
Syntaktická analýza

Ján Šturc

Zima 208



Position of a Parser in the
Compiler Model

Zima 2008 Syntax analysis - top-down 2



The parser

• The task of the parser is to check syntax
• The syntax-directed translation stage in the

compiler’s front-end checks static semantics a
produces an intermediate representation (IR) 
of the source program
– Abstract syntax trees (ASTs)
– Control-flow graphs (CFGs) with triples, three-add

code, or register transfer lists
– WHIRL (SGI Pro64 compiler) has 5 IR levels!

Zima 2008 3Syntax analysis - top-down



Error handling

• A good compiler should assist in identifying and 
locating errors
– Lexical errors: important, compiler can easily recover 

and continue
– Syntax errors: most important for compiler, can 

almost always recover
– Static semantic errors: important, can sometimes

recover
– Dynamic semantic errors: hard or impossible to detect 

at compile time, runtime checks are required
– Logical errors: impossible to detect, in the majority of 

cases

Zima 2008 4Syntax analysis - top-down



Viable-prefix property
• The viable-prefix property of LL/LR parsers allows early 

detection of syntax errors
– Goal: detection of an error as soon as possible without 

consuming unnecessary input
– How: detect an error as soon as the prefix of the input 

does not match a prefix of any string in the language
…

prefix for (;)
…
…

prefix DO 10 I = 1;0
...









Error detected here

Zima 2008 5Syntax analysis - top-down



Error Recovery Strategies

• Panic mode
– Discard input until a token in a set of designated 

synchronizing tokens is found

• Phrase-level recovery
– Perform local correction on the input to repair the error

• Error productions
– Augment grammar with productions for erroneous 

constructs

• Global correction
– Choose a minimal sequence of changes to obtain a global 

least-cost correction

Zima 2008 6Syntax analysis - top-down



Grammar (opakovanie)

• Context-free grammar is a 4-tuple G=(N,T,R,S) 
where
– T is a finite set of tokens (terminal symbols),

– N is a finite set of nonterminals,

– R is a finite set of productions of the form α → β, 
where α ∈ (N∪T)* N (N∪T)* and β ∈ (N∪T)* and

– S is a designated start symbol  S ∈ N.

Zima 2008 7Syntax analysis - top-down



Notational Conventions
(nie veľmi dodržované)

• Terminals
a,b,c,… ∈ T
specific terminals: 0, 1, id, +

• Nonterminals
A,B,C,… ∈ N
specific nonterminals:  expr, term, stmt

• Grammar symbols
X,Y,Z ∈ (N∪T)

• Strings of terminals
u,v,w,x,y,z ∈ T*

• Strings of grammar symbols
α,β,γ, … ∈ (N∪T)*

Zima 2008 8Syntax analysis - top-down



Derivations (opakovanie)

• The one-step derivation is defined by
α A β ⇒ α γ β
where A → γ is a production in the grammar

• In addition, we define
– ⇒ is leftmost ⇒lm if α does not contain a nonterminal
– ⇒ is rightmost ⇒rm if β does not contain a nonterminal
– Transitive closure ⇒* (zero or more steps)
– Positive closure ⇒+ (one or more steps)

• The language generated by G is defined by
L (G) = {w | S ⇒+ w}

Zima 2008 9Syntax analysis - top-down



Derivation (Example)
E → E + E
E → E * E
E → ( E )
E → - E
E → id

1. E ⇒ - E ⇒ - id
2. E ⇒rm E + E ⇒rm E + id ⇒rm id + id
3. E ⇒lm E * E ⇒lm E * E + E ⇒lm id*id + id*

Zima 2008 10Syntax analysis - top-down



Grammar Classification

• A grammar G is said to be
– Regular if it is right linear where each production 

is of the form A → w B or  A → w
– or left linear where each production is of the form

A → B w or  A → w
– Context free if each production is of the form A → 

α where A ∈ N and α ∈ (N∪T)*
– Context sensitive if each production is of the form

αAβ → αγβ, where A ∈ N, α,γ,β ∈ (N∪T)*, |γ| > 0.
– Unrestricted (Recursively enumerable).

