HN Compiler Design

Type Checking

Winter 2010



Static Checking

Abstract E— Decorated | Tptermediate
l .
Token . | parser |—Syntax fatic | Abstract Code , Infermediate
Stream Tree Checker | Syntax Code
Tree Generator

" Static (Semantic) Checks
= Type checks: operator applied to incompatible operands?
" Flow of control checks: break (outside while?)
= Uniqueness checks: labels in case statements
= Name related checks: same name?

Winter 2010 based on CSE 504, Stony Brook University



ﬁm Type Checking

" Problem: Verify that a type of a construct
matches that expected by its context.
= Examples:
" mod requires integer operands (PASCAL)
= * (dereferencing) - applied to a pointer
* a[i] - indexing applied to an array
= f(al, a2, ..., an) - function applied to correct
arguments.
" Information gathered by a type checker:
" Needed during code generation.

Winter 2010 based on CSE 504, Stony Brook University



wType Systems

Winter 2010

A collection of rules for assighing type
expressions to the various parts of a program.

Based on: Syntactic constructs, notion of a type.

“w n “w n 1)} "
Lo _n wx

Example: If both operators of "+, "-*, are of
type integer then so is the result.

Type Checker: An implementation of a type
system.

= Syntax Directed.

Sound Type System: eliminates the need for
checking type errors during run time.

based on CSE 504, Stony Brook University



&M Type Expressions

= Implicit Assumptions:

Winter 2010

= Each program has a type —
= Types have a structure

Basic Types
Boolean Character
Real integer

Enumerations 5ub-r-anges

Void Error
Variables Names

— Expressions

— Statements

Type Constructors
Arrays (strings)
Records

Sets

Pointers

Functions

based on CSE 504, Stony Brook University



Representation of Type
*M Expressions

X pointer V pointer % .
char char integer char integer info int next ptr —
Tree DAG struct cell {
| | int info;
| struct cell * next;
(char x char)- pointer (integer) )

Winter 2010 based on CSE 504, Stony Brook University



ﬁmType Expressions Grammar

Type - int | float | char | ... )
void
error > Basic Types
name
variable o
array( size, Type) A
r‘e.CO'"d( (name, Type)*) Structured
pointer( Type) > Types

tuple((Type)*)
fcn(Type, Type) (Type - Type)

Winter 2010 based on CSE 504, Stony Brook University 7



ﬁmA Simple Typed Language

Program - Declaration; Statement
Declaration - Declaration; Declaration
| id: Type

Statement - Statement; Statement
id := Expression
if Expression then Statement
while Expression do Statement
Expression - literal | hum | id

| Expression mod Expression

| E[ET| E 1 | E (E)

Winter 2010 based on CSE 504, Stony Brook University



*MType Checking Expressions

E - int_const ({Etype=int}
E — float_const ¢ E.type = float }

E-id

{ E.type = sym_lookup(id.entry, type) }

E- E1 + EZ {E.type = if E,.type ({int, float} |

Winter 2010

E,.type O {int, float})

then error

else if E,.type == E,.type == int
L
else float }

based on CSE 504, Stony Brook University



*M Type Checking Expressions

E- El [EZ] {E.type = if E,.type = array(S, T) A

E,.type = int then T else error}

E- *El {E.type = if E,.type = pointer(T) then T

else error}

E - &E, {E.type = pointer(E,.type)}

E > E,(E,) {Etype = if (E,type = fen(s, T) A
E,.type = S, then T else error}

E- (El, EZ) {E.type = tuple(E,.type, E,.type)}

Winter 2010 based on CSE 504, Stony Brook University 10



*M Type Checking Statements

S-id:=E {S.type := if id.type = E.type
then void else error}

S - if E then 51 {S.type := if E.type = boolean
then Sl.type else error}
S — while E do 51 {S.type := if E.type = boolean
then S;.type}
S - 51,' 52 {S.type :

S,.type = void then void else error}

if S;.type = void A

Winter 2010 based on CSE 504, Stony Brook University

11



Equivalence of Type
ﬁm Expressions

Problem: When in E,.type = E,.type?
" We need a precise definition for type equivalence

= Interaction between type equivalence and type
representation

Exanwﬂe: type vector = array [1..10] of real

type weight = array [1..10] of real
var x, y: vector; z: weight

Name Equivalence: When they have the same name.
" X,y have the same type; z has a different type.
Structural Equivalence: When they have the same
structure.
" X,Y, Z have the same type.

