to *F T_R$	6	$T_R \rightarrow \varepsilon$	$T_R \to \varepsilon$
F	$F \rightarrow id$	synch	synch	$F \rightarrow (E)$	synch	synch

Phrase-Level Recovery

Change input stream by inserting missing token For example: id id is changed into id * id

	id	+	*	()	\$
E	$E \rightarrow T E_R$			$E \rightarrow TE_R$	synch	synch
E_R		$E_R \rightarrow + T E_R$		10	$E_R \rightarrow \varepsilon$	$E_R \rightarrow \varepsilon$
T	$T \to F T_R$	synch		$T \to F T_R$	synch	synch
T_R	insert *	$T_R \rightarrow \varepsilon$	$T_R \to *F T_R$		$T_R \to \varepsilon$	$T_R \rightarrow \varepsilon$
F	$F \rightarrow id$	synch	synch	$F \rightarrow (E)$	synch	synch

insert *: insert missing * and redo the production

Error Productions

```
E \rightarrow T ER

ER \rightarrow + T ER \mid \epsilon

T \rightarrow F TR

TR \rightarrow * F TR \mid \epsilon

F \rightarrow (E) \mid id
```

Add error production: $TR \rightarrow F TR$ to ignore missing *, e.g.: id id

	id	+	神	()	\$
E	$E \rightarrow T E_R$			$E \rightarrow T E_R$	synch	synch
E_R		$E_R \rightarrow + T E_R$			$E_R \rightarrow \varepsilon$	$E_R \rightarrow \varepsilon$
T	$T \rightarrow F T_R$	synch		$T \rightarrow F T_R$	synch	synch
T_R ($T_R \to F T_R$	$T_R \rightarrow \varepsilon$	$T_R \rightarrow *F T_R$		$T_R \to \varepsilon$	$T_R \to \varepsilon$
F	$F \rightarrow id$	synch	synch	$F \rightarrow (E)$	synch	synch

Note to project

- There are compiler-compilers (TWSs) based on top-down syntax analysis
 - AntLR
 - CoCo/R
- The language class is narrower than in the case bottom-up syntax analysis
- but it is easier to insert semantics
 - We always know, which production is proceed
 - Semantic routines can appear anywhere in the productions