Zima 2008 11Syntax analysis - top-down



Chomsky hierarchy

L(regular) ⊆ L(context free) ⊆
L(context sensitive) ⊆ L(unrestricted)

where L(T) = { L(G) | G is of type T }
That is, the set of all languages generated by 

grammars G of type T
Examples:

Every finite language is regular
L1 = { anbn | n ≥ 1 } is context free
L2 = { anbncn | n ≥ 1 } is context sensitive

Zima 2008 12Syntax analysis - top-down



Parsing

• Universal (any CF grammar)
– Cocke-Younger-Kasimi
– Earley

• Top-down (CF|CS grammar with restrictions)
– Recursive descent (predictive parsing)
– LL (Left-to-right, Leftmost derivation) methods

• Bottom-up (CF|CS grammar with restrictions)
– Operator precedence parsing
– LR (Left-to-right, Rightmost derivation) 

• methods SLR, canonical LR, LALR

Zima 2008 13Syntax analysis - top-down



Top-Down Parsing
• Recursive-descent parsing and LL methods 

(Left-to-right, Leftmost derivation)
Grammar: Leftmost derivation:
E → T + T E ⇒lm T + T
T → ( E ) ⇒lm id + T
T → - E ⇒lm id + id
T → id

Zima 2008 14Syntax analysis - top-down



Left Recursion 

• Productions of the form

A → A α

| β

| γ

are left recursive

• When one of the productions in a grammar is 
left recursive then a predictive parser may 
loop forever

Zima 2008 15Syntax analysis - top-down



Left Recursion Elimination

Arrange the nonterminals in some order A1, A2, …, An

for i = 1, …, n do

for j = 1, …, i-1 do

replace each Ai → Aj γ with Ai → δ1 γ | δ2 γ | … | δk γ

where Aj → δ1 | δ2 | … | δk

end

eliminate the immediate left recursion in Ai

enddo

Zima 2008 16Syntax analysis - top-down



Immediate Left-Recursion Elimination

Rewrite every left-recursive production
A → A α | β | γ | A δ

A → A (α | δ) 
A → (β | γ )

into a right-recursive production:
A → β AR | γ AR A → (β | γ )AR

AR → α AR | δ AR | ε AR → (α | δ) AR | ε
Here productions are writen in two forms black and 
blue one.  I prefer the blue one.

Zima 2008 17Syntax analysis - top-down



Example Left Recursion Elimination
A → B C | a

B → C A | A b Choose arrangement: A, B, C

C → A B | C C | a

i = 1: nothing to do

i = 2, j = 1: B → C A | A b

⇒ B → C A | B C b | a b

⇒ (imm) B → C A BR | a b BR

BR → C b BR | ε 

i = 3, j = 1: C → A B | C C | a

⇒ C → B C B | a B | C C | a
i = 3, j = 2: C → B C B | a B | C C | a

⇒ C → C A BR C B | a b BR C B | a B | C C | a

⇒(imm) C → a b BR C B CR | a B CR | a CR

CR → A BR C B CR | C CR | ε





Zima 2008 18Syntax analysis - top-down



Left Factoring

• When a nonterminal has two or more 
productions whose right-hand sides start with the 
same grammar symbols, the grammar is not LL(1) 
and cannot be used for predictive parsing

• Replace productions 
A → α β1 | α β2 | … | α βn | γ

• with
A → α AR | γ
AR → β1 | β2 | … | βn

Zima 2008 19Syntax analysis - top-down



Predictive Parsing

• Eliminate left recursion from the grammar

• Left factor the grammar

• Compute FIRST and FOLLOW

• Two variants:
– Recursive (recursive calls)

– Non-recursive (table-driven)

Zima 2008 20Syntax analysis - top-down



FIRST (Revisited)

FIRST(α) = the set of terminals that begin all strings derived 
from α

FIRST(a) = {a}  if a ∈ T
FIRST(A) = ∪A→α {FIRST(α) : A→α ∈ R}⋃ {ε if A→ ε ∈ R}

Computation  of the FIRST(X1X2…Xk) 
FIRST(X1X2…Xk) = FIRST(X1);
j = 1; while ε ∈ FIRST(Xj ) do

{ FIRST(X1X2…Xk): = FIRST(X1X2…Xk) ⋃ FIRST(Xj );
j++;

}

Zima 2008 21Syntax analysis - top-down



FOLLOW

• FOLLOW(A) = the set of terminals that can immediately 
follow nonterminal A

• Computation of the FOLLOWS:
for all A do FOLLOW(A): = Ø;
FOLLOW(S) = {$};
repeat

for all (B → α A β) ∈ R do
{ FOLLOW(A):= FOLLOW(A) ⋃ FIRST(β) - {ε} }

for all (B → α A β) ∈ R and (ε ∈ FIRST(β) or β = ε ) do
{FOLLOW(A):= FOLLOW(A) ⋃ FOLLOW(B) }

until something added;