Winter 2010 based on CSE 504, Stony Brook University 12



&ﬁrruc’ruml Equivalence

= Definition: by Induction
= Same basic type (basis)
= Same constructor applied to SE Type  (induction step)
= Same DAG Representation

= Tn Practice: modifications are needed

= Do not include array bounds - when they are passed as
parameters

= Other applied representations (More compact)
= Can be applied to: Tree/ DAG

= Does not check for cycles
= Later improve it.

Winter 2010 based on CSE 504, Stony Brook University

13



Algorithm Testing
Structural Equivalence

function sequiv(s, t): boolean

{ if (s A T are of the same basic type) return true;

if (s = array(s,, s,) At = array(t,, 1,))
return sequiv(s,, t,) A sequiv(s,, 1,):

if (s = tuple(s,, s,) A t = tuple(t,, 1,))
return sequiv(s,, t;) A sequiv(s,, t,);

if (s = fen(sy, s,) At = fen(ty, 1,))
return sequiv(s,, t;) A sequiv(s,, t,);

if (s = pointer(s;) A t = pointer(t,))
return sequiv(s,, t,);

Winter 2010 based on CSE 504, Stony Brook University

14



Recursive Types

Where: Linked Lists, Trees, etc.
How: records containing pointers to similar records
Example: type link = 1 cell;

cell = record info: int; next = link end
Representation:

cell = record cell = record e—
I I
X X
X X X X

info int next ptr info int next ptr

DAG with Names cell Substituting names out (cycles)

Winter 2010 based on CSE 504, Stony Brook University



WRecursive Types in C

= C Policy: avoid cycles in type graphs by:

= Using structural equivalence for all types

= Except for records —» name equivalence
= Example:

= struct cell {int info; struct cell * next;}
" Name use: name cell becomes part of the type of

the record.
= Use the acyclic representation

= Names declared before use - except for pointers fo
records.

= Cycles - potential due to pointers in records

= Testing for structural equivalence stops when a record
constructor is reached ~ same named record type?

Winter 2010 based on CSE 504, Stony Brook University 16



Overloading Functions &

&M Operators

Winter 2010

Overloaded Symbol: one that has different
meanings depending on its context

Example: Addition operator +

Resolving (operator identification): overloading is
resolved when a unique meaning is determined.

Context: it is not always possible to resolve
overloading by looking only the arguments of a
function

= Set of possible types
" Context (inherited attribute) necessary

based on CSE 504, Stony Brook University 17



&mOverload ing Example

function **" (i, j: integer) return complex;

function "*" (x, y: complex) return complex;

* Has the following types:

fen(tup

fen(tup

fen(tup
int i, j;
k=1i>]j.

Winter 2010

e(integer, integer), integer)
e(integer, integer), complex)
e(complex, complex), complex)

based on CSE 504, Stony Brook University

18



ﬁw Narrowing Types

E->E {E'.types = E. types
E.unique = if E'.types = {t} then t else error}

E - id {E.types = lookup(id.entry)}

E- EI(EZ) {E.types = {s' | Os O E,.types and

s—s' 0 E,.types}
t = E.unique
S ={s | s O E,.types and S—t OE,.types}
E,.unique = if S ={s} then S else error
E,.unique = if S = {s} then S—t else error

Winter 2010 based on CSE 504, Stony Brook University

19



ﬁmPolymorphic Functions

" Defn: a piece of code (functions, operators) that
can be executed with arguments of different
Types.

= Examples: Built in Operator indexing arrays,
pointer manipulation

* Why use them: facilitate manipulation of data
structures regardless of types.

" Example ML:
fun length(lptr) = if null (Iptr) then O
else length(+I(lptr)) + 1

Winter 2010 based on CSE 504, Stony Brook University 20



A Language for Polymorphic

w Functions

P-D.E

D-D:D|id:Q
Q-0a Q| T

T-fen (T, T) | tuple (T, T)
unary (T) | (T)
basic

a
E-E()|EE]|id

Winter 2010 based on CSE 504, Stony Brook University

21



&M Type Variables

= Why: variables representing type expressions
allow us to talk about unknown types.
= Use Greek alphabetsa, p, v ..

= Application: check consistent usage of identifiers
in a language that does not require identifiers to
be declared before usage.
= A type variable represents the type of an undeclared

identifier.

" Type Inference Problem: Determine the type of a
language constant from the way it is used.
= We have to deal with expressions containing variables.

Winter 2010 based on CSE 504, Stony Brook University 22



&M Examples of Type Inference

Type link 1t cell;

Procedure mlist (lptr: link; procedure p);
{ while lptr <> null

{ p(lptr); lptr := lptrt .next}}
Hence: p: link —» void
Function deref (p)
{ return p 1t; }

P: b, p = pointer(a)
Hence deref: O a. pointer(a) — a

Winter 2010 based on CSE 504, Stony Brook University



Program in Polymorphic
Language

deref: O a. pointer(a) » a apply: dg
q: pointer (pointer (integer)) /\
deref (der'ef( (Q)) derefy: pointer (ag ) -~ ag apply: q;

deref;: pointer (a; ) - g

Notation:
- fcn

X ’ruple q: pointer (pointer (integer))

Subsripts i and o distinguish between the inner and outer
occurrences of deref, respectively.

Winter 2010 based on CSE 504, Stony Brook University 24



Type Checking Polymorphic
Functions

= Distinct occurrences of a p.f. in the same expression need
not have arguments of the same type.

= deref ( deref (q))
= Replace a with fresh variable and remove O (q;, a,)

" The notion of type equivalence changes in the presence of
variables.

= Use unification: check if s and t can be made structurally
equivalent by replacing type vars by the type expression.

" We need a mechanism for recording the effect of unifying
two expressions.

" A type variable may occur in several type expressions.

Winter 2010 based on CSE 504, Stony Brook University 25



Substitutions and
ﬁm Unification

= Substitution S: a mapping from type variables to type
expressions.

Function aplly (t: type Expr, S: Substitution): type Expr
{ if (t is a basic type) return t;
if (t is avariable) return S(t); -- checkift O S
if (tist, - t,) return (apply (+;) - apply (t5)); }
= TInstance: S(t) is an instance of t written S(t) < .
= Examples: pointer (integer) < pointer (a) , int > real 2 a-~ a
= Unify: t; 21, if 0S. S (t1) = S (1))
= Most General Unifier S: A substitution S:
= S (t)=5(t)
= 05" 5 (1) =5 (t,) 2> Ot. S(t) < S(1).

Winter 2010 based on CSE 504, Stony Brook University 26



Polymorphic Type checking
ﬁmTrcmslcn‘ion Scheme

E-E;(E) { p := mkleaf(newtypevar);
unify (E,.type, mknode('~', E,.type, p):

E.type = p}
E-ELE, {E.type := mknode('x’, E,.type, E,.type); }
E-id { E.type := fresh (id.type) }

fresh (1): replaces bound variables in t by fresh variables.
Returns pointer to a node representing result type.

fresh(O a.pointer(a) - a) = pointer(a,) - a,.

unify (m, n): unifies expressions represented by m and n.
= Side-effect: keep track of substitution
* Fail-to-unify: abort type checking.

Winter 2010 based on CSE 504, Stony Brook University 27



WPType Checking Example

Given: derefo (derefi (q))
q = pointer (pointer (int))

- 3
—
Bottom Up: fresh (Cla. Pointer(a) - a) pointer : 2
derefo derefi q \
| | L a:1
L :3 L5 6 pointer : 9
— —
pointer : 2 pointer : 5 pointer : 8
\ \
ao: 1 ai: 4 integer : 7
| n->:6
-3 m- : 6 —_—
— - pointer : 5 p : 8
pointer : 2 pointer : 5
\ \ pointer : 8
ao: 1 ai: 4 integer : 7

Winter 2010 based on CSE 504, Stony Brook University 28



	Compiler Design – CSE 504
	Static Checking
	Type Checking
	Type Systems
	Type Expressions
	Representation of Type Expressions
	Type Expressions Grammar
	A Simple Typed Language
	Type Checking Expressions
	Slide 10
	Type Checking Statements
	Equivalence of Type Expressions
	Structural Equivalence
	Algorithm Testing Structural Equivalence
	Recursive Types
	Recursive Types in C
	Overloading Functions & Operators
	Overloading Example
	Narrowing Down Types
	Polymorphic Functions
	A Language for Polymorphic Functions
	Type Variables
	Examples of Type Inference
	Program in Polymorphic Language
	Type Checking Polymorphic Functions
	Substitutions and Unification
	Polymorphic Type checking Translation Scheme
	PType Checking Example