Zima 2008 22Syntax analysis - top-down



LL(1) Grammar

A grammar G is LL(1) if it is not left-recursive 
and, if for each collections of productions
A → α1 | α2 | … | αn

for a nonterminal A the following holds:
1. FIRST(αi) ∩ FIRST(αj) = ∅ for all i ≠ j
2. if αi ⇒* ε then

a. αj ⇒* ε for all i ≠ j
b. FIRST(αj) ∩ FOLLOW(A) = ∅ for all i ≠ j

Zima 2008 23Syntax analysis - top-down



Non-LL(1) Examples

Zima 2008 24Syntax analysis - top-down



Recursive Descent Parsing

• Grammar must be LL(1)
• Every nonterminal has one (recursive) 

procedure responsible for parsing the 
nonterminal’s syntactic category of input 
tokens

• When a nonterminal has multiple 
productions, each production is implemented 
in a branch of a selection statement based on 
input look-ahead information

Zima 2008 25Syntax analysis - top-down



Using FIRST and FOLLOW to
Write a Recursive Descent Parser

S → expr $
expr → term rest

rest → + term rest
| - term rest
| ε

term → id

procedure rest();
begin

if lookahead in FIRST(+ term rest)
then  match(‘+’); term(); rest()

else if lookahead in FIRST(- term rest)
then match(‘-’); term(); rest()

else if lookahead in FOLLOW(rest)
then return

else error()
end;





FIRST(+ term rest) = { + }
FIRST(- term rest) = { - }
FOLLOW(rest) = { $ }

Zima 2008 26Syntax analysis - top-down



Non-Recursive Predictive Parsing

• Given an LL(1) grammar G=(N,T,P,S)
construct a table M[A,a] for A ∈ N, a ∈ T and use a 
driver program with a stack

Zima 2008 27Syntax analysis - top-down



Constructing a Predictive Parsing Table

for each production A → α do
for each a ∈ FIRST(α) do

add A → α to M[A,a]
enddo
if ε ∈ FIRST(α) then

for each b ∈ FOLLOW(A) do
add A → α to M[A,b]

enddo
endif

enddo
Mark each undefined entry in M error

Zima 2008 28Syntax analysis - top-down



Example Table

E → T ER
ER → + T ER | ε 
T → F TR
TR → * F TR | ε 
F → ( E ) | id

Zima 2008 29Syntax analysis - top-down



Parsing Ambigous Grammar
An ambiguous  

grammar
S → i E t S SR | a
SR → e S | ε 
E → b

Strictly spoken the grammar is not LL(1). LL(1) grammars are unambigous.
We give priority to the rules with longer right-hand side.

Zima 2008 30Syntax analysis - top-down



Predictive Parsing Program
(Driver)

push($);
push(S);
a := lookahead;
repeat

X := pop();
if X is a terminal or X = $ then match(X) 

/* move to next token, a := lookahead */
else if M[X,a] = X → Y1Y2…Yk

then {push(Yk, Yk-1, …, Y2, Y1) // such that Y1 is on top 
produce output and/or invoke actions}

else error()
endif

until X = $;

Zima 2008 31Syntax analysis - top-down



Example: Table-Driven Parsing

Zima 2008 Syntax analysis - top-down 32



Panic Mode Recovery

Zima 2008 Syntax analysis - top-down 33

FOLLOW(E) =    { $ ,) }
FOLLOW(ER) =  { $, ) }
FOLLOW(T) =    { +, $ ) }
FOLLOW(TR) =  { + ,$ ) }
FOLLOW(F) =    { *, + ,$ ) }

Add synchronizing actions to
undefined entries based on FOLLOW
synch: pop A and skip input till synch 

token or skip until FIRST(A) 
found

A



Phrase-Level Recovery

Change input stream by inserting missing token
For example: id id is changed into id * id

Zima 2008 Syntax analysis - top-down 34

insert *:  insert missing * and redo the production



Error Productions

Zima 2008 Syntax analysis - top-down 35

E → T ER
ER → + T ER | ε 
T → F TR
TR → * F TR | ε 
F → ( E ) | id

Add error production:
TR → F TR

to ignore missing *, e.g.: id id



Note to project

• There are compiler-compilers (TWSs) based on 
top-down syntax analysis
– AntLR
– CoCo/R

• The language class is narrower than in the case 
bottom-up syntax analysis

• but it is easier to insert semantics
– We always know, which production is proceed
– Semantic routines can appear anywhere in the 

productions

Zima 2008 Syntax analysis - top-down 36


